Specification for Nahuatl Software

Mike Maxwell

26 April 2004
1 Introduction

This specification defines the appearance and behavior of four tools:

Interactive Morphological Parse/ Lexical Lookup Tool

Text Morphological Annotator Tool

Pre-parsed Text Display

Paradigm Display

Not defined here is the behavior of the “back end”, i.e. the connection between the tool and the morphological parser or transducer, dictionary, and perhaps a tagger. Also undefined is the operating system under which these tools run (presumably MsWindows, but perhaps also Linux). Intentionally undefined is the programming language.

For each tool, there is a definition of:

1) The command line for starting the application (in particular, the parameters; the program name itself is not specified);

2) The appearance of the main pane (in all cases, this is the only pane, although this restriction could be eased);

3) Any hyperlinks from objects in the pane to other objects (dictionaries or help files); and

4) Menu items in the application.

The tools are described here in the context of Jonathan Amith’s Nahuatl project, but should be useful in a larger context. In particular, it should be possible to replace the Nahuatl transducer with a different parser or transducer and obtain the same behavior.

2 Interactive Morphological Parse/ Lexical Lookup Tool

The Interactive Morphological Parse/ Lexical Lookup tool is a interface to the dictionary which allows lookup of inflected forms which the user has typed in. In the following illustration, the user has typed the Nahuatl word nimitsompale:wi:s into the Parse/ Lookup tool (the gray application on the left). After pushing the “Look up” button, the GUI has passed this form to the Nahuatl transducer, which has parsed it and returned both the breakdown into Nahuatl morphemes, and the glosses for each of those morphemes to the GUI. The GUI then displays these results in the Parses box. The user has clicked on one of those morphemes in the Parses box, and the GUI has looked up that morpheme in the Nahuatl dictionary, displaying the morpheme’s lexical entry in the separate pop-up window on the right.

[image: image1.jpg][Spesial characters 32 (6

[rintcompaisnid

Pale:wia (Am), Kipale:wia; Pale:wia (Oa),
Kipalerwia
Basic transitive verb, inflection Class 2a Root: pale:
to help (another person)
Tine chpale wizs kowalkantipan.
*You will help me tomorrow in the morning"
San laipapalewitid:s.
*He will just go along helping him now and then.”
to act in Favor of; to be a help to; to help out (a particular
situation or event)
Neichpale:wia ika tewa xo.tiowala:n,
xostine chieizpantih.
“The fact that you didn't get mad helped me out, you
didn't lodge a complaint against me.”
(reflexive) to give birth (women; not used in reference to
animals)
NOTE: When used as a reflexive to indicate giving birth,
paiewia refers simply to the act of birth, even though the
woman may have died shortly thereafter.
Owmapale rwilk un suwa:d, pera samiman o:mik.
“That woman gave birth, but she died right away.’
(Ma Did:s mitspale rwi) Cheers!
(lit,, May God help youl’, a phrase addressed to
someone about to take a swig of sirong alcohol)

2.1 Command Line

<ProgramName> (-s SetupFile>)

-d: <SetupFile> gives a path to a file containing initialization instructions (see below).

2.2 Main Pane

The main (and only) pane of the Parse/ Lookup tool contains a text box for key-in of the word (or words) to be looked up. The interface automatically sets the default font for the text box, based on the dictionary opened. The text box is intended to hold a single word, and is sized accordingly. However, we do not prevent the user from typing or pasting in white space, in which case the input may contain multiple words. (While we might succeed in preventing the user from typing in white space, it would be difficult to prevent his pasting in text with white space; hence we make allowance for parsing multiple words, even though the tool is intended for single word lookup.) If entered text does not fit into the text box, a horizontal scrolling bar appears.

Optionally, a list of special characters (or the entire alphabet) and short instructions for keying them in appears above the text box. The special characters can be selected with a mouse and copied to the clipboard. This text is specified in a SpecialCharsFile (see above).

To the right of the text box is a button labeled “Look up”. Pressing this button, or hitting the <Enter> key, causes whatever text is in the text box to be parsed (see below). If no parser has been loaded, hitting the button or the <Enter> key brings up an error dialog box saying “You must load a parser/ dictionary before you can parse words.” (Alternatively, the button could be grayed out, but then the user doesn’t know why he can’t do anything.) If a parser has been loaded, but there is no text in the text box, the tool will beep.

Implementation note: Some UIs make allowance for visual “beeps”, for deaf users. If this can be implemented easily, then it may be, but it is not a high priority.

Question: Do we want to allow key-in using dead keys? e.g. the letter ‘a’ followed by an acute accent, producing an accented ‘á’. Perhaps this is best handled by the OS, although for minority languages there may be no defined keyboard.

