CHICAGO JOURNALS

Phonology and Morphotonemics of Ayutla Mixtec
Author(s): Leo Pankratz and Eunice V. Pike
Source: International Journal of American Linguistics, Vol. 33, No. 4 (Oct., 1967), pp. 287-299
Published by: The University of Chicago Press
Stable URL: http://www.jstor.org/stable/1263657
Accessed: 05/06/2009 15:39

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ucpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of American Linguistics.

PHONOLOGY AND MORPHOTONEMICS OF AYUTLA MIXTEC

Leo Pankratz and Eunice V. Pike
Summer Institute of Linguistics

0. Introduction
1. Consonant contrasts
2. Consonant variants
3. Vowel contrasts
4. Vowel variants
5. Distribution of phonemes
6. Tone contrasts
7. Tone variants
8. The syllable
9. The phonological word
10. The phonological phrase
11. Morphotonemics
12. The functional load of tone
13. A very pertinent feature in the analysis of Ayutla Mixtec ${ }^{1}$ phonology is the twosyllable couplet ${ }^{2}$ which is the nucleus of most phonological words. (For an exception, see 9.2.) It is phonologically marked by
${ }^{1}$ There are about 5,000 speakers of the Ayutla, Guerrero dialect of Mixtec. A number of residents of the community of Tepango were used as informants, but Artemio Alvarez was the principal one for the analysis of the segmental phonemes. Leo Pankratz did the analysis of the segmental phonemes and the lexical and grammatical materials were furnished by him. Eunice V. Pike did the analysis of tone, the phonological word, and the phonological phrase, using the informants José Maximino García and Sabino Morales Ãngel. She also is responsible for the presentation of the material.
${ }^{2} \mathrm{~K}$. Pike speaks of 'tonemic couplets' and morphemes which are 'basically dissyllabic' in the San Miguel el Grande dialect of Mixtec. See Kenneth L. Pike, Tone Languages, University of Michigan Press, (Ann Arbor, 1948), 79-80. Mak uses a 'tone couplet' in describing the morphotonemics of the San Esteban dialect. See Cornelia Mak, A comparison of two Mixtec tonemic systems, IJAL 19.87 (1953). Longacre calls the couplet 'the primary distributional matrix' in Mixtec. See Robert E. Longacre, Proto-Mixtecan, Publication No. 5 of Indiana University Research Center in Anthropology, Folklore, and Linguistics (1957), 11.
consonantal allophones and rhythm (2 and 9.1). Word-stress is predictable by tone provided that the couplet occurs wordinitially, but it is not predictable if the couplet occurs elsewhere. Phrase-stress, however, is independent both of tone and of the couplet (10).

The phonological word and phrase are domains of two separate morphotonemic systems. These systems involve the lexical, phonological, and, to a lesser degree, the grammatical hierarchies, since in describing the morphotonemics it is necessary to classify the lexical items both according to their basic phonological shape, and (when describing the morphotonemics within a word) according to their grammatical status (i.e. according to stem versus proclitic versus enclitic).

Ayutla Mixtec is unique among the thirty or so Mixtec dialects and subdialects yet studied, in that it has a phonemic mor-pheme-final and word-final glottal stop. ${ }^{3}$ Although the morpheme-final glottal stop disappears word-medially, and the word-final glottal stop disappears phrase-medially, morphemes and words characterized by this feature are morphotonemically distinct from those not having it in their basic forms. In fact, the role of morpheme-final and wordfinal glottal stop in morphotonemics is so important that Ayutla Mixtec may be considered to preserve here an archaic feature of considerable importance to the understanding of the development of Mixtec morphotonemics in its manifold dialectal

[^0]variations. In this paper special attention has been paid to morphotonemics.

1. There is contrast between the following consonant phonemes: voiceless stops and alveopalatal affricate $/ \mathrm{p}$ (rare), t , t^{y}, č, k , $\mathrm{k}^{\mathrm{w}}, \mathrm{?} /$; prenasalized stops /b (rare), d, d^{y}, g (rare), g^{w} (rare)/; spirants /s, š, h (rare), $h^{\text {w }}$ (rare)/; nasals /m, n, ñ/; lateral, vibrant, and semiconsonants $/ 1, \mathrm{r}, \mathrm{v}, \mathrm{y} /$.
Bilabials /p, b, v/: pa3láa brown sugar, bé ${ }^{3} \mathrm{e}^{3}$ sheep, vá ${ }^{3}{ }^{9} \mathrm{a}^{3}$ good.

Alveolar and palatalized alveolar stops, and alveopalatal affricate $/ t, t^{y}, \check{c}, d, d^{y} /$: to $^{3} 0^{3}$ a span, $\mathrm{t}^{\mathrm{y}} \mathrm{o}^{3} \mathrm{o}^{3}$ a root, č $\mathrm{c}^{29} \mathrm{o}^{3}$ a nest, do ${ }^{39} \mathrm{o}^{3}$ adobe, $\mathrm{d}^{\mathrm{y}}{ }^{3}{ }^{3} \mathrm{o}^{3}$ a humming bird.

Velars and labialized velars $/ \mathrm{k}, \mathrm{k}^{\mathrm{w}}, \mathrm{g}, \mathrm{g}^{\mathrm{w}}$,
 tî ${ }^{3} \mathrm{ka}^{3}$ grasshopper, $\mathrm{i}^{3} \mathrm{ga}^{3}$ another, si ${ }^{1} \mathrm{k}^{\mathrm{w}}{ }^{3}$ tree sap, $\mathrm{i}^{3}-\mathrm{g}^{\mathrm{wi}} \mathrm{i}^{3} \mathrm{i}^{3}$ fox, $\mathrm{ho}^{3}-\mathrm{l}_{1^{1} \mathrm{t}^{1}}$ seseme seed, $\mathrm{ka}^{3}{ }^{\mathrm{h}} \mathrm{E}^{1}$ coffee.

The glottal stop versus the absence of glottal stop, and versus $/ \mathrm{t} /$ and $/ \mathrm{k} /:$ ná $^{2} \mathrm{ma}^{3}$ wall, ná ${ }^{2} \mathrm{ma}^{93}$ soap, $\mathrm{to}^{2} \mathrm{to}^{3}$ clothing, $\mathrm{t}^{\mathrm{y}}{ }^{3} \mathrm{kó}^{91}$ ant, $\mathrm{t}^{\mathrm{y}} \mathrm{o}^{39}{ }^{3} \mathrm{o}^{91}$ flea, yó ${ }^{2} \mathrm{ko}^{93}$ steam.

The nasals, lateral, and vibrant /m, n, n, $1, \mathrm{r} /:$ tú $^{3} \mathrm{mi}^{3}$ feather, nú ${ }^{2} \mathrm{ni}{ }^{33}$ corn, ñúñ̃u ${ }^{33}$ honey, lúlu ${ }^{1}$ small, $\mathrm{a}^{3} \mathrm{r}^{1}$ rice.

The semiconsonants /v, y/: yá ${ }^{19} \mathrm{a}^{1}$ brown, vá ${ }^{3} \mathrm{a}^{3}$ good, ná ${ }^{2} \mathrm{ya}^{93} a \log$, dáa ${ }^{3} \mathrm{va}^{3}$ rafter.

The sibilants /s, š/ versus the affricate /č/: $\mathrm{ki}^{3} \mathrm{si}^{3}$ a pitcher, dís si^{3} corn liquor, dí ${ }^{3} \mathrm{c}^{3}{ }^{3}$ stringbean.
2. The environment most pertinent to the description of the consonant variants is the nucleus of phonological word type one (9.1). This nucleus is a couplet which coincides with the grammatical stem. It has been indicated by a preceding hyphen. If a word contains no hyphen, the couplet follows word space. te ${ }^{3}$-sáa ${ }^{3} \mathrm{va}^{3}$ boy, kả3 ka^{3} lime. Since the couplet is marked by hyphen or word space, a stress mark is redundant; I have written it, however, since the rules are a bit complicated (9.1), and since the various phonemic tones are sometimes most easily identified in relation to stress.

Voiceless stops $/ \mathrm{t}, \mathrm{t}^{\mathrm{y}}, \mathrm{k}, \mathrm{k}^{\mathrm{w}} /$ and the affricate /č/ are preaspirated when occurring as the second consonant in a couplet. ${ }^{4}$ si $[\mathrm{h}] \mathrm{ti}^{3}$ cheek, tú ${ }^{2}[\mathrm{~h}] \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ atole, šás ${ }^{3}[\mathrm{~h}] \mathrm{ku}{ }^{93} a$ few, ká ${ }^{2}[\mathrm{~h}]$ či ${ }^{93}$ cotton, yá ${ }^{2}[\mathrm{~h}] \mathrm{k}^{\mathrm{w}} \mathrm{a}^{93}$ syrup foam. (The following example has a word-medial, couplet-initial $/ \mathrm{k} /$ which is not preaspirated. ti ${ }^{3}$-kás ${ }^{3}[\mathrm{~h}] \mathrm{t}^{\mathrm{a}}{ }^{3}$ cornsilk.)

A nasal, the nasal of a prenasalized stop, and the voiced continuants $/ 1, \mathrm{v}, \mathrm{y} /$ are lengthened when occurring as the second consonant in a couplet., tílm[$\cdot] \mathrm{a}^{91}$ candle, šá ${ }^{3} n[\cdot] u^{3}$ daughter-in-law, ñú ${ }^{2} \tilde{n}[\cdot] u^{93}$ honey, $\mathrm{k} 0^{2}[\mathrm{n} \cdot] \mathrm{do}^{3}$ knee, $\mathrm{ti}^{3}-\mathrm{n} \mathrm{a}^{3} \mathrm{n}[\cdot] \mathrm{a}^{93}$ tomato, čée ${ }^{1}\left[\cdot \cdot \mathrm{e}^{1}\right.$ scissors, váa ${ }^{3} \mathrm{v}[\cdot] \mathrm{i}^{3}$ a joint, ná ${ }^{2} \mathrm{y}[\cdot] \mathrm{a}^{93}$ dog.

The voiceless continuants when occurring as the second consonant of a couplet are either lengthened, or are preceded by a slight hiatus. tós ${ }^{3}[\cdot] \mathrm{o}^{3}$ or tós ${ }^{3}[\#] \mathrm{so}^{3}$ a foral arch, $\mathrm{ti}^{3}-\mathrm{su}^{3}[\mathrm{~h}] \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ a crane, ká3š$\left[\cdot \mathrm{l}^{3}\right.$ or ká ${ }^{3}[\#] \mathrm{sit}^{3}$ dew.

When postcouplet ${ }^{5}$ the stop /k/ varies from a voiceless stop to a lenis voiced fricative, the affricate /č/ varies from a voiceless to a voiced affricate, and the bilabial continuant /v/ varies from slight friction to frictionless. ká ${ }^{1} i^{3}{ }^{3} a^{1}\left[k a^{1} n \cdot i^{3} v a^{3}\right]$ or $\left[k a^{11} n \cdot i^{3} w a^{3}\right]$ it is very long, ká ${ }^{2} \mathrm{ka}^{3} \mathrm{ka}^{3} \mathrm{ra}^{3}$ [ká $\left.{ }^{2} \mathrm{hka}{ }^{3} \mathrm{ka}^{3} \mathrm{ra}^{3}\right]$ or $\left[k \mathrm{ka}^{2} \mathrm{hka}{ }^{3} \mathrm{ga}^{3} \mathrm{ra}^{3}\right]$ he will ask
 cotton.

If only native words were considered, the lateral /l/ could be described as a vibrant [ř] when in postcouplet position, and a lateral [l] in other environments. For example, lu $^{11} \mathrm{u}^{1} \mathrm{ra}^{3}$ he is small. However, due to Spanish

[^1]loan words, the lateral and vibrant are in contrast. / $\mathrm{lú}^{1} \mathrm{lu}^{1 /}$ small, /tól${ }^{1} \mathrm{ro}^{1 /}$ bull.
3. There is contrast between five oral /i, $\mathrm{e}, \mathrm{a}, \mathrm{o}, \mathrm{u} /$ and four nasalized vowels /i, e (rare), a, $\mathrm{u} /$.

Front vowels /i, i, e, e/ contrast: $\mathrm{i}^{3} \mathrm{k}_{\mathrm{i}}{ }^{91}$ squash, $\mathrm{i}^{3} \mathrm{ki}^{1{ }^{11}}$ bone, $\mathrm{di}^{3}{ }^{3} \mathrm{i}^{3}$ pimple, $\mathrm{de}^{2}{ }^{2} \mathrm{i}^{3}$ mud,
 ša $^{3} \mathrm{tu}^{3} \mathrm{e}^{93}$ our trousers. The vowel /a/ contrasts with the above. $i^{3} \mathrm{ta}^{3 \mathrm{i}^{3}}$ my flower, tús ${ }^{3} u^{3} a^{93}$ her paper.

