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Mechanisms of modal and nonmodal phonation
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Modal and nonmodal phonation are contrasted from the perspective of
voice production. It is shown that vocal fold vibrations from both types
of phonation may be formed from just a few basic building blocks, called
eigenmodes. Significantly, modal and nonmodal phonation may be
distinguished based on the entrainment (i.e., synchronization) of the
eigenmodes, where modal phonation corresponds to a 1:1 entrainment,
and nonmodal corresponds to all more complex patterns. Indirect and
direct investigations of eigenmode entrainment are reviewed, citing
investigations from computer models, excised larynx experiments, and in
vivo investigations on human subjects. Resonance studies of the vocal
folds provide an indirect investigation of eigenmode entrainment,
indicating which eigenmodes are most likely to entrain based on their
natural frequencies. Challenging previous interpretations of the vocal
fold resonance structure derived from the two-mass model, continuum
models and in vivo studies on human subjects are beginning to converge
on a similar description of the composite resonance. In addition, finite
element models and highspeed imaging studies of the medial surface of
the vocal folds provide powerful, direct evidence of eigenmode
entrainment in vocal fold vibration. Applications of these techniques are
suggested for exploring specific entrainment mechanisms used in
language. © 2001 Academic Press

1. Introduction

For years, it has been known that different phonation types have a variety of linguistic
uses (Ladefoged, 1983). For example, consider the parameter of glottal stricture, which is
used to describe the degree of vocal fold separation, ranging from widely separated folds
to tightly pressed folds. Variations in glottal stricture are employed contrastively in
a number of different languages and are known to produce distinct phonation types,
including both modal and nonmodal phonation (Gordon & Ladefoged, 2001). Modal
phonation refers to typical or baseline phonation, and includes the range of fundamental
frequencies used for the speaking voice (Hollien, 1974). It is also associated with periodic
vocal fold vibrations, a well-defined glottal closure, and a rich glottal spectrum. Non-
modal phonation, on the other hand, is an all encompassing term which includes any-
thing which deviates from modal (Kreiman & Gerratt, 2001).
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Figure 1. The two possible eigenmodes from the two-mass model, including an
eigenmode with (a) the two masses vibrating in-phase, and (b) the two masses
vibrating 180° out-of-phase. Columns 1 and 2 illustrate the eigenmodes at
opposite extremes in the vibratory cycle. The zigzag lines represent springs.

This investigation examines modal and nonmodal phonation from the perspective of
voice production. Specifically, the basic building blocks of vocal fold vibration will be
examined. It will be shown that many types of vocal fold vibration can be generated from
the same basic building blocks, known as eigenmodes. In fact, a basic tenet of linear
vibration theory is that all vibration patterns of a system, such as the vocal folds, can be
generated from the same underlying eigenmodes.

The eigenmode concept can be explained most easily using a simple, low-order model
of vocal fold vibration. The most widely-known model of vocal fold vibration is the
two-mass model of Ishizaka & Flanagan (1972), which contains two fundamental
eigenmodes. As shown in Fig. 1, both left and right sides of the vocal folds are represented
by two masses. If left-right symmetry is assumed, there are just two effective masses,
which are free to vibrate horizontally. In such a model, there are two possible eigen-
modes: one in which top and bottom masses vibrate in-phase with each another
(Fig. 1(a)), and one in which top and bottom masses vibrate 180° out-of-phase (Fig. 1(b)).
The number of eigenmodes corresponds to the number of degrees-of-freedom of the
system. Any vibration pattern of the two-mass model can be expressed as a superposition
of these two eigenmodes.

For a continuum of tissue like the vocal folds, an infinite number of tissue particles
make up the entire mass of tissue. Thus, in the true vocal folds, there are potentially an
infinite number of degrees-of-freedom, and a correspondingly infinite number of eigen-
modes. However, for many types of vocal fold vibration, just a few eigenmodes are
excited. Often, even very complicated vibration patterns can be explained by just a few
underlying eigenmodes (Berry, Herzel, Titze & Krischer, 1994).