When an input is parsed, the parses are displayed below the text box in a row of sub-panes, one per word which was parsed (and any parses which were previously displayed are erased). The text which was parsed remains in the text box. An interlinear format is used to display parses, viz:

The top line of each parse contains the division of the word into morphemes in their underlying form (NB: not their surface forms; this allows us to avoid issues of morpheme coalescence). Zero morphs are represented by a ‘0’. Morpheme boundaries are represented by a suitable boundary marker, e.g. ‘+’ or a space character.

The bottom line of each parse contains the gloss of each of the above morphemes in the glossing language (e.g. English or Spanish), using the same boundary markers.

Morphemes in the two lines do not need to be aligned.

Multiple parses are shown in vertical sequence, but with approximately double space between successive parses (as opposed to single spacing for the two lines of a single parse). If necessary, a vertical and/or horizontal scroll bar appears. (NB: Because of variable width fonts, it may be difficult to tell whether a horizontal scroll bar is necessary. If this is so, the horizontal scroll bar can always be displayed. It should be easier to tell whether the vertical scroll bar is necessary, but if not, this can be permanently displayed too.)

In case of failure to parse, the corresponding sub-pane says “No parses”. If the tool was displaying parses of a previous input, those parses are no longer displayed.

Note: The fact that we allow the user to enter white space implies that we should not display the parses in pop-up boxes. The reason is that while we can maintain the left-to-right order of words by displaying them in a set of left-to-right ordered scrolling boxes (as described above), we cannot guarantee the left-to-right order of pop-up boxes. The result would be that the user would have difficulty correlating the pop-ups with the words which had been parsed.

2.3 Hyperlinks

Each morpheme of each parse is in effect hyperlinked to a lexical entry, in both lines. Clicking on the morpheme displays a dialog box (or a browser frame?) with the lexical entry of that morpheme (see further below). The lexical entry may have further links, e.g. to synonyms, derived forms, etc. (and possibly information on the grammar, e.g. the meaning of the term ‘absolute’).

NB 1: See discussion earlier about lookup ambiguity.

NB 2: The necessity for linking both lines is because it may be counter-intuitive to click on a zero morpheme and expect to have a link; so we can’t link just from the morpheme line.

In the case of roots and stems, the linked-to lexical entry will be a dictionary entry or sub-entry. (The need for linking to a sub-entry is caused by the possibility of homophonous stems belonging to different categories, only one of which is possible in the parse.) In the case of affixes, the linked-to lexical entry may be a dictionary entry, or it may simply be an expansion of the gloss (e.g. “First person plural subject” for “1PL”).

2.4 Menu items

(NB: The menu bar is not shown in the above mockup.)

File | Quit

(NB: No File | Close is needed; a dictionary is automatically closed when another is opened. Nor is File | Save needed, unless it is desirable to save the looked-up words. In that case, there needs to be a separate File | Open Session or similar. It might be desirable to have a list of dictionaries recently opened, although in the context of use, this is probably superfluous.)

Edit | Copy: Allows selection of all or part of the current entry in the text box, and likewise for any special characters displayed below the text box.

Edit | Paste: Allows pasting in from the clipboard, assuming that whatever is on the clipboard is appropriate, i.e. text; does not check the encoding of that text, but it will be displayed in the current font.

Edit | Setup: Leads to the setup dialog box, see below.

Format | Encoding: Allows choice of encoding, for languages where there may be more than one encoding; perhaps this should be something general, like “Transcription”? to allow for alternative transliterations e.g. in Arabic.

Format | Font: May be superfluous if the user can choose the encoding; but we may want to allow the user to vary the size of the font, particularly for us old folks.

Help | Lookup Tool: It would be nice to have context-sensitive Help, but the app is simple enough that this is probably not necessary; indeed, the only system Help needed is probably an explanation of the encoding/ transliteration issue.

Help | Grammar: Brings up a language/ dictionary-particular help file, which will presumably contain information on abbreviations, parts of speech, copying/ license information, etc. This will be grayed out if the Grammar Help File has not been specified (see below).

Help | About: The usual list of suspects, including a copyright notice. In addition to the version number of the tool, the version number of the loaded dictionary and parser (if any) should be included. If the parser (e.g. Xerox’s xfst) has a version number and copyright status that can be determined, it should also be displayed.

2.5 Setup Dialog Box

This dialog box is reached from the Edit | Setup menu item, see above. Its purpose is to allow the user to specify how the tool interacts with the parser and the dictionary. Any initialization actions which have been changed when the OK button is pressed should be performed (e.g. specifying a startup command for the dictionary server should result in the dictionary server being started when the OK button is pressed).

(As an alternative or in addition, the setup should be loadable from a setup file, see discussion above. Probably clicking on the OK button in this dialog box should write the current setup file, or to a default if there is no current file; perhaps there should be an option to write this to a different file if one already exists.)