Back vowels /o, u, u/ contrast: tó ${ }^{2} \mathrm{to}^{3}$ clothing, tư ${ }^{3} \mathrm{tu}^{3}$ paper, tu ${ }^{3} \mathrm{tuq}^{11}$ firewood, šá ${ }^{2} \mathrm{t}^{93}$ box, yá ${ }^{1} \mathrm{tu}^{93}$ tumpline.

Central oral and nasal vowels contrast: $\mathrm{t}^{\text {ya }}{ }^{3}{ }^{9} \mathrm{a}^{3}$ gourd, $\mathrm{t}^{y} \mathrm{a}^{39} \mathrm{a}^{3}$ spleen.
4. The environments most pertinent to the description of vowel variants are contiguous nasal consonants, contiguous palatalized consonants, and contiguous vowels.

A vowel preceding /m, n, n/ becomes slightly nasalized, but there is still contrast between slightly nasalized oral vowel and phonemic nasal vowel in that environment: tús ${ }^{3} \mathrm{tu}^{3} \tilde{n}^{3}{ }^{3}$ their paper, tu ${ }^{3} \mathrm{tu}^{1}{ }^{1} \mathrm{n}^{1}$ their firewood, $\mathrm{i}^{3} i^{3} \tilde{n}^{2} a^{1}$ their husbands, $\dot{i}^{3} \mathfrak{i}^{3} \tilde{n} a^{1}$ their hides, $y u^{2} \mathrm{ku}^{3} \tilde{n ̃}^{3}$ their leaf, yúr${ }^{2} \mathrm{ku}^{3} \mathrm{n}^{3}{ }^{3}$ their furrow.

When following a nasal consonant, a vowel, a vowel cluster, and vowels separated by / $/$ / become nasalized, but since there is no contrast between a nasal and an oral vowel in that environment, we have considered them to be phonemically oral.
 morning.

In a cluster of diverse vowels the first of the cluster is very short, especially if it is not stressed. čí ${ }^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{i}^{3}$ my banana. šá ${ }^{3} \mathrm{nu}^{3} \mathrm{a}^{93}$ her sister-in-lau, tús ${ }^{3} \mathrm{t}^{\mathrm{y}}{ }^{3} \mathrm{u}^{93}$ your atole, so $^{29} \mathrm{o}^{3} \mathrm{i}^{3}$ $m y$ ear, sé $3 i^{3}$ cold. In spite of the shortness of the first vowel, there is contrast between the sequence $/ \mathrm{kuV} /$ and $/ \mathrm{k}^{w} \mathrm{~V} /$. yá ${ }^{2} \mathrm{k}^{\mathrm{w}} \mathrm{a}^{93}$ syrup foam, yư ${ }^{2} \mathrm{ku}^{3} \mathrm{a}^{93}$ her leaf. Vowels of the syllable pattern CV which occur postcouplet are shorter than vowels which occur in the couplet. For example, the last three
syllables of the following example are very short. sá ${ }^{1} \mathrm{ta}^{3} \mathrm{ka}^{1} \mathrm{ra}^{3} \mathrm{ri}^{9{ }^{3}}$ he is buying animals again.

There are portmanteau phones [æ] and [æ] which phonemically are the clusters /ae/ and /ae/. They occur especially after palatalized consonants and in fluctuation with the vowel cluster after other consonants.

 [či $^{2} \mathrm{t}^{\mathrm{y}} \mathfrak{æ}^{93}$] our banana.

There is a portmanteau phone [0] which is phonemically the sequence $/ 0 \mathrm{u} /$. It contrasts with $[\mathrm{u}] / \mathrm{u} /$. tó $^{2} \mathrm{to}^{3} \mathrm{q}^{93}$ [tó $\left.{ }^{2} \mathrm{hto}^{93}\right]$ your clothing, tu ${ }^{3} \mathrm{t}^{91}{ }^{91}\left[t \mathrm{u}^{3} \mathrm{~h} \mathrm{tu}^{{ }^{11}}\right]$ your firewood, só ${ }^{2} \mathrm{ko}^{3} \mathrm{u}^{93}$ [sóh kg^{93}] your shoulder,

The phoneme /a/ has an allophone [ai] which occurs when preceding $/ 9 \mathrm{i} /$. dá ${ }^{29} \mathrm{i}^{3}$ [dái2 ${ }^{\text {i2 }}{ }^{3}$] to shout.

The first couplet vowel of the canonical pattern VCV or VCV? may become voiceless when preceding a voiceless stop, especially when nonstressed phrase medially. For example: ya ${ }^{3}$ tá ${ }^{91}$ old + in $^{2} \mathrm{ka}^{93}$ basket $>$ ya $^{3} \mathrm{ta}^{1} \mathrm{i}^{1} \mathrm{ká}^{1} \mathrm{a}^{\rho 3}$ [$\left[\mathrm{ka} a^{1} \mathrm{a}^{93}\right]$ the basket is old.
5. There are certain systemic co-occurrence restrictions in the distribution of phonemes. Nasalized vowels do not occur following voiced consonants; rounded vowels do not occur following labial consonants; /i/ and $/ \mathrm{i} /$ do not occur following / t^{y}, $\mathrm{d}^{\mathrm{y}}, \tilde{\mathrm{n}} /$.

Some vowel clusters which occur at the juncture of couplet and postcouplet do not occur within a couplet. Some consonant clusters which occur in the second syllable of a couplet do not occur in a couplet-initial environment.
5.1. Nasal vowels do not follow voiced consonants, but they follow any of the voiceless consonants: pếi ${ }^{1}{ }^{1}$ handkerchief, tú ${ }^{3}{ }^{9} u^{3}$ word, $\mathrm{t}^{\text {y}} \mathrm{a}^{2} \mathrm{a}^{3}$ tomorrow, čứ ${ }^{3} \mathrm{u}^{3}$ work, $\mathrm{k}_{1}^{1{ }^{1} \mathfrak{i}^{91}}$
 throat, $\mathrm{sit}^{2}{ }^{2} \mathrm{i}^{3}$ leg.

The vowels / $\mathrm{o}, \mathrm{u}, \mathrm{u}$ / do not follow labial consonants $/ \mathrm{p}, \mathrm{k}^{\mathrm{w}}, \mathrm{b}, \mathrm{g}^{\mathrm{w}}, \mathrm{m}, \mathrm{v} /$, but they fol-
low other consonants. tús ${ }^{4} \mathrm{y}^{3}$ atole, $\mathrm{t}^{\mathrm{y}} \mathrm{o}^{3} \mathrm{o}^{3}$ root, čó ${ }^{29} \mathrm{o}^{3}$ nest, kúšisi ${ }^{3}$ bow, dó ${ }^{3} \mathrm{ko}^{3}$ shrimp, $\mathrm{d}^{\mathrm{y}}{ }^{3}{ }^{3} \mathrm{o}^{3}$ humming-bird, te ${ }^{3}$ - $\mathrm{g} 6^{1} \mathrm{o}^{9}$ Mexican, só ${ }^{2} \mathrm{ko}^{3}$ shoulder, šú ${ }^{3}{ }^{9} \mathrm{q}^{91}$ money, lússisi ${ }^{3}$ nectar, $\mathrm{yo}^{19}{ }^{1} \mathrm{o}^{1} \mathrm{o}^{3}$ you (sg).

The vowels /i, $\mathfrak{i} /$ do not follow $/ \mathrm{t}^{\mathrm{y}}, \mathrm{d}^{\mathrm{y}}, \mathrm{n}$, $\mathrm{b}, \mathrm{h} /$, but they do follow /č, $\mathrm{s} /$ and other phonemes. čí ${ }^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ banana, šínni ${ }^{3}$ head, sássisi ${ }^{3}$ nephew, si $^{3} t \mathrm{i}^{3}$ cheek, $\mathrm{ki}^{3} \mathrm{si}^{3}$ a pitcher, di ${ }^{3} \mathrm{ka}^{3}$ brush, či ${ }^{2}{ }^{2} \mathrm{gi}^{3}{ }^{3}$ acorn, $\mathrm{i}^{3}-\mathrm{g}^{\text {wis }} \mathrm{i}^{3}$ fox, ${ }^{11^{1} m m^{91}}$ a type of fish, $\mathrm{vi}^{39} \mathrm{e}^{3}$ house, $\mathrm{k}^{{ }^{11}{ }^{19} \mathrm{i}^{91}}$ hook, ne ${ }^{3}$ - $\mathrm{yi}^{1} \mathrm{vi}^{93}$ people.

The vowels /a, a/ follow any consonant but / $\mathrm{g}^{\mathrm{w}} /$. pá $^{2} \mathrm{či}^{3}$ a spongy fruit, tá ${ }^{29} \mathrm{ma}^{3}$ gorqe. tús ${ }^{3} \mathrm{t}^{\mathrm{y}}{ }^{3}$ atole, ča $\mathrm{a}^{3}{ }^{9} \mathrm{vir}^{1} \mathrm{ra}^{1}$ he will pay, $\mathrm{k}^{w \mathrm{a}^{19} \mathrm{a}^{1}}$ red, kás ${ }^{3} \dot{t}^{3}$ dew, $\mathrm{k}^{2}{ }^{2} \mathrm{ba}^{3}$ oak gall, dá ${ }^{3} \mathrm{va}^{3}$ rafter, sá ${ }^{3} a^{3}$ bird, šá ${ }^{3} \mathrm{a}^{3}$ jaw, má ${ }^{2} \mathrm{ta}^{3}$ pocket, ná ${ }^{2} \mathrm{ma}^{3}$ wall, ñáa ${ }^{39} \mathrm{a}^{3}$ morning, la ${ }^{3} t \mathfrak{q}^{91}$ youngest child, yá ${ }^{3} ?{ }^{2} \mathrm{v}^{3}$ market, vá ${ }^{3} \mathrm{vi}^{3}$ joint.
5.2. Within a stem, vowel clusters are either the geminates /ii, ee, aa, oo, uu; ij , ąa, $u ч /$ or they are diverse clusters /ei, ie, eit/. ${ }^{3}{ }^{1}{ }^{1}{ }^{3}$ husband, bés e^{3} sheep, ká ${ }^{3} \mathrm{a}^{3}$ metal,
 tomorrow, $\mathrm{t}^{5} \mathrm{u}^{3} \mathrm{u}^{93}$ turkey; $\mathrm{se}^{3 \mathrm{i}^{3}}$ cold, $\mathrm{vi}^{3} \mathrm{e}^{33} \mathrm{i}^{3}$ my house, tę̨ ${ }^{1}{ }^{911}$ narrow.

Clusters of vowels also occur at the juncture of a couplet and postcouplet. If the couplet vowel is nasalized, the postcouplet vowel is also nasalized, but if the couplet vowel is oral, the postcouplet may be nasal. tư ${ }^{3}{ }^{9} \mathrm{u}^{3}$ word $+\mathrm{a}^{93}$ her $>\operatorname{tu}^{39} \mathrm{u}^{3} \mathrm{q}^{93}$ her word; čí ${ }^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ banana $+\mathrm{u}^{93}$ your $(\mathrm{sg})>$ čí $^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{u}^{93}$ your banana.

If the postcouplet vowel is the same quality and tone as the couplet vowel, it fuses with it, and the two forms become homophonous. túsči ${ }^{3}$ vein $+\mathrm{i}^{3} m y>$ tún $^{3} \mathrm{ci}^{3}$ $m y$ vein; sáasis ${ }^{3}$ nephew $+\mathrm{i}^{3} m y>$ sá $^{2} \mathrm{si}_{i}{ }^{3} m y$ nephew; ší ${ }^{2} \mathrm{da}^{93}$ tongs $+\mathrm{a}^{93}$ her $>$ ší $^{2} \mathrm{da}^{93}$ her tongs.

In our data vowel clusters which occur at the juncture of a couplet and postcouplet are as follows: $\mathrm{ka}^{2}{ }^{2} \mathrm{i}^{3} \mathrm{~F}^{1} m y$ cotton, $\mathrm{ti}^{2}{ }^{2} \mathrm{e}^{31}{ }^{31} m y$ forehead, $\mathrm{ka}^{3} \mathrm{ka}^{3} \mathrm{i}^{3}$ my lime, to ${ }^{2} \mathrm{to}^{3 \mathrm{i}^{3}}$ my clothing, tús ${ }^{3} u^{3} \mathrm{e}^{93}$ our paper, tú ${ }^{3} \mathrm{ci}^{3} \mathrm{e}^{93}$ our vein, če ${ }^{1} e^{1} e^{93}$ our scissors, ká ${ }^{3} \mathrm{ka}^{3} \mathrm{e}^{93}$ our lime,
to ${ }^{2} \mathrm{to}^{3} \mathrm{e}^{93}$ our clothing, tús $\mathrm{tu}^{3} \mathrm{e}^{93}$ our paper, tứšici ${ }^{3} a^{93}$ her veins, če ${ }^{1} e^{1} \mathrm{a}^{13}$ her scissors, la ${ }^{1}$ sa $^{1} a^{93}$ her orange, to ${ }^{2}$ to $^{3} \mathrm{a}^{93}$ her clothing, tús $\mathrm{tu}^{3} \mathrm{a}^{93}$ her paper, tú ${ }^{3} \mathrm{ci}^{3} \mathrm{u}^{93}$ your veins, čel ${ }^{1} e^{1} u^{93}$ your scissors, $\mathrm{ka}^{3} \mathrm{ka}^{3} \mathrm{u}^{93}$ your lime, $t^{2}{ }^{2} \mathrm{to}^{3} \mathrm{u}^{?^{3}}$ your clothing, $\mathrm{ti}^{1} \mathrm{k} \mathrm{k}^{1} \mathrm{u}^{{ }^{33}}$ your needle.