In a linear system, each eigenmode is associated with a fixed, characteristic frequency,
called an eigenfrequency. Eigenfrequencies are identical to the resonance frequencies
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of the system, a concept familiar to phoneticians and linguists. For example, in the
phonetics literature, the resonance frequencies of the vocal tract are commonly referred
to as formants. From lowest to highest, the first few formants of the vocal tract are
usually referred to as F1, F2, F3, etc. For the case of a neutral vocal tract (e.g., a tract with
uniform width across its entire length), the formants F, may be computed from the
following formula:

2n—1c¢

Fo=T—1 (1

where c is the speed of sound in air, and L is the length of the vocal tract. The acoustic
eigenmodes associated with the first three formants are shown in Fig. 2. All acoustic
waves transmitted through the vocal tract may be expressed as a superposition of the
acoustic eigenmodes.
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Figure 2. The acoustic eigenmodes associated with formants (a) F1, (b) F2, and
(c) F3 for a uniform vocal tract. - lines represent the pressure amplitudes of the
eigenmodes along the length of the vocal tract from the closed end, representing
the glottis, to the open end, representing the mouth. The vocal tract of the neutral
schwa can be considered to be a uniform closed-open tube.
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When a vowel other than the neutral schwa is uttered, the vocal tract leaves the neutral
position and becomes a nonuniform tube. This shifts the lower formants towards higher
or lower frequencies, especially F1 and F2 (Hess, 1983). Each vocal tract shape has
a characteristic formant structure, which is important for vowel identification. In fact,
most vowels can be distinguished by where they lie in the F1-F2 parameter plane
(Peterson & Barney, 1952). This description of vowel production using formants is
universally appreciated by speech scientists.

Similarly, the voice source can be characterized by its eigenmodes and eigenfrequen-
cies. However, unlike acoustic wave propagation through the vocal tract, vocal
fold vibration cannot be described as a strictly linear phenomena. For example,
during phonation, the eigenmodes of the vocal folds usually do not retain their
characteristic frequency. In the case of modal phonation, a shifting of the eigenfrequen-
cies occurs until the two eigenfrequencies become aligned, or tuned to the same
frequency. This phenomenon is referred to by various names, including frequency
locking (Bergeé, Pomeau & Vidal, 1984), phase locking (Glass & Mackey, 1988), eigen-
mode entrainment (Berry et al, 1994), modal synchronization (Herzel, Berry, Titze
& Saleh, 1994), and mode locking (Fletcher, 1996). Eigenmode entrainment, as it will be
referred to in this article, is a nonlinear phenomenon; it cannot occur in a strictly linear
system.

For example, if eigenmode entrainment were to occur in the vocal tract, F1 and F2
might shift to some common mid-range frequency. Of course, experience suggests that
this does not happen. Instead, F1 and F2 retain their characteristic frequencies. How-
ever, in the case of vocal fold vibration, there are several strong nonlinearities which
facilitate eigenmode entrainment. Perhaps, the most important of these is vocal fold
collision, which occurs every cycle in modal phonation in connection with glottal
closure. The driving force, i.c., the airflow-pressure relation in the glottis, is another
important nonlinearity which facilitates eigenmode entrainment.

From a voice production point of view, one instructive way to distinguish modal
and nonmodal phonation is through the entrainment of the eigenmodes. For example,
if the two eigenmodes of Fig. 1 were to oscillate at the same frequency, they would be
exhibiting a 1:1 (one-to-one) entrainment, the kind of entrainment usually associated
with modal phonation. On the other hand, vocal fry, a common class of nonmodal
phonation, is characterized by glottal pulses of alternating amplitudes or by irregular
trains of pulses (Hollien and Michel, 1968). For alternating glottal pulses, entrainment
patterns of 1:2 or 2:2 are most common. For a 1:2 entrainment, one eigenmode vibrates at
the lower frequency, completing cyclic vibrations in connection with alternating glottal
pulses. The other eigenmode vibrates at the higher frequency, completing cyclic vibra-
tions in connection with each glottal pulse. For 2:2 entrainment, both eigenmodes
vibrate at the lower frequency. For irregular trains of glottal airflow, the eigenmodes do
not entrain at all, or they become disentrained.

Another type of nonmodal phonation is produced when low-frequency modulations,
unrelated to the fundamental frequency, are present in the vibration pattern of the vocal
folds (Herzel et al., 1994). In the music literature, this phenomenon has been referred to as
bitonal phonation. In the clinical literature dealing with voice disorders, this phenom-
enon has been referred to as diplophonia, biphonation, and dicrotic dysphonia. In this
phonation type, the eigenmodes may exhibit a P:Q entrainment, where P and Q are
irrational or incommensurate (i.e., no simple integer relationship exists between P
and Q).
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Thus, from a voice production point of view, one way to distinguish modal and
nonmodal phonation is as follows: (1) modal phonation is the type of phonation that
results from a 1:1 entrainment of the eigenmodes of the vocal folds, (2) nonmodal
phonation results from all other, more complex patterns.