The following strings need to be definable from here:

Start parser: This string gives the parser start-up; command it will thus likely be a command to the operating system. This command is used if it is possible to start up the parser and leave it running, while feeding it commands. This is probably possible only if the parser is implemented as a DLL (or the analogous technology in Linux), or if it uses something like DDE to communicate (again, DDE is a Windows technology). Otherwise this should be left blank (as the start command will have to be included in the parse command).

Initialize parser: Another command for use if it is possible to start up the parser and leave it running, while feeding it commands. This command might be used to load a dictionary and/or grammar rules (or to re-initialize the parser, perhaps to handle a different dialect). If the start command can initialize the parser, then this command may be irrelevant.

Parse input: Minimally, this command tells the parser to parse a given string. (Note that there must be a variable in this command, which will hold the string to be parsed; it will probably be prudent to trim any whitespace from the left- and right-hand ends of that string before inserting it into this command.) For some parsers (such as xfst), this command may also need to tell the parser to start up and initialize, and stop.

Stop parser: Again, this command is used if it is possible to start up the parser and leave it running, while feeding it commands.

Start dictionary server: Assuming the dictionary server can be started up and then receive commands, this command can be used to do so.

Initialize dictionary server: Again, assuming the dictionary server has a mechanism for receiving commands other than from the command line, this tells the server to load whatever dictionary files it needs. (The initialization might instead be done by the startup command.)

Lookup lexical morpheme: Look up a lexical morpheme (to be specified in a variable in this command string), and display it in a pop-up window. The lexical morpheme may be specified in its phonological form (e.g. ‘dog’) or by its gloss; either specification may be ambiguous, in which case the dictionary server should display all matching forms. This may include the startup and shut down commands.

Stop dictionary server: Can you guess?

Start grammar server: Assuming the grammar server can be started up and then receive commands, this command can be used to do so. In some cases (when affixes are listed in the lexicon), the grammar server may be identical to the dictionary server, in which case this command may be empty. (It may also be empty if there is a grammar server distinct from the dictionary server, but it must receive its lookup command at startup, i.e. it does not possess a way of receiving commands other than the command line.)

Initialize grammar server: This should be obvious by now...

Look up grammatical morpheme: Look up a grammatical morpheme (to be specified in a variable in this command string), and display it in a pop-up window. The grammatical morpheme may be specified in its phonological form (e.g. ‘-es’) or by its gloss; the former specification may be ambiguous, and it is unclear to me what the appropriate behavior is in that case, although it should probably display all matches. This may include the startup and shut down commands.

Stop grammar server: This is obvious by now...

Grammar help file: Gives the path to a help file for the grammar and dictionary, or a way of launching such a help file. The file presumably gives information like abbreviations, parts of speech, copyright information etc. The file may be in any suitable format (text, html,...), so long as the operating system knows how to deal with it. If this is not specified, the Help | Grammar menu command should be grayed out.

Special Characters File: This is the path to a plain text file giving a list of special characters to be displayed in the “Special Characters” box above the lookup box. If this is not specified, then the “Special Characters” box is not displayed. If the file is too large to be displayed in this box (hopefully this will not happen...), then the box will scroll.

Character Encoding: This tells the encoding of the Special Characters File and of the characters typed in to the text box. The default is UTF-8. (Possibly the tool could try to tell the encoding of the Special Characters File, but that is likely to be a small file, and may therefore be wrong.) Note that ASCII is a subset of UTF-8, so the default will do the right thing if there are no special characters.

Font: This allows the user to adjust the font (there may be more than one font that works for many encodings). Ideally, this should be a drop-down box, with choices determined by the choice of encoding (and if the user chooses an encoding for which the current font choice doesn’t work, a new font should be chosen); but this may be difficult in some OSs.

Font size: Allows us old geezers to pick a font size that’s easier on our tired eyes. Should be limited to font sizes that are valid for the current font (and if the user changes the encoding, and that results in a change to the font, the system should verify that the chosen size is available in the new font). This should change the font size in the entire app (but probably not in the pop-ups, which are under control of the dictionary server and help mechanism).

3 Text Morphological Annotator Tool

The Text Morphological Annotator is a tool which allows the user to enter arbitrary text (including entire pages of plain text or html text) and obtain morphological parses of selected words, or of the entire text.

This tool can be used to assist a reader (particularly a learner) in comprehending a text, or it can be used to create an annotated a text for use in the Pre-parsed Text Display (section 4). It would be possible to distinguish these two uses (the second use requires considerably more apparatus), but it may not be necessary.

Note: Another possible use of this tool is to evaluate the user’s ability to parse words or to identify correct parses. Should that be added to this spec? It is already supported in the following sense: The user can run the parser over the entire text (see menu item Tools | Parse Text), select the correct parse for each word, and then save the result (File | Save (As)). The annotation graph can be compared with the teacher’s correct graph. What is lacking is an appropriate comparison tool, perhaps some sort of ‘diff’ tool.)