Vowel clusters of three vowels may also occur at a juncture of couplet and postcouplet. $\mathrm{i}^{3}{ }^{3} \mathrm{y}^{1}$ my husband, šáa ${ }^{3} \mathrm{a}^{3} \mathrm{i}^{3}$ my jaw,
 di ${ }^{3}$-sá $a^{3} a_{i}^{3} \dot{z}^{3}$ my meat tamale, tu $\underline{q}^{3} \dot{q}^{1}{ }^{1}{ }^{1}$ I am black, č1 ${ }^{1} \mathrm{e}^{3} \mathrm{i}^{3}$ I am big; se $\mathrm{e}^{3 i_{1}^{3} 3_{t}^{1}}$ my corncob, ${ }^{3}{ }^{3} \mathrm{i}^{3} \mathrm{e}^{93}$ our husbands, šá ${ }^{3} \mathrm{a}^{3} \mathrm{e}^{93}$ our jaws, yo ${ }^{3} \mathrm{o}^{3} \mathrm{e}^{93}$ our jars,

 our corncob; $\left\{^{3} \mathrm{i}^{3} \mathrm{a}^{93}\right.$ her husband, yo ${ }^{3} \mathrm{o}^{3} \mathrm{a}^{93}$ her
 it is black, sêéjiza ${ }^{3}{ }^{93}$ her corncob; $\mathrm{ka}^{3} \mathrm{da}^{2} \mathrm{a}^{1 a^{1}}{ }^{93}$ she is not going to move; $\mathrm{i}^{33}{ }^{3}{ }^{1}{ }^{91}$ your husband, šáa $a^{3} u^{33}$ your jaw, yó $0^{3} o^{3} q^{93}$ your jug, yu ${ }^{2} u^{3} q^{?} ?^{1}$
 meat tamale, sę ${\underset{z}{3}}^{3}{ }^{3} \mathrm{u}^{93}$ your corncob, $\mathrm{te}^{2} \mathrm{i}^{3} \mathrm{u}^{93}$ your chair.

There are occasional vowel clusters of four vowels as in ki3 ${ }_{1} 1^{3} \mathrm{j}^{1} \quad I$ am not smart $k^{a^{3}} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{a}^{3} a^{3} \mathrm{q}^{3} I$ am going to really throw it.
5.3. Consonants that occur as the first in a cluster of two are restricted to $/$?, s § m, n/.

In our data glottal stop may precede any of the voiced consonants but $/ \mathrm{r}, \mathrm{g}^{\mathrm{w}} /$. The resulting consonant clusters occur only in a couplet-medial environment. tá ${ }^{29} \mathrm{ma}^{3}$ gorge, $\mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}{ }^{9} \mathrm{ni}^{3}$ chest, di${ }^{3}$-náa ${ }^{3}{ }^{3} \mathrm{n}^{3}$ a scaly lizard, $\mathrm{ya}^{3}{ }^{3} \mathrm{vi}^{3}$ market, do ${ }^{3}{ }^{9} \mathrm{yo}^{3}$ marsh, $\mathrm{k} 6^{29}{ }^{9} \mathrm{ba}^{3}$ oak gall, či $i^{3}{ }^{9}{ }^{1}$ du 91 button, či ${ }^{3}{ }^{3} l{ }^{1}{ }^{91}$ button (baby talk), $\mathrm{ka}^{3}{ }^{3} \mathrm{~d}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{ra}^{3}$ he will cut, č $\mathrm{c}^{2}{ }^{2}{ }^{9} \mathrm{gi}^{93}$ acorn.

In addition there are a few examples with the clusters /sk, šk, št/. These occur only couplet-initial. sku ${ }^{3}{ }^{9} \mathrm{ni}^{91}$ entered, ška ${ }^{39} \mathrm{~d}^{y} \mathrm{a}^{3} \mathrm{ra}^{3}$ he will pass, štà ${ }^{33}$ tortilla.

Clusters /mp/ and /nt/ occur in Spanish loan words. si ${ }^{3}$ - ${ }^{1}{ }^{1}$ nto 1 hundred, ko^{3}-mpál ${ }^{1} \mathrm{r}^{1}$ compadre.
5.4. All of the consonants but / $\mathrm{g}^{\mathrm{w}} /$ may occur both in couplet-initial and in coupletmedial environment. When couplet-medial,
however, /b/ occurs only following /?/. Examples are found randomly in other sections of the paper.
6. There is contrast between tone ${ }^{1}$ (high), tone ${ }^{2}$ (mid), and tone ${ }^{3}$ (low). The five contrastive tone sequences which occur most frequently on couplets in isolation are ${ }^{13},{ }^{23}$, ${ }^{3}{ }^{3},{ }^{11}$, and ${ }^{31}$. sílini ${ }^{93}$ hat, šíni i^{93} head, $\mathrm{ti}^{3} \mathrm{ku}^{93}$ louse, šíñu ${ }^{91}$ pineapple, yu ${ }^{3}{ }^{3}{ }^{91}$ pinole. Tone couplets ${ }^{12}$ and ${ }^{32}$ do not occur in any environment. When in isolation, the tone couplet ${ }^{21}$ occurs only in some idiolects and only in a question. For example in José's idiolect, ya ${ }^{2} \mathrm{k}^{\mathrm{w}}{ }^{\prime}{ }^{11}$ is it crooked?

The tone couplet ${ }^{22}$ occurs following ${ }^{11}$ in contrast with ${ }^{11}$ and ${ }^{3}{ }^{3}$. $\mathrm{k}^{w a ́ 1}{ }^{1} \mathrm{či}^{1}$ tí1 ku^{1} the needles are small, lúl ${ }^{1}{ }^{1}$ tí ${ }^{2} \mathrm{ku}^{2}$ the needle is small, lúl $\mathrm{lu}^{1} \mathrm{t}^{3} \mathrm{k}^{\mathrm{k}}{ }^{93}$ the louse is small.

The tone couplet ${ }^{21}$ occurs in some environments in contrast with ${ }^{11}$ and ${ }^{31}$. $\mathrm{ya}^{3} \mathrm{k}^{\mathrm{w} \mathfrak{a}^{1}}$ tíl ku^{1} the needle is crooked, $\mathrm{ya}^{3} \mathrm{k}^{\mathrm{w} a^{1}}$ tu ${ }^{2}$ tú 91 the firewood is crooked, ya ${ }^{3} \mathrm{k}^{w a^{1}} \mathrm{ti}^{3}{ }^{9} \mathrm{vá}^{1}$ the shell is crooked.

Contrast of three tones can also be demonstrated in three syllable words: su ${ }^{3} \mathrm{t}^{1} \mathrm{a}^{1} \mathrm{i}^{1} I$ will swim, $\mathrm{su}^{3} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{21^{1}} I$ will not swim, $\mathrm{sa}^{3} \mathrm{ta}^{3{ }^{31}}{ }^{1} I$ will buy; nu ${ }^{3} \tilde{n}^{1}{ }^{1} \mathrm{ra}^{1}$ he will open, $\mathrm{nu}^{3} \mathrm{ña}^{2} \mathrm{ra}^{1}$ he will not open, ñu ${ }^{3}{ }^{3}{ }^{3}$ ráa 1 his hammock.

Examples of the various three syllable sequences follow: šíñu ${ }^{1} \mathrm{ra}^{1}$ his pineapple, la'šá ${ }^{1}{ }^{1} a^{3}$ his orange, šíl ${ }^{1}{ }^{3}{ }^{3} a^{1}$ his hat, šsíni ${ }^{3} a^{93}$ her hat, $\mathrm{ku}^{2} \mathrm{nu}^{3} \mathrm{rá}^{1}$ his tobacco, sá ${ }^{2} \mathrm{sin}^{3}{ }^{3} \mathrm{a}^{3}$ his nephew, $\mathrm{vi}^{39} \mathrm{e}^{3} \mathrm{a}^{91}$ her house, $\mathrm{k}^{3} \mathrm{si}^{3} \mathrm{a}^{93}$ her pitcher, $\mathrm{ka}^{3} \mathrm{~s}^{1} \mathrm{u}^{91}$ your brother-in-law,
 da ${ }^{3} \mathrm{va}^{2} \mathrm{ra}^{1}$ he will not run, ya ${ }^{2}$ tál ${ }^{1} \mathrm{ra}^{1}$ is he old? ku^{1} - $\mathrm{ya}^{2} \mathrm{ta}^{91}$ she is becoming old.

There are two additional sequences which occur only when following a tone ${ }^{1}$. These are
 lúlu ${ }^{1}$ la ${ }^{2}$ sáa $^{2} r^{3}{ }^{3}$ his orange is small.
7. The most obvious variants of the tonemes can be described in relation to their environment as defined by contiguous tones, by their position in the phonological word-
the couplet versus the non-couplet, by their occurrence in a stressed versus nonstressed syllable, and by their occurrence prepause versus non-prepause.
7.1. When otherwise analogous, syllables which precede a couplet-medial glottal stop frequently have higher allotones than those which do not. That is, in the following examples the first syllable of ear is frequently higher than the first syllable of shoulder, and the first syllable of adobe is frequently higher than that of shrimp. $\mathrm{so}^{29} \mathrm{o}^{3}$ ear, só ko^{3} shoulder; $\mathrm{d}^{3}{ }^{3} \mathrm{o}^{3}$ adobe, do ${ }^{3} \mathrm{ko}^{3}$ shrimp.

When in analogous environments, syllables with /i/ or /u/ frequently have higher allotones than syllables with /a/ or / $\mathrm{o} /$. That is, in the following examples the syllables / si^{91} / and $/ \mathrm{ki}^{91} /$ have higher allotones than $/ \mathrm{sa}^{91} /$ and $/ \mathrm{ko}^{91} /$. di3ssip1 green corn, ka^{3} sá 91 son-in-law; $\mathrm{i}^{3} \mathrm{k} i^{91}$ bone, vi ${ }^{3} \mathrm{k} 6^{91}$ feast.

There is a general downdrift of pitch within a phonological phrase, such that tone ${ }^{1}$ at the end of a phrase is not as high as at the beginning, etc. (10).
7.2. Tone ${ }^{1}$: The highest allotone occurs when in a stressed syllable and followed in the same word by tone ${ }^{3}$. $\mathrm{k}^{w{ }^{w}{ }^{1} \check{c i c}^{1}{ }^{1} \mathrm{sin}^{1} \mathrm{ni}^{p 3} \text { the }}$ hats are small, la ${ }^{1}$ sáa ${ }^{1} \mathrm{ra}^{3}$ his orange. (The highest syllables are / $\mathrm{si}^{1} /$ and $/ \mathrm{san}^{1} /$.)

When postpause and not stressed, tone ${ }^{1}$ does not have as high an allotone as a stressed tone ${ }^{1}$ in that environment. s sá ${ }^{1} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{1} \mathrm{ra}^{1}$ he is digging, ku^{1}-tá ${ }^{1} \mathrm{ta}_{\mathrm{e}}{ }^{1} \mathrm{ra}^{1}$ he is taking medicine. (The syllable $/ \mathrm{ku}^{1}$ / is lower than $/ \mathrm{ša}^{1} /$.)

Between tone ${ }^{3}$ and pause, there is no contrast between tone ${ }^{1}$ and tone ${ }^{2}$. We have chosen to interpret such an allotone as tone ${ }^{1}$ because to do so helps regularize the morphotonemics, and because a higher allotone is used when a following word is added. For example, $\mathrm{i}^{3} \mathrm{c}_{1}^{1} \mathrm{tu}^{3} \mathrm{t}_{\mathrm{g}^{91}}$ the firewood is $d r y$. In the preceding example, the syllable /tup1/ has a mid-like allotone. In the following example that syllable has a higher allotone. i^{3} či $^{1}{ }^{1} \mathrm{tu}^{3} t \mathrm{u}^{1} \tilde{n}^{2}{ }^{2}{ }^{2} \mathrm{i}^{3} m y$ brother's firewood is dry.
7.3. Tone ${ }^{2}$: A tone ${ }^{2}$ followed in the same
word by a tone ${ }^{3}$ is higher than one without a following tone ${ }^{3}$. lúl ${ }^{1} u^{1}$ la 2 sáa $^{2} \mathrm{ra}^{3}$ his oranges are small. (The syllable / $\mathrm{ša}^{2} /$ is higher than $\left./ \mathrm{la}^{2} /.\right)$
7.4. Tone ${ }^{3}$ may have a downglide when preceding pause. tî${ }^{3} \mathrm{ka}^{3}$ grasshopper, ñáa ${ }^{3} \mathrm{ni}^{3} \mathrm{ra}^{3}$ his brother, $\mathrm{ma}^{3}{ }^{3}$ ná $^{1} \mathrm{ra}^{3}$ his drowsiness.