Conceptually, eigenmode entrainment is important because it provides a more general
description of the vibration rate of the vocal folds than the more traditional measure of
fundamental frequency. Indeed, the whole concept of fundamental frequency presumes
that a single frequency can adequately characterize this vibration rate. Admittedly,
fundamental frequency may characterize vocal fold vibration adequately during modal
phonation, because, in a 1:1 entrainment, all eigenmodes do entrain at a single frequency.
However, for the more complex patterns associated with nonmodal phonation, more
than one frequency may be needed to characterize the vibration rate of the vocal folds.
Significantly, eigenmode entrainment can be used to describe not only modal phonation
(1:1 entrainment), but also many types of nonmodal phonation, ranging from 1:2
entrainment, to 2:2, to P:Q, to complete disentrainment. Consequently, to describe both
modal and nonmodal phonation, the concept of eigenmode entrainment is not only
convenient, but necessary.

In this study, to help clarify this distinction between modal and nonmodal phonation,
eigenmode entrainment will be discussed from a variety of points of view, citing
both direct and indirect investigations of entrainment. First of all, entrainment
will be discussed in light of the resonance structure of the vocal folds, which is an
indirect investigation of eigenmode entrainment. Investigations with computer
models, excised larynx experiments, and human subjects will be cited. Next, direct
observations of eigenmode entrainment will be presented along the medial surface of
the vocal folds. Since these observations require highly invasive measures, no data
from living subjects are available. However, investigations with computer models
and excised larynx experiments provide convincing evidence of entrainment/disentrain-
ment in vocal fold vibration. Finally, future applications of these techniques will be
suggested for exploring specific mechanisms of modal and nonmodal phonation in
language.

2. The resonance structure of the vocal folds

All vibrating systems possess a unique resonance structure. In the case of linear dynam-
ics, a system can be decomposed into a set of independent vibration patterns, called
eigenmodes, each with a corresponding natural frequency or eigenfrequency. Any system
of vibration can be described as a superposition of the eigenmodes. Expressed in another
way, a specific entrainment of the eigenmodes can reproduce all possible vibrations of the
system. Often, even complex vibration patterns can be described by just a few eigen-
modes.

Both the eigenmodes and the eigenfrequencies are characteristic of the system, and
independent of the source of excitation. The resonance structure of the system is
determined by the width and location of the eigenfrequencies. Significantly, this reson-
ance structure can either facilitate or discourage entrainment of the eigenmodes. For
example, a close spacing of two eigenfrequencies will facilitate a 1:1 entrainment of the
two corresponding eigenmodes. Nonlinearities in the system can also facilitate entrain-
ment, by allowing the natural frequencies of the system to shift.
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2.1. The two-mass model

With regard to the resonance structure of the vocal folds, first consider the two-mass
model of Ishizaka & Flanagan (1972). Although a relatively simple model, it is elegant in
that it helps conceptualize the interaction between airflow and tissue movement to
produce self-oscillation. In particular, it possesses two eigenmodes, the entrainment of
which illustrates a principal mechanism for self-oscillation of the vocal folds. However,
the resonance structure of the two-mass model differs from more sophisticated con-
tinuum models of vocal fold vibration, and from in vivo investigations on human
subjects. In particular, the two-mass model has a relatively large spacing between
eigenfrequencies, which may introduce an unduly limited entrainment region for its
eigenmodes, and an unduly restrictive region for self-oscillation, in general.

The eigenfrequencies (or resonances) of the model can be computed from its linearized
equations of motion (Ishizaka & Flanagan, 1972; Titze, 1976):

mljél +7'1X.31 +k1X1 +kc(X1 —Xz):Fl (2)

mzjéz + r2>€2 + kzXz + kC(XZ - xl) = F2

where my and m, are the lower and upper masses, x; and x, are the lower and upper
displacements, k4, k,, and k. are the lower, upper, and coupling stiffnesses (represented by
springs or zigzag lines in Fig. 1), 7; and r, are the mechanical resistances associated with
the lower and upper springs, and F; and F, are the aerodynamic forces on the lower and
upper masses, which are set to zero for the resonance computation. To simplify the
calculation, the two second-order equations of Equation (2) may be converted into one
fourth-order equation (Ishizaka, 1988). This is done by solving for x, in the first equality
of Equation (2) and substituting the result into the second equality. Assuming that x; can
be expressed in the form of ™ (0 < ¢ < 0), where s is a complex number, the solution for
the vocal fold resonances can be written in the form:

r r ki +k, ky+k., rr
S4+<1+2>s3+<1 +——+ ”>s2

my;  mp my my mym;

n <l’1(k2 + kc) + rz(kl + kc)>s + <k1kc + kZ(kl + kc)) — 0 (3)

my + my mym,

Consider the resonance structure for typical Ishizaka and Flanagan parameters (m; =
0.125g, m, =0.025g, k; =80000dyn/cm, k, = 8000 dyn/cm, k.= 25000 dyn/cm,
ri = 0.1[m k1%, r, = 0.6[m,k,]"/?). The resonance structure is obtained by solving for
the variable s in Equation (3). The results are summarized in Table I and Fig. 3. Although
there are four possible solutions to Equation (3), Table I lists only the two solutions
which correspond to positive frequencies (the negative frequencies have the same magni-
tude as the two positive frequencies, and do not introduce any additional information).
The real part of s is an exponential damping factor, and the imaginary part of s is the
angular frequency w. The two resonance peaks appear at 121 and 198 Hz, respectively.
For comparison, the resonance structure of the model is also shown for the condition of
no damping (r; = r, = 0). In this case, the two resonances occur at 120 and 201 Hz. As
illustrated in Fig. 3, damping has the influence of both broadening and decreasing the
amplitudes of the resonance peaks. However, the locations of the peaks shift very little as
a function of damping.



TABLE I. The natural frequencies of the two-mass model
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Figure 3. Resonance spectrum of the two-mass model for conditions of (a) no
damping, (b) typical damping parameters of Ishizaka & Flanagan (1972).
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The most significant aspect of the resonance spectrum is the relatively large spacing
between the eigenfrequencies, which discourages a 1:1 entrainment of the eigenmodes.
Consequently, it limits the region where modal phonation can occur. What mechanism
exists to align the two natural frequencies, entraining the two eigenmodes? Aerodynamic
forces (Fy and F,), vocal fold collision, and nonlinear spring stiffnesses can all help
facilitate eigenmode entrainment. As shown previously (Titze, 1976; Ishizaka, 1988),a 1:1
eigenmode entrainment with sustained oscillations can be achieved at a fundamental
frequency of approximately 130 Hz. However, for this entrainment to occur, the eigen-
frequency of the second eigenmode must undergo a substantial frequency shift (e.g., from
198 to 130 Hz).

In Fig. 3, the lower resonance corresponds to an eigenmode in which the lower and
upper masses vibrate approximately in-phase with each other (Fig. 1(a)), and the higher
resonance corresponds to an eigenmode in which the two masses vibrate approximately
180° out-of-phase (Fig. 1(b)). The lower eigenmode is closely associated with the net
lateral tissue movement. The second eigenmode captures the glottal shaping of the vocal
folds, alternately shaping a convergent (Fig. 1(b), frame 1) and divergent glottis (Fig. 1(b),
frame 2). A convergent glottis is one in which the superior glottal space is smaller than
the inferior glottal space. That is, as one traverses the glottal airway from bottom to top,
the glottal airway narrows, or converges. A divergent glottis is just the opposite, meaning
that the glottal airway increases as one traverses the glottal airway from bottom to top. It
is known that a divergent glottis possesses a relatively low intraglottal pressure and that
a convergent glottis possesses a relatively high intraglottal pressure (Stevens, 1977,
Broad, 1979; Titze, 1988; Berry et al., 1994). Consequently, if the two modes are properly
entrained, a mechanism exists to transfer energy from the airflow to laryngeal tissues,
facilitating self-sustained vocal fold oscillations. In particular, optimal energy transfer
occurs when the lateral tissue velocity (controlled by the lower eigenmode) is in-phase
with the intraglottal air pressure (controlled by the higher eigenmode). Consequently,
a 1:1 entrainment of these two eigenmodes facilitates sustained oscillations in the
two-mass model by optimizing the energy transfer from the airflow to the tissue.

2.2. The continuum model

Continuum models seek a more realistic representation of vocal fold tissues. While
a heavy price is paid in terms of additional mathematical complexity, investigations with
continuum models predict a substantially different resonance structure for the vocal
folds, which corresponds more closely with resonance studies on human subjects. Berry
& Titze (1996) showed a method to compute the eigenfrequencies and eigenmodes of
a 3D continuum model of vocal fold tissues. As shown in Fig. 4, the model assumed
a brick-shaped geometry for the tissue, with fixed boundary conditions at the anterior,
posterior and lateral surfaces. The remaining surfaces (superior, inferior, and medial)
were free to vibrate, with no external forces applied. Anterior—posterior vibrations
were not considered because such vibrations are usually negligible (Baer, 1981). How-
ever, both medial and vertical vibrations were allowed, in contrast to the two-mass
model which permits only medial vibrations. Transverse isotropy was assumed because
the tissues are known to be stiffer along the direction of the fibers (roughly an an-
terior-posterior direction).