3.1 Command Line

<ProgramName> (-s SetupFile>)

-s: <SetupFile> gives a path to a file containing initialization instructions (see below).

3.2 Main Pane

If no text has been loaded, the main pane displays a gray background. Otherwise, the main pane displays the loaded text in the default or selected encoding. Vertical and horizontal scroll bars appear if necessary (or if this is too hard to judge, then they always appear). The text itself is not editable, but can be selected with a mouse (and by cursor?). Annotations in the form of parses can be added to the text, as defined below.

Right-clicking on a word in the text brings up a menu with the following menu items:

Parse: The word is submitted to the parser.

Parse with different Spelling: [This may be superceded by the edit/ browse mode distinction discussed later; note that the method described here makes it difficult to break up or combine word tokens.] The word is copied into a text box in a dialog box, using the same encoding and font as the main pane. The user is allowed to edit the word, or paste in text. Below the text box are two buttons, OK and Cancel. The Cancel button simply removes the dialog box. The OK button parses the word with the possibly changed spelling.

At this point, it is unclear what should happen. If we simply display parses in pop-up boxes when the user right-clicks and parses, there is probably not much of an issue. But if we display the parses in text (as interlinear, or with some other indication of the existence of a previous parse), then should we display the alternative parse? In any case, we should probably not change the spelling of the word in the text. See also discussion below concerning status of parsed words.

Display of Parses

Parsed text is displayed in a three line interlinear format. The three lines are here referred to as a ‘triple’, and consist of the original text line, the analysis of the words of the original text into morphemes, and the glosses of those morphemes. (The display does not include a free translation line, since such a translation does not serve the purpose here.) The spacing within a triple corresponds to single line spacing, while the spacing between triples corresponds to space and a half or double spacing.

A word and its parse into morphemes and glosses on the other two lines are here referred to as a ‘bundle’. The elements of a bundle are aligned at their left ends. (That is, the word is aligned with its parse, but the morphemes in the morphemic line and the gloss line are not necessarily aligned.) Note that the spacing between words in the text may need to change to accommodate parses and glosses which are often longer than the original word. However, line breaks in the original text should be preserved, so that it may become necessary to horizontally scroll the text window.

[Discuss: what if the text is right-to-left? One solution is to display token bundles vertically, ignoring the original flow of the text. That loses a lot, however. Maybe that could be made a choice. But what to do if the user wants to see the text in paragraphs? Look at an interlinear Hebrew Old Testament; I believe the lines read right-to-left, so the Hebrew word order was preserved; but I’m not sure about the order of the morphemes within the words.]

[Question: When should parses of already-parsed words appear? Always, i.e. as interlinear text? Or on demand? If the latter, how should the existence of a parse be indicated: by a button next to each word which enables a drop-down or pop-up? By a hyperlink? Or not at all? Or should we offer alternatives, and the choice be set as a preference? The menu items Tools | Parse Text and Tools | Parse Selection imply that there should be some indication of words that have been parsed.]

Parse Status Indicators: If there is an indication of words that have been parsed, the tool will display further indications as to the status of the parse, distinguishing at least among the following states: [Some work was done on this sort of status indication under the SIL LinguaLinks project, but choosing some kind of informative but unobtrusive indicator is difficult. Possibilities are widgets next to each word, color-coded underlines, or a change in the cursor shape—the latter makes it difficult to tell at a glance the status of the text, however.]

1) One machine parse available (not yet user-approved)

2) Multiple machine parses available (none yet approved by user)

3) One approved machine parse (i.e. the parser was run on this word, returning one or more parses, and the user selected one)

4) One approved manual parse (the user created a manual parse, which the parser cannot produce)

5) No approved parses exist (the parser was run on this word, but the user does not believe any parse is correct, nor has the user supplied a manual parse)

The display of parse status can be toggled with the View menu (see below).

When the Parse Status Indicators are turned on, each bundle has a Parse Selection Mechanism, which allows the user to choose among the parses for that word, or to add a manual parse. This may be a button with a drop-down menu of parses, one of which is “Add manual parse” [do mockup; possibly this should be combined with the parse status indicator, or else this should just be a right-click menu item].

[Discuss: Edit Mode. Normally, the user doesn’t want to edit the text, and certainly not accidentally. And the parse lines are not editable at all (as opposed to selecting parses or adding a manual parse through the Parse Selection Mechanism). One way to accomplish this would be to make the text normally read-only, in which case cursor movement could minimally selects words (or sequences of words, if cursor selection—e.g. Shift-Right in Windows—is on). There would then be a Edit | Modify Word(s) command to allow the user to edit the word(s) currently selected. At that point, either the cursor would revert to its normal behavior in most text editors, i.e. moving between characters and allowing the user to edit them, or else we could pop up a special tool displaying the currently selected word(s). (The latter seems to me like overkill, and would require the user to select a sequence of words in order to join them.) The result would be a moded editor, something like vi. Exiting the edit mode and returning to read-only mode would be by pressing the Enter key (NB: that would prevent the user from inserting a newline!), in which case the edit would be retained, and the parses of any modified words thrown away (or re-done automatically?); pressing the Escape key would result in discarding the edit.

