\a < V bear > PASTP \d bern+e \cat V \p 2= \w berne \f \\id First sample sentence from the tutorial\n \\p\n \c 1 \a < Conj and > \d en \cat Conj \p \w en \a UP < V grow > PASTP \d op+groei+d \cat V \p =1= \w opgroeid \a < Prep in > \d yn \cat Prep \p \w yn \a < N Indonesia > \d ynje \cat N \p \w ynje \c 1 \n , \a < V will > \d sil \cat V \p \w sil \a < Adv there > \d de^r \cat Adv \p \w de^r \a < Pron his > \d syn \cat Pron \p \w syn \a < N grave > \d gre^f \cat N \p \w gre^f \a < V be > \d we^ze \cat V \p \w we^ze \n .\n\n \a < N Friesland > \d frysla^n \cat N \p \w frysla^n \f \\id frilake.txt Tutorial Exercise\n \\p\n \c 1 \a < Prep in > \d yn \cat Prep \p \w yn \a < N spring N splendor > \d maitiid+pracht \cat N \p = \w maitiidpracht \n , \a < Conj while > \d wylst \cat Conj \p \w wylst \a < Det the > \d de \cat Det \p \w de \a < N sun > \d sinne \cat N \p \w sinne \a < V shine > PAST \d skyn+de \cat V \p = \w skynde \a < Prep over > \d oer \cat Prep \p \w oer \n \n \a < Det the > \d de \cat Det \p \w de \a < N lake > PLUR \d marr+en \cat N \p = \w marren \a < Conj and > \d en \cat Conj \p \w en \a < Det the > \d de \cat Det \p \w de \a < Adj wide > \d wide \cat Adj \p \w wide \a < N pasture > PLUR \d greid+en \cat N \p = \w greiden \a < Prep with > \d mei \cat Prep \p \w mei \a < N cattle > \d fee \cat N \p \w fee \n .\n \a < N Norway > \d noarwegen \cat N \p \w noarwegen \f \\t \c 1 \n , \a < Conj when > \d doe't \cat Conj \p \w doe't \a < Det the > \d de \cat Det \p \w de \a < Adj high > \d hege \cat Adj \p \w hege \a < N sun > \d sinne \cat N \p \w sinne \a < V dream > PAST \d dream+de \cat V \p = \w dreamde \a < Prep in > \d yn \cat Prep \p \w yn \a < Det the > \d 'e \cat Det \p \w 'e \a < N fjord > PLUR \d fjord+en \cat N \p = \w fjorden \n .\n \a < N father > POSS \d heit+e \cat N \p = \w heite \f \\t \c 1 \a < Conj and > \d en \cat Conj \p \w en \a < N mother > POSS \d memm+e \cat N \p = \w memme \c 1 \a < N land > \d la^n \cat N \p \w la^n \n .\n \a < Conj but > \d mar \cat Conj \p \w mar \f \\t \c 1 \a < Pron his.p > \d sines \cat Pron \p \w sines \n ?\n \a < Pron he > \d hij \cat Pron \p \w hij \f \\t \c 1 \a < Aux has > \d hat \cat Aux \p \w hat \a < Adv there > \d der \cat Adv \p \w der \a < Adv never > \d nea \cat Adv \p \w nea \a < Adv back > \d werom \cat Adv \p \w werom \a < V been > \d west \cat V \p \w west \n .\n\n \a < V think > PL \d mien+e \cat V \p 1= \w miene \f \\id Verb present and past paradigm\n \\p\n \n .\n \a < Pron I > \d ik \cat Pron \p \w ik \f \\t\n \a < V think > \d mien \cat V \p 1 \w mien \n .\n \a < Pron you > \d do \cat Pron \p \w do \a < V think > 2 \d mien+st \cat V \p 1= \w mienst \n .\n \a < Pron he > \d hy \cat Pron \p \w hy \a < V think > 3 \d mien+t \cat V \p 1= \w mient \n .\n \a < Pron we > \d wy \cat Pron \p \w wy \a < V think > PL \d mien+e \cat V \p 1= \w miene \n .\n \a < Pron I > \d ik \cat Pron \p \w ik \f \\t\n \a < V think > PAST \d mien+de \cat V \p 1= \w miende \n .\n \a < Pron you > \d do \cat Pron \p \w do \a < V think > PAST 2 \d mien+de+st \cat V \p 1== \w miendest \n .\n \a < Pron he > \d hy \cat Pron \p \w hy \a < V think > PAST \d mien+de \cat V \p 1= \w miende \n .\n \a < Pron we > \d wy \cat Pron \p \w wy \a < V think > PAST PL \d mien+de+n \cat V \p 1== \w mienden \n .\n\n \a UN < V break > ABLE \d u^n+brek+ber \cat Adj \p == \w u^nbrekber \f \\id Adjectives with u^n\n \\p\n \n .\n \a UN < Adj certain > \d u^n+wis \cat Adj \p = \w u^nwis \n .\n \a UN < Adj faithful > \d u^n+trou \cat Adj \p = \w u^ntrou \n .\n \a UN < Adj healthy > \d u^n+geef \cat Adj \p = \w u^ngeef \n .\n \a UN < Adj kind > \d u^n+freonlik \cat Adj \p = \w u^nfreonlik \n .\n \a UN < Adj welcome > \d u^n+wolkom \cat Adj \p = \w u^nwolkom \n .\n \a UN < Adj accessible > \d u^n+tagonklik \cat Adj \p =in \w u^ntagonklik \n .\n \a UN < Adj capable > \d u^n+bikwaam \cat Adj \p =in \w u^nbikwaam \n .\n \a UN < V compare > ABLE \d u^n+ferlyk+ber \cat Adj \p =in= \w u^nferlykber \n .\n \a UN < Adj correct > \d u^n+krekt \cat Adj \p =in \w u^nkrekt \n .\n \a UN < Adj curable > \d u^n+gene^slik \cat Adj \p =in \w u^ngene^slik \n .\n \a UN < V eat > ABLE \d u^n+yt+ber \cat Adj \p == \w u^nytber \n .\n \a UN < V pass > ABLE \d u^n+begean+ber \cat Adj \p =in= \w u^nbegeanber \n .\n \a UN < Adj patient > \d u^n+geduldich \cat Adj \p =in \w u^ngeduldich \n .\n \a UN < Adj perfect > \d u^n+folmakke \cat Adj \p =in \w u^nfolmakke \n .\n \a UN < Adj pertinent > \d u^n+beskamme \cat Adj \p =in \w u^nbeskamme \n .\n \a UN < Adj possible > \d u^n+mooglik \cat Adj \p =in \w u^nmooglik \n .\n \a UN < Adj probable > \d u^n+wierskynlik \cat Adj \p =in \w u^nwierskynlik \n .\n