When following tone ${ }^{1}$, a tone ${ }^{3}$ has a raised allotone. lúlu ${ }^{1}$ kísisi ${ }^{3}$ the pitcher is small, $\mathrm{ku}^{3} \mathrm{mí}^{1} \mathrm{yo}^{3}$ sóp1 four grinding stones. (The syllables $/ \mathrm{ki}^{3} /$ and $/ \mathrm{yo}^{3} /$ have raised allotones.)

When prepause, syllables with nasalized vowels frequently have lower allotones than syllables with oral vowels. That is, in the following examples $/ \mathrm{tu}^{93}$ / and $/ \mathrm{ku}^{3} /$ have lower allotones than the syllables / tu ${ }^{\text {p3 }}$ and $/ \mathrm{ku}^{3} /$. yá ${ }^{1}{ }^{1}{ }^{93}{ }^{93}$ carrying rope, yá ${ }^{1} \mathrm{tu}^{93}$ your (sg) carrying rope; yú ${ }^{2} \mathrm{ku}^{3}$ leaf, yư ${ }^{2} \mathrm{ku}^{3}$ furrow.

Between tone ${ }^{1}$ and pause, there is no contrast between tone ${ }^{3}$ and tone ${ }^{2}$. We have chosen to interpret such an allotone as tone ${ }^{3}$ because to do so helps regularize the morphotonemics, and because a lower allotone is used when a following word is added. For example, yáltu ${ }^{93}$ carrying rope, te ${ }^{3}$-sisíni ${ }^{3}$ drunkard. In the preceding examples the syllables $/ \mathrm{tu}^{93} /$ and $/ \mathrm{ni}^{3} /$ have mid-like allotones. In the following examples, those syllables have lower allotones. yáltu ${ }^{3}$ kál ${ }^{1} i^{93}$ a long carrying rope, te ${ }^{3}$-sisil ${ }^{1} \mathrm{in}^{3} \mathrm{ká}^{2} \mathrm{ką}^{3} \mathrm{ra}^{3}$ the drunkard will ask.

Tone ${ }^{3}$ (as part of a ${ }^{31}$ couplet) has a downgliding allotone when followed in the same word by a V^{3} or V^{93}. $\mathrm{tu}^{3} \mathrm{mi}^{3}$ da $^{3} \mathrm{tu}^{1} \mathrm{u}^{93}$ the feather is not pretty, vís ${ }^{3} \mathrm{j}_{i}^{3} \mathrm{du}^{3}$-čí $\mathrm{c}^{1}{ }^{2}$ the rooster is cold. (The syllable $/ \mathrm{da}^{3} /$ has a downglide, but /du ${ }^{3} /$ does not.)
8. Each vowel is the nucleus of a syllable, even in a word with contiguous vowels. For example, the word yá ${ }^{1} a^{31^{1}} m y$ tongue has three syllables.
There are six syllable patterns: V, V?, CV, CV?, CCV, CCV?. All occur with all the vowels and with all the tones; however, their distribution in the phonological word (i.e.
into couplet versus postcouplet), and phonological phrase is restricted.

In our data, syllables with CCV or CCV? occur only in a couplet, never postcouplet. Those with ${ }^{?} \mathrm{CV}$ or ${ }^{9} \mathrm{CV}$? occur only as the second syllable of a couplet. yá ${ }^{3}{ }^{9} \mathrm{vi}^{3}$ market, ñú ${ }^{29} \mathrm{ma}^{3}$ smoke, $\mathrm{ka}^{39}{ }^{9} \mathrm{v}^{91}$ younger brother. Syllables sCV and šCV occur only in coupletinitial position. sku ${ }^{3}{ }^{3}$ ní 1 entered, štò ${ }^{3}$ bed.

Syllables with final glottal stop may occur as the second syllable of a couplet, and in a word-final environment if at the same time they are phrase-final but they do not occur word-finally when in a phrase-medial environment. sa ${ }^{39}$ má ${ }^{91}$ napkin, but $\mathrm{sa}^{3}{ }^{9} \mathrm{má}^{1}$ lúlu ${ }^{1}$ a small napkin.
9. There are two types of phonological words. Type one (described below) is an open class, containing most of the words of the language. Type two words have (probably the result of fusion) a one-syllable nucleus, and most of them begin with /s/ or /š/.
9.1. A phonological word may be composed of the nucleus only, or the nucleus may be preceded by a prenucleus syllable or syllables, or the nucleus may be followed by a postnucleus syllable or syllables.

The nucleus of a type one phonological word is composed of two syllables, a couplet which coincides with the grammatical stem. It is phonologically marked by a unit of time on the first syllable. This timing is sometimes actualized as voicelessness between the first vowel and the second consonant, and sometimes by a lengthening of the second consonant (2). In words in which all the syllables are tone ${ }^{3}$ (or all tone ${ }^{1}$) and the couplet is not word-initial, the first syllable of the couplet is usually marked by a slight raise in pitch.

Examples of the phonological word composed of (1) the couplet only, ñú ${ }^{2} \mathrm{ma}^{33} \mathrm{wax}$, (2) precouplet plus couplet, si 3 - ${ }^{2}{ }^{2}{ }^{29} \mathrm{va}^{3}$ spider web, $\mathrm{te}^{3} \mathrm{se}^{3} \mathrm{ni}^{3}-\mathrm{sá}^{3}{ }^{\mathrm{ta}}{ }^{93}$ a man who bought, (3) couplet plus postcouplet, $\mathrm{sa}^{3} \mathrm{ta}^{3} \mathrm{rá}^{1}$ he bought, sa³ $\mathrm{ta}^{3} \mathrm{ka}^{1} \mathrm{ra}^{3}$ he will buy more, (4)
precouplet plus couplet plus postcouplet, ša $^{3} \mathrm{ni}^{3}-\mathrm{sa}^{3} \mathrm{ta}^{3} \mathrm{rá}^{1}$ he already bought, ko^{3} dáa ${ }^{2} \mathrm{vi}^{3}{ }^{3} a^{3}$ his shadow.

A phonological word, in our data, may consist of from two to six syllables. ká ${ }^{3} \mathrm{ni}^{3}$ hit (imperative), kás ${ }^{3} \mathrm{n}^{3} \mathrm{ra}^{3}$ he will hit, ni ${ }^{3}$ kás ${ }^{3}{ }^{3}{ }^{3} a^{3}$ he hit (past), ni ${ }^{3}-$ ká $^{3} \mathrm{ni}^{3} \mathrm{ka}^{3} \mathrm{ra}^{3}$ he hit (past) again, ni ${ }^{3}$ - $\mathrm{ka}^{3} \mathrm{ni}^{3} \mathrm{ka}^{3} \mathrm{ra}^{3} \mathrm{ri}^{93}$ he hit (past) him (the animal) again.

Each phonological word has a word-stress which occurs on the couplet or on a postcouplet syllable. Word-stress occurs on the first couplet or postcouplet syllable with a tone ${ }^{1}$ which is contiguously followed by tone ${ }^{3}$. ší1ni ${ }^{1}{ }^{3}$ hat, la ${ }^{15}$ ša $^{1} \mathrm{ra}^{3}$ his orange, $\mathrm{sa}^{3} \mathrm{ta}^{3} \mathrm{ka}^{1} \mathrm{ra}^{3}$ he is going to buy more. (A precouplet syllable never has word-stress even if tone ${ }^{1} . \mathrm{ko}^{3} \mathrm{o}^{3} \mathrm{ti}^{1}-\mathrm{ka}^{3} \mathrm{c}^{1{ }^{11}}$ there are no blankets.)

If there is no ${ }^{13}$ sequence, word-stress occurs on a syllable with tone ${ }^{2}$ of a ${ }^{23}$ sequence. lúllu ${ }^{1}$ la $^{2}{ }^{\text {sáa }}{ }^{2} \mathrm{ra}^{3}$ his orange is small, čí ${ }^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ banana.

If there is neither the sequence ${ }^{13}$, nor ${ }^{23}$, word-stress occurs on the first tone ${ }^{1}$ of the couplet. or postcouplet; if there is no tone ${ }^{1}$, then it occurs on the first syllable of the couplet. šín $\tilde{n}^{1} \mathrm{raa}^{1}$ his pineapple, ku ${ }^{1}$ - tá $^{1} \mathrm{ta}_{2}{ }^{1} \mathrm{ra}^{1}$ he is taking medicine, $\mathrm{ku}^{2} \mathrm{nu}^{3} \mathrm{ra}^{1}{ }^{1}$ his tobacco, to ${ }^{2} \mathrm{to}^{3} \mathrm{ra}^{3}$ his clothing, kísisi ${ }^{3}{ }^{93}$ her pitcher, te ${ }^{3}$-sá ${ }^{3} \mathrm{va}^{3}$ boy.

A sequence of two precouplet syllables plus a couplet contrasts with a sequence of two couplets in that there is both a stress and a rhythm difference. That is, the precouplet syllables have no stress, and their vowels have shorter allophones than couplet vowels.
 one brother will run.

A sequence of couplet plus two postcouplet syllables contrasts with a sequence of two couplets. There is a difference (1) in stress placement, (2) occasionally in allotones (a tone ${ }^{1}$ preceding a postcouplet syllable with tone ${ }^{3}$ is higher than when preceding a separate word with tone ${ }^{3}$, see 7.2), (3) in rhythm (nonstressed postcouplet syllables have shorter vowel allophones, see 4), and (4) occasionally, as in the following
example, there is a difference of the consonant allophones. That is, the /v/ of the postcouplet syllable is [w], but the couplet initial /v/ is a fricative, see 2. lu ${ }^{1}{ }^{1}{ }^{1} v a^{3}{ }^{3} a^{3}$ he is very small, lúl ${ }^{1} \mathrm{u}^{1}$ va $^{3}{ }^{3} \mathrm{v}^{3}$ the joint is small.

The following samples are the same number of syllables, and have the same phonemic tones, but they differ in word division and couplet placement. These contrasts are phonologically marked by word-stress and rhythm. šá ${ }^{3} \mathrm{ku}^{3}$ ti1-ka ${ }^{3} \mathrm{ci}_{1}{ }^{11}$ a few blankets, šá ${ }^{3} \mathrm{ku}^{3}$ sí $^{1} \mathrm{ni}^{3}{ }^{3} \mathrm{ra}^{1}$ a few hats, $\mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{nu}^{3} \mathrm{rá}^{1} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{ká}^{91}$ he is going to send fish.

Part of the morphotonemic system marks word borders. Specifically (11.1 rule 8), when a morpheme with a final glottal stop in its basic allomorph precedes a word with the tone sequence ${ }^{233}$, the tones of that word change to ${ }^{113}$. That is, in the following example the word čí ${ }^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{ra}^{3}$ his banana, becomes či $i^{1} \mathrm{t}^{\mathrm{y}}{ }^{1} \mathrm{ra}^{3}$. ku ${ }^{3} \mathrm{~min}^{19}$ four + čí1 $^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{ra}^{3}$ his banana $+\mathrm{ya}^{3} \mathrm{tá}^{91}$ old $>\mathrm{ku}^{3} \mathrm{mí}^{1}$ čil $^{1} \mathrm{t}^{\mathrm{y}}{ }^{1}{ }^{1} \mathrm{ra}^{3}$ ya ${ }^{3}$ tá ${ }^{91}$ four of his old bananas. If, however, the sequence ${ }^{233}$ is interrupted by a word border, an extra syllable with tone ${ }^{3}$ is added. Notice that in the following example an extra syllable is added to the interrupted sequence ${ }^{23^{3}}$. ku ${ }^{3} \mathrm{~min}^{91}$ four + čí $^{2} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ banana + ya a^{3} á 91 old $>$ ku $^{3} \mathrm{~min}^{1}$ čil $^{1} \mathrm{t}^{1} \mathrm{a}^{1} \mathrm{a}^{3} \mathrm{ya}^{3} \mathrm{tá}^{91}$ four old bananas.
9.2. There is a second phonological word type in which the nucleus has one syllable only. All the words of this type (except those containing the morpheme "to be") have an initial consonant cluster of $/ \mathrm{s}$, $\check{s} /$, followed by $/ \mathrm{t}, \mathrm{k}, \mathrm{n} /$. Four of the words sometimes occur as one-syllable utterances. They are: štà ${ }^{9{ }^{23}}$ grandmother, štit̀ ${ }^{2{ }^{2}}$ nose, štà ${ }^{2{ }^{3}}$ tortilla, and štò ${ }^{3}$ bed. They contrast with phonological word type one in $\mathrm{so}^{2} 0^{3} \mathrm{ra}^{1}$ his shell, versus šti ${ }^{3}{ }^{3} \mathrm{rà}^{1}$ his nose; yó ${ }^{3} 0^{3} \mathrm{a}^{93}$ her water $j a r$, versus sttò ${ }^{3} a^{93}$ her bed. (We have marked the phonological word type two with a grave accent; type one has an acute accent.)