Another issue with this is movement across punctuation tokens. This implies either that the editor “know” the results of tokenization, or that the behavior before and after tokenization be different.

All in all, perhaps the best thing is to have a read-only mode that allows the user to move among parse tokens (with words that have not been parsed being nevertheless a parse token), and a writable mode that allows the cursor to move anywhere in the text line.]

3.3 Hyperlinks

Each morpheme of each parse is hyperlinked to a lexical entry, in both lines. The behavior of these hyperlinks is identical to those in the Interactive Morphological Parse/ Lexical Lookup Tool (section 2).

3.4 Menu Items

File | Dictionary: Loads a dictionary (and its associated parser), closing any dictionary/ parser that is already open.

File | New: Creates an empty file into which the user can type or paste text.

Question: Do we need this? Or is it sufficient just to open existing texts?

File | Open: Allows opening plain text files or previously annotated files. See further discussion under File | Save As.

File | URL: Allows opening html files from the web.

Question: What do we do with hyperlinks? Omit them? Display them but do nothing if the user clicks on them? Or provide full internet browser capability—in which case we might be better off adding the parse capability to an existing Internet browser. This would require the use of a browser to which we could add right-click actions. (This interacts with the question of whether interlinear text should be displayed at all times, which would be difficult in an html file. Another issue is the fact that right-clicking on a word is supposed to bring up the parse of that word. But this will be more difficult if the word happens to also be hyperlinked.)

Pictures are another issue; language learners are often helped in their understanding by pictures, and may in any case want to read captions. So pictures should probably be displayed, which in turn implies more or less full browser capability. Perhaps this should be implemented as a plug-in?

File | Close?: This would be appropriate if we allowed multiple panes, each displaying separate files. We will probably not do this, so this menu item will probably not be necessary.

File | Save: Saves both the text and any parsed words, in AG format. If the user has previously saved the text and parses (using either File | Save or File | Save As), then this re-uses the previous location. Otherwise, the behavior is identical to that of File | Save As. No backup is made.

This will likely involve storing the text in tokenized form. In any case, the original text should not be altered. An implication is that if the user later asks to re-open the original text, the tool should remember that it has already processed this text, and offer (by means of a dialog box) to open the processed text, rather than the original raw text.

The encoding of newlines can be whatever is convenient for the tool, i.e. it need not conform to the OS.

File | Save As: Saves both the text and any parsed words, in AG format, allowing the user to select where the files are stored. See discussion under File | Save of file formats. The default should be not to overwrite the original file, and the user should be warned if he overrides this default.

Question: How should the encoding and font be saved?

File | Quit

Edit | Undo: Allows the user to undo the previous action. Probably this should be limited to actions like editing the text line [Question: if the user undoes a text line edit, do the parses revert to their previous status?] and parse selection.

Edit | Copy: Allows selection of all or part of the text. If the selection includes words which have been parsed, the copy will include the parses in stand-off format (is that feasible?)

Edit | Paste: Allows pasting in from the clipboard, assuming that whatever is on the clipboard is appropriate, i.e. text; does not check the encoding of that text, but it will be displayed in the current font). Enabled only when the file being viewed was created by File | New (and may therefore be superfluous).

Edit | Next Ambiguity: Cursor jumps to the next ambiguous parse (and if necessary, the window scrolls so as to ensure that all three lines of the ambiguous parse are displayed). If there are no more ambiguous parses, beep.

Edit | Previous Ambiguity: Same, only previous ambiguity.

Edit | Next Unparsed Word: Cursor jumps to the next unparsed token. This may be a non-alphabetic token, e.g. number or punctuation (although maybe we should just ignore such tokens?). Note that a token may not be white-space delimited (punctuation would not be), or depending on the tokenizer, may include whitespace. (Hmm, that means defining a tokenizer...) If there are no more unparsed tokens, beep.

Edit | Previous Unparsed Word: Same, only previous unparsed token.

Edit | Setup: Leads to the setup dialog box, see below.

Edit | Find: Brings up a dialog box to search for a word or morpheme. Searching will find text in any of the three lines (original text, morphemes, and morpheme glosses).

Implementation note: Or perhaps the dialog box should allow restricting the search to one or two of these lines; this may depend on whether we embed this in an existing browser, or roll our own.

View | Parse Status: This is a toggle; clicking on it turns on or off the Parse Status Indicators (and the status of the toggle is indicated by a check-mark to the left of this menu item when the Parse Status Indicators are turned on). The Parse Selection Mechanism is displayed if the Parse Status Indicators are turned on.

Tools | Parse Text: Runs the morphological parser over the entire text.

While the parser is running, it should at least display a modified mouse cursor (such as an hourglass under Windows). Ideally, the tool should display the progress in some form. If the status of parsed words is indicated (see earlier discussion), then it would be possible to temporarily alter these to represent the fact that the parser is currently working on that word. (This would also imply automatically scrolling the text pane to keep the current word in focus.) Another option would be a progress bar; this might be particularly useful if there is more than one pass over the text (e.g. if the first pass is a parser, followed by a tagger to rank the parses according to likelihood).

If any words in the text have been previously approved by the user, before beginning the parse, the tool should pop up a dialog box asking if the user wants to retain approved parses. There are three buttons:

Yes: The behavior will be that of Tools | Verify Parses (see below)

No: The parser will behave as if the text has never been parsed before. In particular, all existing parses will be removed, and the output will have no indication of any previously approved parses.

Cancel: The dialog box is dismissed, and the parser is not run.

Tools | Parse Selection: If text has been selected in the main pane, the parser is run over that text. If no text has been selected, but the cursor is on (not above) a word of the text, that word is parsed. This menu item should be grayed out if neither a selection or a cursor position exists in the text.

There may be need for a way to display progress; see discussion of progress reporting under Tools | Parse Text (above).

Tools | Verify Parses: Runs the parser over all the entire text. However, where the parser returns ambiguity, if one of the new parses corresponds exactly to a previously approved parse, that parse is retained as the approved parse. Apart from this, old parses are removed. An implication is that the app will need to save the existing parse structure, then do an intelligent comparison of this with the new parse, marking up the new parser output for approved parses.

See also discussion of progress reporting above, under Tools | Parse Text.

Question: If none of the new parses corresponds to the original approved parse, do we want to retain some indication of the old user-approved parse? This would require an additional possibility in the list of parse states, namely ‘User approved parse differs from machine parse’.

Question: If the parser returns additional parses (beyond the multiple parses which already existed), or different parses (for some of the non-approved parses) for a word that has an approved parse, should this be indicated? The user might want to change his mind on seeing the new machine parses.

Tools | Approve all Unambiguous Parses: Sets the status of all words where the parser returned exactly one parse to ‘approved’. (This is a bit dangerous, in that the parse may still be wrong, but the alternative of forcing the user to verify every single parse is likely to be unacceptable.)

Tools | Status: Pops up a dialog box displaying:

Number of words in text: <N>

Number of words in text which have/ do not have parses: <M>/<N>

Number of words in text which parse ambiguously: <N>

Number of words in text for which the user has/ has not chosen an approved parse: <M>/<N>

Date of last parsing run: <Date>

Date of last dictionary modification: <Date>

Date of last parser modification: <Date>

All numbers should be right-justified (so they line up), and all dates should align vertically. Format for dates (e.g. 06/11/1950 vs. 11 June 1950 etc.) should be determined by the OS settings, if these exist.

The dialog box has a single button labeled ‘OK’, which dismisses the dialog box.

Help | Tool: It would be nice to have context-sensitive Help, but an indexed help system will probably suffice.

Help | Grammar: Brings up a language/ dictionary-particular help file, which will presumably contain information on abbreviations used by the parser, parts of speech, copying/ license information, etc.

Help | About: Same as for Interactive Morphological Parse/ Lexical Lookup Tool (see section 2).

3.5 Setup Dialog Box

This dialog box is reached from the Edit | Setup menu item, see above. Its purpose is identical to the setup dialog box in the Interactive Morphological Parse/ Lexical Lookup Tool. (Henceforth: IMPLLT.)

The following strings need to be definable from here:

Start parser: As in the IMPLLT.

Initialize parser: As in the IMPLLT.

Parse input: Minimally, this command tells the parser to parse a file. (Note that there will usually be a variable in this command, which will hold the filename to be parsed, although it may be possible for the parser to read from stdin; that would be useful if the text to be parsed must be pre-processed, e.g. tokenized or converted to a different encoding.) For some parsers (such as xfst), this command may also need to tell the parser to start up and initialize, and to stop.

Stop parser: As in the IMPLLT.

[May need to define a tokenizer, too, and a stream of execution between them; text normalization, such as lower casing or diacritic removal...Or maybe just a script file to do it all?]

Start dictionary server: As in the IMPLLT.

Initialize dictionary server: As in the IMPLLT.

Lookup lexical morpheme: As in the IMPLLT.

Stop dictionary server: As in the IMPLLT.

Start grammar server: As in the IMPLLT.

Initialize grammar server: As in the IMPLLT.

Look up grammatical morpheme: As in the IMPLLT.

Stop grammar server: As in the IMPLLT.

Grammar help file: As in the IMPLLT.