Those with the tone cluster ${ }^{23}$ act morphotonemically like a phonological word type with the tone sequence ${ }^{23}$ (11.1, rule 8). $\mathrm{ku}^{3} \mathrm{~m}^{1}{ }^{1}$ štá ${ }^{1} \mathrm{a}^{93}$ four tortillas.

The word štò ${ }^{3}$ bed has a variant which acts morphotonemically like a type one word with the tone sequence ${ }^{33}$ (11.1, rule 9). šá $^{3} \mathrm{ku}^{3}$ ̌̌ílto ${ }^{3}$ a few beds.

Type one words with /s, š/ as the first consonant of the couplet and with /t, k, n/ as the second consonant may drop the first couplet vowel especially when that vowel is in an environment that does not receive word-stress. The alternant form is type two. $k^{w} e^{1} i^{1}$ snà $^{1} \mathrm{ra}^{3}$ (or sal ${ }^{1} \mathrm{na}^{1} \mathrm{ra}^{3}$) his horse. ni ${ }^{3}$ škà ${ }^{3} \mathrm{ra}^{3} \tilde{n}^{3}{ }^{3} \mathrm{u}^{3}$ or ni ${ }^{3}$-ší ${ }^{2} \mathrm{ka}^{3} \mathrm{ra}^{3} \tilde{n}^{3}{ }^{3} \mathrm{u}^{3}$ he walked to town.

In most environments the morpheme to be is a couplet dú ${ }^{1} u^{1}$ and therefore is part of a phonological word type one. For example, ña 3-dún ${ }^{1} \mathbf{u}^{1}$ vélla ${ }^{1}$ a woman who is old, te ${ }^{3}$-dú ${ }^{1} \mathbf{u}^{1}$ te 3-tá ${ }^{1} \mathrm{ta}^{91}$ a man who is a doctor, tya ${ }^{3} \mathrm{ká}^{1}$ ni ${ }^{1}$-du $\hat{1}^{1} u^{3}$ ri ${ }^{93}$ it was a fish.

In one environment, namely when in the durative aspect preceding a pronoun, this morpheme to be has only one syllable and thus becomes the nucleus of a phonological word type two. te ${ }^{3}$-tá ${ }^{1} \mathrm{ta}_{2}{ }^{1}$ dù ${ }^{1} \mathrm{ra}^{1}$ he is a doctor, ne ${ }^{3}-\mathrm{yi}^{1} \mathrm{vi}^{3}$ dù ${ }^{1} \mathrm{e}^{91}$ we are people, na^{3}-sá ${ }^{3} \mathrm{va}^{3}$ dù ${ }^{1} \mathrm{či}^{1}$ she is a young woman.

There is a contrast of length between a type one word with a couplet as nucleus, and a type two word with one syllable as nucleus as in the following examples. di ${ }^{3}-\mathrm{si}^{1} \mathrm{t}_{i} \mathrm{i}^{3} \mathrm{na}^{3}-$ $\mathrm{du}^{3} \mathrm{u}^{3} \mathrm{r}^{1}{ }^{11}$ the tadpole will undergo a change, di^{3}-sí ${ }^{1} \mathrm{tit}^{3}$ dù ${ }^{1} \mathrm{r}^{91}$ the tadpole is an animal.

A type two word made up of its one syllable nucleus plus a postnucleus syllable contrasts with a type one word made up of its couplet as nucleus in that the medial consonant of the type two word does not have couplet-medial allophones (2). For example, the [č] of ña ${ }^{3}$-sáa ${ }^{3} v a^{3}$ dù ${ }^{1}{ }^{\text {či }}{ }^{1}$ she is a young woman contrasts with the [hč] of $\mathrm{sa}^{3} \mathrm{ta}^{3} \mathrm{rá}^{1}$ dús ${ }^{3} \mathrm{c}^{91}$ he will buy beans, and the $/ \tilde{n} /$ in $\mathrm{ne}^{3}-\mathrm{yi}^{1} \mathrm{vi}^{3}$ dù ${ }^{1} \mathrm{n}^{1}$ they are people is shorter than the / $\tilde{n} /$ in ssí ${ }^{1} u^{91}$ pineapple.

In the potential aspect $/ \mathrm{ku}^{3} /$ precedes the allomorph $/ \mathrm{du}^{3} /$ to be. In this environment the $/ \mathrm{du}^{3}$ / is the second syllable of a coupletthe only couplet which in our data is made up of two morphemes. We consider $\mathrm{ku}^{3} \mathrm{du}^{3}$ to
be a couplet, and the word $k u^{3} \mathrm{du}^{3} \mathrm{ra}^{3}$ to be a type one phonological word since the $/ \mathrm{ku}^{3} /$ is stressed (9.1), and since the /d/ has a couplet-medial allophone (2). Notice that in the following pair of examples, the $/ \mathrm{ku}^{3}$ / is stressed in the first example, but not stressed in the second. te ${ }^{3}$-tá ${ }^{1}{ }^{t a}{ }^{1}{ }^{1}$ ku $^{3} \mathrm{du}^{3} \mathrm{ra}^{3}$ he will be a doctor. te ${ }^{3}$ - $\mathrm{ta}^{1} \mathrm{ta}_{2}{ }^{1} \mathrm{ku}^{3}$-dá ${ }^{3} \mathrm{ni}^{3}{ }^{3} \mathrm{a}^{3}$ the doctor will know.
10. A phonological phrase is characterized by (1) downdrift of pitch, (2) the fact that morphotonemic changes do not occur across a border between two phonological phrases, (3) by a phrase stress which occurs on the last word in the phrase, and (4) by pause.
The downdrift of pitch can be illustrated in the sentence tu ${ }^{3} t u^{1} t^{1} a^{3}{ }^{9} v^{1}{ }^{1}$ ka 3 sá 91 her son-in-law will split kindling. Each successive tone ${ }^{1}$ is lower in pitch than the preceding tone ${ }^{1}$.

A syllable with phrase-stress may be louder than other syllables, but the most consistent contrastive feature is added length with a bit of crescendo before decay. (The final syllable of a word, however, which is not prepause may have length, but with decrescendo.) Phrase-stress occurs on the final syllable if it has the canonical pattern CV or CV?, but if the final syllable has the canonical pattern ${ }^{?} \mathrm{~V}, \mathrm{~V}, \mathrm{~V}$? , or ${ }^{9} \mathrm{~V}$? there is variation. That is, if it has a higher tone than the preceding syllable, it is stressed; if it is the same tone, or a lower tone than the preceding syllable, phrase-stress frequently occurs on the preceding syllable. (In this section phrase-stress has been indicated as ${ }^{\wedge}$, as in /lu ${ }^{1} /$; in other sections it has not been marked.) tó ${ }^{2}$ to ${ }^{3}$ lúl \hat{u}^{1} the small clothes, tó ${ }^{2} \mathrm{to}^{3} \mathrm{ká}^{1} \mathrm{n} \mathrm{r}^{93}$ the long clothes, $\mathrm{to}^{2} \mathrm{to}^{3} \mathrm{ka}^{3} \mathrm{sa}^{1}{ }^{1} \hat{a}^{1}$ his brother-in-law's clothes, t $6^{2} \mathrm{to}^{3} \mathrm{k}^{\mathrm{w}} \mathrm{a}^{1}{ }^{9} \mathrm{a}^{1}$ (or, rarely, $\left.\mathrm{k}^{\mathrm{w}}{ }^{1}{ }^{1} \hat{\mathrm{a}}^{1}\right)$ the red clothes, $\mathrm{to}^{2} \mathrm{to}^{3} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{2} \hat{\mathrm{a}}^{3}$ (or, rarely, tyâ ${ }^{2} \mathrm{a}^{3}$) the man's clothes.

Words which are not prepause have a word-stress which is characterized by loudness or a raised allotone ($\mathbf{7}$ and 9). If a wordstressed syllable has a tone ${ }^{1}$, it may be louder and more prominent than the phrase-
stress. This is especially so if the phrasestress is on a syllable with tone ${ }^{3} . \mathrm{ya}^{3} \mathrm{k}_{\mathrm{q}}{ }^{1} \mathrm{ra}^{3}$ ví ${ }^{3} \hat{t}_{t}^{3}$ he will shred today, la ${ }^{1}$ sán $^{1} \mathrm{ra}^{3}$ vísist ${ }_{t}^{3}$ his cold oranges.

A word with the tone sequence ${ }^{111}$, or ${ }^{333}$ has word-stress on the first syllable, and when prepause it has phrase-stress on the last syllable. Therefore when postpause the first syllable is the more prominent, but when prepause the last syllable is the more prominent. Therefore in the following examples the syllables / $\mathrm{si}^{3} /$ and $/ \mathrm{si}^{1} /$ are the more prominent: sís ${ }^{3} \mathrm{to}^{3} \mathrm{ra}^{3}$ ná ${ }^{3} \mathrm{t} \mathrm{ta}^{3}$ his uncle will wash, ší 1 nu ${ }^{1} \mathrm{ra}^{1}$ náa ${ }^{3} \mathrm{t} \mathrm{a}^{0}{ }^{23}$ she will wash his pinecpple. But when those words are prepause the syllables $/ \mathrm{ra}^{3} /$ and $/ \mathrm{ra}^{1} /$ are the more prominent. ná ${ }^{3} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ sí $^{3} \mathrm{to}^{3} \mathrm{ra}^{3}$ his uncle will wash, ná ${ }^{3} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}$ sín $^{1} \mathrm{n}^{1} \mathrm{u}^{1} \hat{\mathrm{ran}}^{1}$ she will wash his pineapple.

The tones of one word do not cause the tones of a following word to change if a border of a phonological phrase occurs between them. In the first example, with no medial phonological-phrase border, there is interaction of tone between the tones of all three words (11.1, rules 3 and 9). ka ${ }^{3} \mathrm{si}^{3} \mathrm{ráa}^{1}$ dí1vi ${ }^{3} \mathrm{vâ}^{1}{ }^{1} \mathrm{a}^{3}$, he will eat the good egg. In the second example, due to an intervening phrase border, there is no interaction between the tones of the second and third
 egg. It is good. In the third example, due to an intervening phrase border, there is no interaction between the tones of the first and second words. ka ${ }^{3} \mathrm{si}^{3} \mathrm{ra}^{1}$, di ${ }^{2} \mathrm{vi}^{3}$ vâ ${ }^{19} \mathrm{a}^{3}$. He will eat. The egg is good.
11. One morphotonemic system has to do with the interaction of tones between words within a phonological phrase. This system cannot be described wholly in terms of phonological words since one of the factors causing the change is the presence versus the absence of a final glottal stop in the basic lexical form (allolog) involved. Since the glottal stop is lost phrase-medially, homophonous forms may cause different tone changes. For example, vá ${ }^{3}{ }^{9} \mathrm{a}^{3}$ good when following the word wall has the tone sequence
${ }^{33}$, but when following the word soap, it has the sequence ${ }^{13}$. ná ${ }^{2} \mathrm{ma}^{3}$ vá ${ }^{3}{ }^{3} \mathrm{a}^{3}$ the good wall, versus ná ${ }^{2} \mathrm{ma}^{3}$ váa $^{19} \mathrm{a}^{3}$ the good soap. These changes are predictable, however, in terms of the basic allologs ná ${ }^{2} \mathrm{ma}^{3}$ wall versus ná ${ }^{2} \mathrm{ma}^{93}$ soap.

Another factor in the interaction of tones between words is the presence versus the absence of one of an arbitrary class of words (11.1, rule 10).

The second morphotonemic system has to do with interaction of tones between morphemes of varying grammatical status within a phonological word. There is interaction of tone between stem and enclitic, between two enclitics, and between proclitic and stem. Again, one of the factors causing tone changes is the presence versus the absence of a morpheme-final glottal stop in the basic allomorph involved. (In the above morphotonemic system it was the word-final glottal stop.) For example the tone difference in the following pair of examples is due to the glottal stop in the basic allomorph ná ${ }^{2} \mathrm{ma}^{\text {³ }}$ soap. na ${ }^{2} \mathrm{ma}^{3} \mathrm{rá}^{1}$ his soap versus ná ${ }^{2} \mathrm{ma}^{3} \mathrm{ra}^{3}$ his wall.
11.1. Rules for morphotonemic changes between words within the phonological phrase follow.