Character Encoding: This tells the encoding (or font, in the case of proprietary encodings?) of the first and second lines of the interlinear text (it may or may not affect the glossing line). The default is UTF-8.

Font: As in the IMPLLT; affects only the first and second lines of interlinear text.

Font size: As in the IMPLLT. Note that this should affect all three lines of interlinear text (unlike the Character Encoding and Font choices). Choices should be limited to the font sizes supported by the chosen font. In the event that the font for the third line does not support the chosen size, something intelligent should be done.

4 Pre-parsed Text Display

The Pre-parsed Text Display allows the read-only display of texts which have been pre-processed, e.g. by an instructor. The annotations obtained from pre-processing are stored in AG format. Normally, this will have been produced by the Text Morphological Annotator, but it should be possible to use texts produced in other ways, so long as they conform to the AG format.

Question: The Text Morphological Annotator Tool (section 3) does not allow for user-created parses, to handle the case where the parser failed to return a parse. The implication is that some words may lack parses. Is this acceptable? If not, the Text Morphological Annotator Tool needs provision for creating parses where there is no machine parse (and perhaps for creating a parse differing from the machine parse, if the user deems the latter incorrect, but is unable to fix the parser/ dictionary to give the right parse).

Questions of how to display interlinear text whose source text line is in a right-to-left script arise here, as with the Text Morphological Annotator Tool.

Note: This specification does not address the possible use of this tool for recording users’ behavior, e.g. by keeping track of which words they request parses of. Should it?

4.1 Command Line

<ProgramName> (<–i <InputFile>) (-e <Encoding>) (-f)

Parameters (all optional):

InputFile: Specifies a file (or set of files, more likely—how to specify this?) in AG format.

Encoding: specifies an encoding (see discussion under section).

Font: specifies a font to be used (see discussion under section).

Question: How does the application know which ‘Help’ file to load? (See discussion below of Help | Language menu item.)

4.2 Main Pane

If no text has been loaded, the main pane displays a gray background. Otherwise, the main pane displays the loaded text in the target language, using the default or selected encoding. Vertical and horizontal scroll bars appear if necessary (or if this is too hard to judge, then they always appear). The text itself is not editable, but can be selected with a mouse (and by cursor?).

4.3 Hyperlinks

Each morpheme of each parse is hyperlinked to a lexical entry. The behavior of these hyperlinks is identical to those in the Interactive Morphological Parse/ Lexical Lookup Tool (section).

4.4 Menu items

File | Open: Allows opening previously annotated files (or more likely, given that the annotations are stored in AG format, sets of files).

File | Quit

(NB: No File | Close is needed, assuming we do not want multiple panes open. Nor is a File | Save needed, since the system is read-only. Or do we want to record aspects of the user’s behavior?)

Format | Encoding: Allows choice of encoding, for languages where there may be more than one encoding. (This could be omitted, if the proper encoding is saved with the annotation files; see discussion under File | Save As, section .)

Format | Font: May be superfluous if the user can choose the encoding; but we may want to allow the user to vary the size of the font.

Help | Tool: It would be nice to have context-sensitive Help, but the app is simple enough that this is probably not necessary; indeed, the only system Help needed is probably an explanation of the encoding/ transliteration issue)

Help | <Language>: Brings up a language-particular help file for the loaded language, which files will presumably contain information on abbreviations, parts of speech, copying/ license information, etc.

Help | About: Mostly same as for Interactive Morphological Parse/ Lexical Lookup Tool (see section). A version number for the parsed text should also be displayed. (How will this be assigned? Failing this, the file’s timestamp may suffice.)

5 Paradigm Display

The Paradigm Display creates the complete or partial paradigm of a word (entered in citation form) input by the user.

5.1 Command Line

<ProgramName> (-d <Dictionary>) (-e <Encoding>) (-f)

Parameters (all optional):

Dictionary: loads a dictionary and its associated morphological transducer (or generator) (see discussion under section).
; see also discussion of File | Dictionary menu item under section
Encoding: specifies an encoding (see discussion under section).

Font: specifies a font to be used (see discussion under section).

5.2 Main Pane

The main (and only) pane contains a text box for key-in of the word whose paradigm is to be generated. The interface automatically sets the default font for the text box, based on the dictionary opened.

As in the Interactive Morphological Parse/ Lexical Lookup Tool, a list of special characters (or the entire alphabet) and short instructions for keying them in appears above the text box. The special characters can be selected with a mouse and copied to the clipboard.

To the right of the text box is a button labeled “Generate Paradigm”. Pressing this button, or hitting the <Enter> key, causes whatever text is in the text box to be treated as the citation form of a word (see below). If there is no text in the text box, the tool should simply beep. If no transducer has been loaded, hitting the button or the <Enter> key brings up an error dialog box saying “You must load a transducer / dictionary before you can generate paradigms.” (Alternatively, the button could be grayed out, but then the user doesn’t know why he can’t do anything.)