In this section, \# indicates the absence of a word-final glottal stop in the basic allolog, and ${ }^{3} \#$, etc., means a word which ends in tone ${ }^{3}$ with no final glottal stop in its basic allolog. In the listed rules, ${ }^{19}$, etc., means a word which ends with tone ${ }^{1}$ and which has a glottal stop in its basic allolog. (See Chart 1 for a summary of morphotonemic changes between phonological words.)

Rule $1:{ }^{3} \#+$ any tone sequence $>$ same. Words which in the basic allolog have no final glottal stop, and which end in tone ${ }^{3}$ never cause a change of tone in a following word. úšsa ${ }^{3}$ číl ${ }^{1}{ }^{1}$ seven pairs of scissors, ú 2 ša 3 $\mathrm{ki}^{2} \mathrm{n}^{3}{ }^{3}$ seven pigs, $\mathrm{u}^{2} \mathrm{ša}^{3}$ tún $^{3} \mathrm{tu}^{3}$ seven pieces of paper, úšsa ${ }^{3}$ sa $^{39}{ }^{9}$ má 91 seven napkins, ú ${ }^{2}$ sa 3 sílini ${ }^{93}$ seven hats.

Rule 2: ${ }^{1}++^{13}$ or ${ }^{11}>{ }^{123}$ or ${ }^{122}$. Words which in their basic allologs have no final
glottal stop, and which end in tone ${ }^{1}$, cause a following tone ${ }^{1}$, or a sequence of tone ${ }^{1}$'s to become tone ${ }^{2} . \mathrm{k}^{\text {wá }}{ }^{19} \mathrm{a}^{1}$ red + tíl $^{1} \mathrm{ma}^{1} \mathrm{u}^{91}$ your candle $>\mathrm{k}^{\mathrm{w}} \mathrm{a}^{19} \mathrm{a}^{1}$ tíl${ }^{2} \mathrm{ma}^{2} \mathrm{u}^{92}$ your candle is red;
 a green orange; ša $^{2} \mathrm{tu}^{3} \mathrm{rá}^{1}$ his box + lúl$^{1} \mathrm{lu}^{1}$ small $>$ ša $^{2} \mathrm{tu}^{3} \mathrm{ráa}^{1}$ lúa $^{2} \mathrm{u}^{2}$ his box is small.
Rule 3: ${ }^{1} \#+{ }^{23}>{ }^{1{ }^{13}}$. Words which in their basic allologs have no final glottal stop and which end in a tone ${ }^{1}$ cause a following tone ${ }^{2}$ to become tone ${ }^{1}$. yá ${ }^{19} a^{1}$ brown + ná ${ }^{2} \mathrm{ma}^{93}$ soap $>$ yá ${ }^{19} \mathrm{a}^{1}$ ná ${ }^{1} \mathrm{ma}^{93}$ the soap is brown; $\mathrm{ka}^{39} \mathrm{ni}^{3} \mathrm{rá}^{1}$ he will kill + ná $^{2} \mathrm{ya}^{93} \operatorname{dog}>$ $\mathrm{ka}^{39} \mathrm{ni}^{3} \mathrm{ra}^{1}{ }^{1} \mathrm{ná}^{1} \mathrm{ya}{ }^{93}$ he will kill the dog.

Rule 4: ${ }^{1} \#+{ }^{3}{ }^{3}$ or ${ }^{31}>$ same. Words which in their basic allologs have no final glottal stop and which end in a tone ${ }^{1}$ do not cause a following word with tone ${ }^{33}$ or ${ }^{31}$ to change. lúl ${ }^{1} \mathbf{u}^{1}$ tún $^{3} \mathrm{mi}^{3}$ the feather is small, lúl${ }^{1} \mathrm{u}^{1} \mathrm{sa}^{3}{ }^{3} \mathrm{má}^{1}$ the napkin is small.

Rule 5: ${ }^{19}$ or ${ }^{39}+{ }^{13}$ or ${ }^{11}>$ same. Words which in their basic allologs have a final glottal stop and which end in tone ${ }^{1}$ or tone ${ }^{3}$ do not cause a following word with tone ${ }^{1}$ to change. $\mathrm{k}^{\text {wál }}{ }^{1} \mathrm{c}^{91}{ }^{91}$ small $(p l)+$ tíl $^{1} \mathrm{ma}^{1} \mathbf{u}^{91}$ your candle $>\mathrm{k}^{w a^{1}}{ }^{1} \mathrm{ci}^{1}{ }^{1}$ tíl$^{1} \mathrm{ma}^{1} \mathrm{u}^{91}$ your candles are small; vi ${ }^{3} \mathrm{e}^{3}{ }^{3}{ }^{9{ }^{1}}$ her house + lúl$^{1} \mathrm{u}^{1}$ small $>$

Rule 6: ${ }^{19}$ or ${ }^{139}++^{33}>{ }^{123}$ or ${ }^{1323}$. Words which in their basic allologs have a final glottal stop and which end in tone ${ }^{1}$, or the tone sequence ${ }^{13}$, cause a following word with the tone sequence ${ }^{33}$ to become ${ }^{23}$ (unless it is part of the tone sequence ${ }^{331}$ Class B , see rule 10). či $\mathrm{i}^{1} \mathrm{l}^{1} \mathrm{a}^{93}$ her knife $+\mathrm{vin}^{33 \mathrm{~S}_{1}^{3}}{ }^{3}$
 green $+\mathrm{ti}^{3}$-ná ${ }^{3} \mathrm{na}^{93}$ tomato $>\mathrm{k}^{\mathrm{w}_{1} \mathrm{i}^{3}} \mathrm{ti}^{2}-\mathrm{na}^{3} \mathrm{na}^{93}$ the tomato is green, $\mathrm{ku}^{3} \mathrm{mi}^{91}$ four $+\mathrm{di}^{3} \mathrm{ka}^{3}$ brush $>\mathrm{ku}^{3} \mathrm{mi}^{1}$ di ${ }^{2} \mathrm{ka}^{3}$ four brushes. $\mathrm{k}^{w \mathrm{a}^{1} \mathrm{ci}^{91}}{ }^{11}$ small $(\mathrm{pl})+$ tún $^{3} \mathrm{mi}^{3}$ feather $>\mathrm{k}^{\text {wá }}{ }^{1} \mathrm{či}^{1}{ }^{1}$ ún $^{2} \mathrm{mi}^{3}$ the feathers are small.

Rule 7: ${ }^{19}+{ }^{31} \mathrm{~A}$ (but not ${ }^{31} \mathrm{~B}$) $>{ }^{12}{ }^{21}$. Words whose basic allologs end in tone ${ }^{1}$ and glottal stop cause the sequence ${ }^{31}$ (Class A) to change to the sequence ${ }^{21}$, but do not cause ${ }^{31}$ (Class B) to change. ya ${ }^{3} k^{w a ́}{ }^{71}$ crooked + tu 3 tú 91 (Class A) firewood $>$
$\mathrm{ya}^{3} \mathrm{k}^{\mathrm{w} \mathfrak{a}^{1}} \mathrm{tu}^{2} \mathrm{t} \mathfrak{u}^{91}$ the firewood is crooked; $\mathrm{k}^{w a^{1}{ }^{1} \mathrm{c}^{11}}{ }^{11} \operatorname{small}(\mathrm{pl})+\mathrm{i}^{3} \mathrm{ki}^{{ }^{11}}($ Class A) bone $>$
 (Class B) does not change. $\mathrm{kit}^{11}{ }^{191}$ much +
 much money; $\mathrm{ku}^{3} \mathrm{~min}^{1{ }^{1}}$ four $+\mathrm{ti}^{3}$? va^{1} (Class B) shell $>\mathrm{ku}^{3} \mathrm{~min}^{1} \mathrm{ti}^{\mathrm{i}}{ }^{9} \mathrm{vá}^{1}$ four shells.

Rule 8: ${ }^{19}$ or ${ }^{39}+{ }^{23}$ or ${ }^{233} \mathrm{~A}>{ }^{1113}$ or ${ }^{3113},{ }^{19}$ or ${ }^{39}+{ }^{231}>{ }^{11131}$ or ${ }^{31131} ;{ }^{19}$ or ${ }^{39}+{ }^{323} \mathrm{~A}$ or ${ }^{32{ }^{33}} \mathrm{~A}>{ }^{11113}$ or ${ }^{31113}$. Any word with a final glottal stop in the basic allolog causes a following word with the tone sequence ${ }^{23}$ or ${ }^{233} \mathrm{~A}$ to become ${ }^{113}$, causes 231 to become ${ }^{1131}$, and causes ${ }^{323} \mathrm{~A}$ and ${ }^{323^{3}} \mathrm{~A}$ to become ${ }^{11^{13}}$. ná1ty ${ }^{1} a^{91}$ she is washing + to $0^{2} \mathrm{to}^{3}$ clothing $>$ ná $^{1} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{1}$ to ${ }^{1} \mathrm{t}^{1} \mathrm{o}^{3}$ she is washing clothing; ká ${ }^{2} \mathrm{ka}^{3} \mathrm{y}^{33}$ you will ask + ná ${ }^{2} \mathrm{ma}^{93}$ soap $>\mathrm{ká}^{2} \mathrm{ka}^{3} \mathrm{y}^{3} \mathrm{na}^{1} \mathrm{má}^{1} \mathrm{a}^{\text {P3 }}$ you will ask for soap; ku ${ }^{3} \mathrm{~min}^{1}{ }^{1}$ four + sá2 $^{2} \mathrm{sit}^{3}>\mathrm{ku}^{3} \mathrm{~min}^{1}$ sa' ${ }_{2}^{y_{t}^{1} 1_{2}^{3}}$ four nephews; sá'šì ${ }_{2}^{3} \mathrm{ra}^{3}$ his nephew, $\mathrm{ku}^{3} \mathrm{mi}^{1}{ }^{1} \mathrm{sa}^{1}{ }^{1}{\underset{\mathrm{~s}}{t}}_{1} \mathrm{ra}^{3}$ four of his nephews; ti${ }^{3} \mathrm{k}^{1}{ }^{2} \mathrm{c}^{1}{ }^{93}$ whirlwind, $\mathrm{ku}^{3} \mathrm{~m}^{1}{ }^{1} \mathrm{ti}^{1} \mathrm{ka}^{1} \mathrm{č}_{1} \mathrm{l}^{1}{ }^{93}$ four whirlwinds; $\mathrm{ka}^{3} \mathrm{sá}^{91}$ son-in-law $+\mathrm{ká}^{2} \mathrm{ka}^{3}{ }^{3} \mathrm{ka}^{3} \mathrm{ra}^{3}$ he will ask more, $\mathrm{ka}^{3} \mathrm{sá}^{1} \mathrm{ka}^{1 \mathrm{k}} \mathrm{Ka}^{1} \mathrm{ka}^{3} \mathrm{ra}^{3}$ the son-in-law will ask more, $\mathrm{k}^{3} \mathrm{o}^{93}$ there is none $+\mathrm{ká}^{2}{ }^{2} \mathrm{c}^{93}$ cotton $>\mathrm{ko}^{3} \mathrm{o}^{3} \mathrm{ka}^{1} \mathrm{ccic}^{1} \mathrm{i}^{93}$ there is no cotton; $\mathrm{ko}^{3} \mathrm{o}^{93}$ there is none $+\mathrm{ka}^{2}{ }^{2}{ }^{\mathrm{c}}{ }^{3} \mathrm{rá}^{1}$ his cotton $>$ $\mathrm{k}^{3} \mathrm{o}^{3} \mathrm{ka}^{1} \mathrm{c}_{1}{ }^{1} \mathrm{ra}^{3} \mathrm{a}^{1}$ there is none of his cotton.