Below the text box is the paradigm display, which may require scroll bars.

If the user has asked for the paradigm of a piece of text which does not correspond to the citation form of a word in the dictionary, several actions would be possible:

1) Pop up a dialog box with an error message, e.g. “You must enter the dictionary citation form of a word”. The user would then have to re-spell the word in the text box. (There doesn’t seem to be any advantage to including the misspelled word in the dialog box, and allowing the user to correct it there.)

2) Attempt to parse the word, on the assumption that it represents a word in the dictionary, but it’s just not a citation form.

3) Attempt to spell-correct the word, by looking for similar strings of citation forms. (probably beyond the scope of this project)

4) Pop up a scrolling version of the dictionary (or just the headwords in the dictionary), preferably with the display centered over the headword whose spelling corresponds to as many of the initial characters as possible of the form the user typed in. Double clicking (or right clicking) on a word in this list would replace the word in the text box, and generate the paradigm. (Or the user could copy the word and paste it into the text box, but that seems clumsy.)

Question: What happens if the user has entered whitespace characters in the text box? Should we block that (e.g. just beep if he enters a space)? That won’t work if he pastes text in. Or do we put up an error message? Note that unlike the case with the parsing tool (section), there’s not much the paradigm generator can do with multiple words: you don’t want to generate paradigms for each word, which would result in a very cluttered display. Probably the right thing to do is to beep at the time the user requests the paradigm (e.g. by hitting the <ENTER> key).

Question: Do we want to allow key-in using dead keys? e.g. the letter ‘a’ followed by an acute accent, producing an accented ‘á’. Perhaps this is handled by the OS.

When a word(s?) is parsed, the parses are displayed below the text box (or in a pop-up box?). The word which was parsed remains in the text box.

Question: What if the word is ambiguous as to POS? Do we generate paradigms for all relevant POSs, or pop up a dialog box to ask the user which POS to generate a paradigm for?

5.3 Hyperlinks

Each label on the paradigm axes is hyperlinked to a help item on that feature; the help is brought up in a separate window. (Alternatively, right clicking on a label could bring up the help, but that may less obvious to the user.)

5.4 Menu items

File | Dictionary: Loads a dictionary (and its associated morphological transducer), closing any dictionary/ transducer that is already open.

This should also load a list of POSs, and for each POS, a list of features and feature values for which that POS inflects. For example, in Spanish nouns inflect for number, adjectives for number and gender, and verbs for a host of other features.

The features should be treated as atomic, not nested; for example,

[SubjectPersonAgr {1 2 3}]

and

[ObjectPersonAgr {1 2 3}]

rather than

[Agreement [Subject [Person {1 2 3}]
 Object [Person {1 2 3}]
]
]

However, there are thorny issues here concerning feature value co-occurrence restrictions. For example, in Spanish there are different values for Tense depending on whether the verb is indicative or subjunctive; the system should not generate paradigm cells for illicit co-occurrences, such as future subjunctive. While one could build the licit combinations into the feature values (IndicativePresent, IndicativePreterite…), this would prevent displaying the paradigms by the uncombined feature values, e.g. displaying only the Indicative tenses. It might also be extremely messy. A possible solution is to pre-generate all
 sets of feature value co-occurrences, and then winnow this set by eliminating impossible combinations (such as [[Tense Future] [Mood Subjunctive]] in Spanish).

File | Quit

(NB: No File | Close is needed, assuming we do not want multiple panes open. Nor is a File | Save needed, since the system is read-only.)

Format | Encoding: Allows choice of encoding, for languages where there may be more than one encoding. (This could be omitted, if the proper encoding is saved with the annotation files; see discussion under File | Save As, section .)

Format | Font: May be superfluous if the user can choose the encoding; but we may want to allow the user to vary the size of the font.

Tools | Options: One option would be to limit the paradigm which will be displayed to a sub-region of the complete paradigm. This would be particularly useful for multi-dimensional paradigms, and is a common in textbooks.

A more complex option would be to decide the features to be displayed on each axis of the paradigms; e.g. person on the vertical axis, number on the horizontal. All other features (such as tense) would result in separate paradigm charts, to be displayed in vertical sequence. More complex would be to allow combinations of features on one or both axes, e.g. combining person and number on the vertical axis. Still another option would be to fix certain features, e.g. display only indicative mood.

Some of these options might have to be canned options on a language-particular basis.

Help | Tool: Opens a ‘Help’ file for the tool. It would be nice to have context-sensitive Help, but the app is simple enough that this is probably not necessary; indeed, probably the only tool help needed is an explanation of the encoding/ transliteration issue.

Help | <Language>: Brings up a language-particular help file, which will presumably contain information on abbreviations, parts of speech, copying/ license information, etc..

Help | About: Same as for Interactive Morphological Parse/ Lexical Lookup Tool (see section).