In Jose's speech, unless the tone sequence ${ }^{23}$ occurs on a word with a canonical pattern CVCV or CVCV? it sometimes changes to ${ }^{13}$ instead of to ${ }^{11^{3}}$. té i^{3} chair $>$ té i^{3} or te $\mathrm{l}^{1} 1^{1} \mathrm{i}^{3}$,
 bush $>\mathrm{ku}^{19} \mathrm{u}^{3}$ or $\mathrm{ku}^{19}{ }^{9} \mathrm{u}^{1} \mathrm{u}^{3}$, ši $^{2}{ }^{9} \mathrm{i}^{93}$ mush-
 $>\mathrm{si}^{1}{ }^{1}$ va ${ }^{3}$ or sil${ }^{19}$ váa $^{1} a^{3}$.
Rule 9: ${ }^{239}$ or ${ }^{339}+{ }^{33}>{ }^{2313}$ or ${ }^{3313}$. A word whose basic allolog has tone ${ }^{23}$ or ${ }^{33}$ and which ends with a glottal stop causes a following word ${ }^{6}$ with the sequence ${ }^{33}$ (unless a part of the sequence ${ }^{3{ }^{31}}$ Class B, see rule

[^2] cold $>$ ší $^{2} \mathrm{da}^{3}$ ví1 sic^{3} the cold tongs; kó ${ }^{3}{ }^{93}$ there is none $+\tilde{n} a^{3}{ }^{3} \mathrm{mi}^{3}$ sweet potatoes $>$ kó $^{3} o^{3}$ ñá ${ }^{19}$ mi 3 there are no sweet potatoes; ti ${ }^{3}-$ na $^{3}{ }^{3} \mathrm{na}^{93}$ tomato, $\mathrm{ko}^{3} \mathrm{o}^{3} \mathrm{ti}^{1}-\mathrm{na}^{3}{ }^{3} \mathrm{na}^{93}$ there are no tomatoes. (Notice that a ${ }^{139}$ differs from a ${ }^{239}$ or ${ }^{339}$ in that after a ${ }^{139} \mathrm{a}^{33}$ becomes ${ }^{23}$. See Rule 6.)
Rule 10: ${ }^{39}+{ }^{31},{ }^{331},,^{313},{ }^{321}$ (all Class B) $>{ }^{31}$ or ${ }^{3}$ followed by ${ }^{31} /{ }^{131}$, ${ }^{331} /{ }^{133}{ }^{31}$, ${ }^{313} /{ }^{1313},^{321}$. Also ${ }^{3 ?}$ + ${ }^{333}$ (Class B) $>{ }^{31}$ or ${ }^{3}$ followed by ${ }^{133 / 11^{13}}$. Also ${ }^{39}+{ }^{323}$ (Class B) $>^{31}$ or ${ }^{3}$ followed by ${ }^{323}$.

Tone sequences ${ }^{31},{ }^{331},{ }^{313}$, and ${ }^{321}$ which are Class B act morphotonemically as though preceded by a proclitic with tone but no segmental phonemes. (In our data a few nouns and all verbs in negative and completive aspect are Class B.) When preceded by a basic allolog has a final ${ }^{3 ?}$, the proclitic with zero segmental phonemes is actualized as tone ${ }^{1}$. The place of its occurrence alternates between the end of the first word and the beginning of the second, or it may even occur on both. All of the following phonemic shapes are frequent. šá ${ }^{3} \mathrm{ku}^{93} a$ few $+\mathrm{ka}^{3}$ sá 91 (Class B) son-in-law > ša ${ }^{3} k u^{3} \mathbf{u}^{1}{ }^{1} a^{3}$ sáa 91, or šá ${ }^{3} k u^{3}$ ká ${ }^{1} a^{3} \mathrm{sa}^{91}$, or $\mathrm{ša}^{3} k u^{3}$ ú 1 ká ${ }^{1} a^{3} \mathrm{sa}^{91}$ a few sons-in-law; ná ${ }^{2} \mathrm{ma}{ }^{93}$ soap $+\mathrm{ka}^{39}{ }^{3} \mathrm{vi}^{2} \mathrm{rá}^{1}$ (Class B) he is not counting $>\mathrm{na}^{2} \mathrm{ma}^{3} \mathrm{a}^{1}$ ka ${ }^{39} v i^{2}$ rá 1 he is not counting soap; ná ${ }^{2} \mathrm{ya}^{93}$ $d o g+$ ša $^{3} \mathrm{~s}_{1} \mathrm{i}^{\mathrm{i}^{93}}$ is not eating $>\mathrm{na}^{2} \mathrm{ya}^{3 \mathrm{a}^{1}}$ ša ${ }^{3}$ ší $^{1} i^{93}$, or na ${ }^{2} \mathrm{ya}^{3} \mathrm{a}^{1}$ šá ${ }^{1} \mathrm{a}^{3} \mathrm{ši}^{1} \mathrm{i}^{93}$, or ná ${ }^{2} \mathrm{ya}^{3}$ s $\mathrm{sa}^{1} \mathrm{a}^{3} \mathrm{sil}^{1}{ }^{1}{ }^{93}$ the dog is not eating.

When the tone sequence ${ }^{233}$ (Class B) occurs following ${ }^{3 ?}$, the preceding word changes from a final tone ${ }^{3}$ to a final ${ }^{31}$, and the word with ${ }^{233}$ (Class B) changes either to ${ }^{1{ }^{13}}$ or to ${ }^{133}$. ná ${ }^{2} \mathrm{ma}^{93}$ soap + ši $^{2} \mathrm{ka}^{3}{ }^{3} \mathrm{ra}^{3}$ (Class B) he asked for $>\mathrm{na}^{2} \mathrm{ma}^{3 a^{1}}{ }^{1}$ ši $^{1} \mathrm{k}^{1}{ }^{1}{ }^{1} \mathrm{ra} \mathrm{a}^{3}$ or $\mathrm{na}^{2} \mathrm{ma}^{3} \mathrm{a}^{1}$ šílką ${ }^{3} \mathrm{ra}^{3}$ he asked for soap.

When the tone sequence ${ }^{323}$ (Class B) occurs following ${ }^{3 ?}$, the preceding word changes from a final tone ${ }^{3}$ to a final ${ }^{31}$. ná ${ }^{2} \mathrm{ya}^{93} \operatorname{dog}+$ $n i^{3}-$ kínsisi 3 slept $>$ na $^{2} \mathrm{ya}^{3} \mathrm{a}^{1} \mathrm{ni}^{3}-\mathrm{kí}^{2} \mathrm{si}^{3}$ the dog slept.

Rule 11: The change that one word causes in a following word is based on the tone of its
basic allolog, not on the tone which occurs in that specific environment.
For example, in the second of the following pair of examples, vá ${ }^{39} \mathrm{a}^{3}$ good is still changed to ${ }^{13}$ even though a ${ }^{139}$ is preceding it. šáa ${ }^{2}$ ul 93 box + vá ${ }^{39} \mathrm{a}^{93}$ good $>$ šá $^{2} \mathrm{t}^{3} \mathrm{va}^{19} \mathrm{a}^{3}$ a good box; ši1 ${ }^{1}$ to ${ }^{1} \mathrm{ra}^{1}$ šáa $^{1}{ }^{1} \mathfrak{u}^{3}$ vá $^{1}{ }^{9} \mathrm{a}^{3}$ he is guarding a good box.

In the second of the following pair of examples, vá ${ }^{3}{ }^{3} \mathrm{a}^{3}$ good is changed to ${ }^{23}$ even though a ${ }^{23}{ }^{3}$ is preceding it. Compare rules 6 and 9. ssínip ${ }^{3}$ hat, ssílini ${ }^{3}$ vá $^{2}{ }^{9} \mathrm{a}^{3}$ a good hat; šílol ${ }^{1} \mathrm{ra}^{1}$ sín $^{2} \mathrm{ni}^{3}$ vá ${ }^{29} \mathrm{a}^{3}$ he is guarding a good hat.
11.2. Rules for morphotonemic changes within the phonological word and between a stem and an enclitic are dependent upon the presence versus the absence of stem-final glottal stop in the basic allomorph, and also the enclitic-final glottal stop in the basic allomorph. Therefore in the following rules \# means an enclitic without glottal stop. A ? means an enclitic with a glottal stop. A ${ }^{19}$, etc., means a stem which ends with tone ${ }^{1}$ and has a glottal stop in the basic allomorph.

CHART 1. The numbers in the chart give the tones of the second word which actually occur in that environment. An s means that the tone in that environment is the same as that of the basic allolog.

Final tone of the first word, with or without ?	Basic tones of the second word				
	11	13	23	33	31A
3\#	S	S	s	s	S
1\#	22	23	13	S	S
23?/33?	S	S	113*	13	s
13 ?	S	S	113*	23	S
$1 ?$	S	S	113*	23	21

* See Rule 8.

CHART 2.

Stem	Enclitic	
Final tone, with and without ?	Without?	With ?
$3 \#$ or $1 \#$	3	3 or 1^{*}
3 ?	1	3 or $1^{* *}$
1 ?	1	1

[^3](See Chart 2 for a summary of the morphotonemic changes within a phonological word.)

Rule 1: ${ }^{19}+$ \# or ${ }^{?}>{ }^{11}$. Both enclitics with glottal stop and those without glottal stop have tone ${ }^{1}$ when added to a stem with final tone ${ }^{1}$ and final glottal stop in its basic allomorph. yo ${ }^{3} \mathrm{so}^{91}$ grinding stone $+\mathrm{i}^{3} m y>$ yo ${ }^{3}$ sóli$^{1}{ }^{1}$ my grinding stone; tu ${ }^{3}$ úa ${ }^{91}$ firewood + ra ${ }^{3}$ his $>$ tu $^{3}{ }^{1}{ }^{1}{ }^{1} \mathrm{ra}^{1}$ his firewood; š̌1'ñu ${ }^{91}$ pineapple $+\mathrm{a}^{93}$ her $>$ šin $^{1} \tilde{n}^{1} \mathrm{a}^{91}$ her pineapple.

Rule 2: ${ }^{1} \#+\#$ or ${ }^{9}>{ }^{13}$. When added to a stem with final tone ${ }^{1}$ and without final glottal stop in the basic allomorph, enclitics both with and without glottal stop have tone ${ }^{3}$. lứllu ${ }^{1}$ small $+a^{3}$ it $>$ lu $^{1} \mathbf{l u}^{1} a^{3}$ it is small, číllo ${ }^{1}$ knife $+\mathrm{e}^{93}$ our $>$ čil $^{1} \mathrm{lo}^{1} \mathrm{e}^{{ }^{23}}$ our knife.
Rule 3: \#3\# + \# or ? $>^{3}{ }^{3}$. When added to a stem with final tone ${ }^{3}$ and with neither medial nor final glottal stop in the basic allomorph, all enclitics remain tone ${ }^{3}$. tústu ${ }^{3}$ paper $+\mathrm{e}^{93}$ our $>$ tú $^{3} \mathrm{tu}^{3} \mathrm{e}^{93}$ our paper, náa ${ }^{2} \mathrm{ma}^{3}$ wall $+\mathrm{ra}^{3}$ his $>$ ná $^{2} \mathrm{ma}^{3} \mathrm{ra}^{3}$ his wall; $\mathrm{ká}^{3} \mathrm{da}^{3}$ to move $+\mathrm{u}^{93}$ you (sg) $>\mathrm{ka}^{3} \mathrm{da}^{3} \mathrm{u}^{93}$ you will move.
Rule 4: ${ }^{93} \#+\#>{ }^{33} ;{ }^{93} \#+{ }^{9}>{ }^{33}$ (Sabino), or ${ }^{31}$ (José).

When added to a stem with final tone ${ }^{3}$ and stem-medial glottal stop, enclitics without glottal stop in the basic allomorph remain tone ${ }^{3}$. Enclitics with glottal stop may be either tone ${ }^{3}$ or tone ${ }^{1}$. (José usually has tone ${ }^{1}$; Sabino prefers tone ${ }^{3}$.) vis ${ }^{3} \mathrm{e}^{93}$ house + ra^{3} his $>\mathrm{vi}^{3}{ }^{3} \mathrm{e}^{3} \mathrm{ra}^{3}$ his house; $\mathrm{vi}^{3}{ }^{9} \mathrm{e}^{3}$ house + $\mathrm{a}^{\text {³ }}$ her $>$ vi' $^{3} \mathrm{e}^{3}{ }^{9}{ }^{9{ }^{1}}$ her house; $\mathrm{tu}^{3}{ }^{3}{ }^{9} \mathrm{u}^{3}$ word + $\mathrm{e}^{\text {P3 }}$ our $>$ tu $^{39} \mathrm{u}^{3} \varepsilon^{91}$ or tứ ${ }^{39}{ }^{3} \mathrm{u}^{3} \mathrm{e}^{93}$ our word; $t u^{3}{ }^{3} u^{3}$ word $+\mathrm{i}^{3} m y>t u^{3}{ }^{3} u^{3} \underline{i}^{3} m y$ word; $\mathrm{t}^{\mathrm{y}} \mathrm{a}^{3}{ }^{9} \mathrm{ni}^{3}$ chest $+\mathrm{a}^{93}$ her $>\mathrm{ta}^{\mathrm{t}}{ }^{3} \mathrm{ni}^{3}{ }^{3}{ }^{91}$ or $t^{y}{ }^{\prime}{ }^{3}{ }^{9} \mathrm{ni}^{3} \mathrm{a}^{93}$ her chest.

Rule 5: ${ }^{39}+\#>{ }^{3}{ }^{1}$. When added to a stem with final tone ${ }^{3}$ and with final glottal stop in the basic allomorph, an enclitic whose basic allomorph does not end in glottal stop becomes tone ${ }^{1}$. ná ${ }^{2} \mathrm{ma}^{93}$ soap $+\mathrm{ra}^{3}$ his $>$ na $^{2} \mathrm{ma}^{8} \mathrm{rá}^{1}$ his soap; šáa ${ }^{2}{ }^{\text {tu }}{ }^{93}$ bo $x+\mathrm{i}^{3} m y>$ sa $^{2} t u^{3 \varepsilon_{1}^{1}} m y$ box.

Rule 6: ${ }^{39}+{ }^{?} \gg^{33}$ or, occasionally, ${ }^{31}$.

When added to a stem with final tone ${ }^{3}$ and with final glottal stop in the basic allomorph, an enclitic whose basic allomorph ends in glottal stop usually remains tone ${ }^{3}$, but with José it varies to tone ${ }^{1}$. ná ${ }^{2} \mathrm{ma}^{93}$ soap $+\mathrm{e}^{\text {³ }}$ our (inclusive) $>$ ná $^{2} \mathrm{ma}^{3} \mathrm{e}^{93}$ or $n a^{2} \mathrm{ma}^{3} \mathrm{e}^{71}$ (rare) ; šá ${ }^{2} t u^{93}$ box $+\mathrm{a}^{93}$ her $>$ šá $^{2} \mathrm{tu}^{3} \mathrm{a}^{93}$ or ša ${ }^{2} \mathrm{t}^{3} \mathfrak{a}^{3}{ }^{91}$ (rare) her box.

Rule 7: The rules for enclitic plus enclitic are the same as the above rules for stem plus enclitic. š1 ${ }^{1}$ to ${ }^{91}$ watching, ri ${ }^{93}$ he (animal), ra^{3} he (man), s. $1^{1}{ }^{1}{ }^{1}{ }^{1}{ }^{1}{ }^{1}{ }^{1}$ he (the animal) is watching, ssíl$^{1} \mathrm{to}^{1} \mathrm{r}^{1} \mathrm{ra}^{1}$ he (the animal) is watching him (the man), sil ${ }^{1}{ }^{1}{ }^{1} \mathrm{ra}^{1}{ }^{1} \mathrm{ri}^{33}$ he (the man) is watching him (the animal); ká ${ }^{3} \mathrm{si}^{7{ }^{3}}$ to eat, $\mathrm{ka}^{3} \mathrm{si}^{3} \mathrm{r}^{1} \mathrm{i}^{3} \mathrm{a}^{1}$ he (the animal) will eat him (the man); ka3sisi ${ }^{3} \mathrm{ra}^{1} \mathrm{ri}^{9}{ }^{3}$ he (the man) will eat him (the animal).
11.3. The morphotonemic rules between proclitic and stem need further study. In our present data, however, a proclitic with tone ${ }^{1}$ causes a following stem with tones ${ }^{33}$ to become ${ }^{13}$, a stem with tones ${ }^{23}$ to become ${ }^{113}$, and a stem with ${ }^{31} \mathrm{~A}$ to become ${ }^{21}$. Stems with ${ }^{13},{ }^{11}$, and ${ }^{31}$ B remain unchanged. vá ${ }^{39} \mathrm{a}^{3}$ good, ku^{1}-vá ${ }^{19} \mathrm{a}^{3} \mathrm{ra}^{3}$ he is becoming good; šíñ̃u ${ }^{3}$ bright, ku1-š11 ${ }^{1} \tilde{n}^{1} \mathrm{a}^{3}$ it is becoming bright; ya ${ }^{3}$ á 91 (Class A) old, ku 1 - $\mathrm{ya}^{2} \mathrm{ta}^{1}{ }^{1} \mathrm{ra}^{1}$ he is becoming old; sinn 1^{1} (Class B) industrious, $\mathrm{ku}^{1}-\mathrm{si}^{3} \mathrm{nr}^{1}$ he is becoming industrious. (Except that a proclitic with tone ${ }^{1}$ plus a ${ }^{33}$ stem becomes ${ }^{11^{3}}$ (instead of ${ }^{12}{ }^{3}$), the above changes are the same as those of a word with / ${ }^{19}$ / followed by another word.)

For the most part a proclitic with tone ${ }^{3}$ causes no change in the tone of the stem. ku^{3} - vá ${ }^{3}{ }^{9} \mathrm{a}^{3} \mathrm{ra}^{3}$ he will become good, ku^{3} šíñu ${ }^{3} a^{3}$ it will become bright, ku^{3} - $\mathrm{ya}^{3} \mathrm{ta}^{1}$ it will become old. There are, however, certain frozen forms which do not coincide with the above rules. Notice the contrast between the following words. k^{w} árčip 1 small (pl), te ${ }^{3}$ $\mathrm{k}^{\text {wá }}{ }^{\prime} \mathrm{c}^{\mathrm{c}}{ }^{1}{ }^{1}$ those (men) who are small, $\mathrm{te}^{3} \mathrm{k}^{\mathrm{w}}{ }^{\mathrm{w}}$ á $^{2} \check{c}{ }^{1}{ }^{33}$ boys.
12. Tone has a heavy functional load in Ayutla Mixtec. It is one of the contrastive features used to distinguish lexical items. A
 red, $\mathrm{k}^{w a^{3}}{ }^{9} \mathrm{a}^{3}$ right-hand side; $\mathrm{na}^{2} \mathrm{ma}^{3} \mathrm{ra}^{1}$ his soap, ná ${ }^{2} \mathrm{ma}^{3} \mathrm{ra}^{3}$ his wall; káva ${ }^{23}$ gall bladder, ká ${ }^{3} \mathrm{va}^{93}$ cliff.

With some verbs, tone is the contrastive feature which distinguishes aspects: ká $^{3} \mathrm{da}^{3} \mathrm{ra}^{3}$ he will move, $\mathrm{ka}^{1} \mathrm{dá}^{1} \mathrm{ra}^{3}$ he is moving; ná ${ }^{3} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{ra}^{3}$ he will wash, nály ${ }^{1}{ }^{1}{ }^{1} a^{1}$ he is washing; su $^{3} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{1} \mathrm{ra}^{1}$ he will swim, sún ${ }^{1} \mathrm{t}^{\mathrm{y}} \mathrm{a}^{3} \mathrm{ra}^{1}$ he is swimming; nu ${ }^{3} \tilde{n}^{1}{ }^{1} \mathrm{ra}^{1}$ he will open, nún ${ }^{1} \tilde{a}^{1} \mathrm{ra}^{1}$ he is opening; $\mathrm{ku}^{3}-\mathrm{tá}^{1} \mathrm{ta}^{1}{ }^{1} \mathrm{ra}^{1}$ he will take medicine, ku^{1} - $\mathrm{ta}^{1}{ }^{1} \mathrm{a}^{1} \mathrm{ra}^{1}$ he is taking medicine.

Tone, in combination with a contrast between a single vowel and a cluster of geminate vowels, distinguishes most affirmative descriptive clauses from negative descriptive clauses; lu ${ }^{1} \hat{u}^{1}{ }^{1} \mathrm{ra}^{3}$ he is small, $\mathrm{lu}^{3} \mathrm{lu}^{2} \mathrm{u}^{1} \mathrm{ra}^{3}$ or $l^{3} \mathrm{u}^{2} \mathrm{u}^{1} \mathrm{ra}^{1} \mathrm{a}^{3}$ he is not small; vís $\mathrm{S}_{\mathrm{t}}{ }^{3} \mathrm{ra}^{3}$ he is cold,
 it is long, $\mathrm{ka}^{3} \mathrm{n}^{1} \mathrm{a}^{3} \mathrm{a}^{1}$ it is not long.

Affirmative verbs are distinguished from negative verbs by tone, or by tone in combination with a contrast between a single vowel and a cluster of geminate vowels: $\mathrm{ká}^{2} \mathrm{ka}^{3} \mathrm{ra}^{3}$ he will ask, $\mathrm{ka}^{3} \mathrm{ką}^{2}{ }^{2}{ }^{1}{ }^{1} \mathrm{ra}^{3}$ he will not
ask; ší $^{1} \mathrm{ta}^{1}{ }^{1} \mathrm{ra}^{1}$ he is singing, sis ${ }^{3} \mathrm{ta}^{2} \mathrm{ra}^{1}{ }^{1}$ he is not singing.

In Jose's idiolect many interrogative descriptive clauses are distinguished from affirmative descriptive clauses by tone. (Sabino introduced the interrogative descriptive clause with $/ a^{3} a^{1} /$.) šíñ $\mathrm{n}^{3} a^{3}$ it is shiny, sisiñ $\mathrm{n}^{2} \mathrm{u}^{1} \mathrm{a}^{3}$ it is not shiny, ši1 $\tilde{n}^{1} \mathrm{a}^{1} \mathrm{a}^{3}$ is it shiny?

Following are a few examples of words which are distinguished from each other by tone, or by tone in combination with a contrast between a single vowel and a cluster of geminate vowels. šíni ${ }^{3}{ }^{3}{ }^{1}$ his hat, šii ${ }^{2}{ }^{3}{ }^{3}$ ráa 1 his head, šílni ${ }^{1} \mathrm{ra}^{1}$ he understands, ši ${ }^{3}{ }^{3}{ }^{2}{ }^{2} \mathrm{rá}^{1}$ (Sabino prefers siisni ${ }^{3} i^{2} \mathrm{ra}^{1}$) he doesn't understand, siil $\mathrm{nil}^{11} \mathrm{ra}^{3}$ he knows, šî3ni ${ }^{3} \mathrm{ra}^{3}$ he knew, ši $^{3}{ }^{n} i^{2} 1^{1}{ }^{1}{ }^{1}{ }^{3}$ or ši ${ }^{3}{ }^{2} i^{2}$ rán $^{1} a^{3}$ (Sabino prefers ši ${ }^{3} \mathrm{ni}^{3} \mathrm{i}^{2} \mathrm{rá}^{1} \mathrm{a}^{3}$) he doesn't know, šíl $\mathrm{ni}^{3} \mathrm{ra}^{8}$ he is drunk; ša ${ }^{1} \mathrm{kú}^{1} \mathrm{ra}^{3}$ he is laughing, s sáa ${ }^{2} \mathrm{ku}^{3} \mathrm{ra}^{3}$ he laughed, ša ${ }^{3} \mathrm{ku}^{2} \mathrm{u}^{1} \mathrm{ra}^{3}$ or $\mathrm{sa}^{3} \mathrm{ku}^{2} \mathrm{rá}^{1} \mathrm{a}^{3}$ (Sabino prefers ša ${ }^{3} u^{3} u^{2} \mathrm{ra}^{1} a^{3}$) he isn't laughing, šá ${ }^{1} \mathrm{ku}^{1} \mathrm{ra}^{1}$ he is crying, šás ${ }^{3} \mathrm{ku}^{3} \mathrm{ra}^{3}$ he cried, ša ${ }^{3} \mathrm{ku}^{2} \mathrm{ra}^{1}$ (Sabino prefers ša ${ }^{3} \mathrm{ku}^{3} \mathrm{u}^{2} \mathrm{ra}^{1}$) he isn't crying.

[^0]: ${ }^{3}$ Longacre (Proto-Mixtecan, p. 82) said confidently in 1957, "Mixtec loses final [Proto-Mixtecan] *-? everywhere and without trace, except for the situation described under (4) [development of *CV? to Mixtec CV?V]."

[^1]: ${ }^{4}$ Longacre (Proto-Mixtecan p. 11) says of Metlatonoc Mixtec, 'The M couplet, thus defined, is phonologically marked by optional lengthening of its medial consonant (with voiceless element before medial t or k in $\mathrm{M}-\mathrm{M}$).' Longacre gleaned this information from unpublished data written by Edward Overholt.
 ${ }^{5}$ The postcouplet environment is pertinent in the description of the phoneme of the Mixtec or San Miguel el Grande also. K. Pike describes an allophone of $/ \mathrm{r} /$ as occurring enclitic initial (i.e. postcouplet) in that dialect. See Kenneth L. Pike, Analysis of a Mixteco text, IJAL 10.115 (1944).

[^2]: ${ }^{6}$ There is one exception to this rule. Sequences tú ${ }^{3} \mathrm{ku}^{3} \mathrm{ra}^{3}$ another and tú ${ }^{3} \mathrm{ku}^{3} \mathrm{ra}^{3}$ again are homophonous except when following a morpheme whose basic allomorph ends in $/ 7 /$. In that environment tú ${ }^{3} \mathrm{ku}^{3} \mathrm{ra}^{3}$ another follows the regular rules, whereas $t^{3}{ }^{3} \mathrm{ku}^{3} \mathrm{ra}^{3}$ again is an exception. It becomes
 pretty one; dá ${ }^{3} \mathrm{tu}^{3} \mathrm{tu}^{1} \mathrm{ku}^{1} \mathrm{ra}^{1}$ he is pretty again.

[^3]: * See enclitic rules 3 and 4.
 ** See enclitic rule 6.