The resonance frequencies and eigenmodes were determined by a two-step procedure.
First, a general solution was supplied which satisfied the fixed boundary conditions. In
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Figure 4. Boundary conditions imposed for the 3D continuum model of vocal fold
tissues (after Berry & Titze, 1996).

particular, the x displacements & and the z displacements y were taken to be

I J
. . nm -
&(x, v, z, t) = sin wt sin nny Yoy AyxtZ
L /= j=1
I (4)
. . nm .
y(x, y, z, t) = sin i sin nmy Y > Bix'z
L = j=1
where i, j, n, I and J were integers and L was the anterior-posterior length of the vocal
folds. Note that the fixed boundary conditions were satisfied by this general solution, i.e.,
both ¢ and y equal zeroat y =0,y = L,and x =0.

Next, the first variation in the total potential energy I was required to vanish. This
requirement ensured that the solution satisfied the equations of motion, as well as the
free boundary conditions. In particular, the first variation in IT was taken with respect to
all the unknown coefficients of the general solution:

oIl oIl

=0, — =0 5

Berry & Titze (1996) noted that two of the lowest-order eigenmodes of the continuum
model were qualitatively similar to the two eigenmodes of the two-mass model. As shown
in Fig. 5(a), in one eigenmode, the tissue along the medial surface exhibits predominantly
lateral vibrations, responsible for modulating the glottal airflow. In contrast, as shown in
Fig. 6a, the other eigenmode exhibited a rotational motion along the medial surface, with
lower and upper portions of the tissue vibrating 180° out-of-phase.

However, the eigenfrequency spacing in the continuum model was quite distinct from
that observed in the two-mass model. In the continuum model, the two eigenfrequencies
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Figure 5. Low-order eigenmodes from the continuum model, shown in coronal
cross-section, which describe predominantly lateral vibrations to modulate the
glottal airflow. The natural frequencies of these eigenmodes are (a) 106.0, (b) 115.6,
and (c) 116.7 Hz. Columns 1 and 2 illustrate the eigenmodes at opposite extremes
in the vibratory cycle.

were nearly identical. Significantly, this eigenfrequency spacing encouraged a 1:1 entrain-
ment of the eigenmodes. Thus, in the continuum model, a large shift in the eigenmodes
was not necessary to initiate sustained vocal fold oscillations, yielding less restrictive
oscillation conditions than the two-mass model. Furthermore, the close eigenfrequency
spacing of the eigenmodes existed not only for the typical parameters, but across a wide
range of vocal fold sizes and tissue stiffnesses (Berry & Titze, 1996).

Perhaps most significantly, a whole series of eigenmodes existed within the continuum
model. For example, consider the composite spectrum of 16 low-order eigenmodes from
the continuum model, for the parameters listed in Table II. As shown in Fig. 7, the upper
solid line depicts the composite resonance spectrum, while the lower dotted lines depict
the individual resonance curves. Since the individual eigenfrequencies clustered into two
groups, only two broad resonances occurred in the continuum model for this parameter
configuration. From a superior view, all the eigenmodes associated with the first
resonance are graphically depicted in Fig. 8(a). They have an anterior—posterior index of
n =1 (see Equation (4)). The eigenmodes that fall within the second resonance have an
anterior-posterior index of n = 2 and are graphically depicted in Fig. 8(b). Thus, for the
parameters given in Table II, the eigenmodes naturally cluster into two groups distin-
guished by their anterior—posterior index.

From a superior view, the eight eigenmodes within each resonance are indistin-
guishable. However, they can be easily distinguished from a coronal cross-section.
Descriptively, the eight eigenmodes may be classified into three distinct groups: lateral
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Figure 6. Low-order eigenmodes from the continuum model, shown in coronal
cross-section, which are rotational in nature, alternating between convergent
(frame 1) and divergent (frame 2) glottal shapes. The natural frequencies of these
eigenmodes are (a) 106.7, (b) 112.0, and (c) 123.8 Hz. Columns 1 and 2 illustrate the
eigenmodes at opposite extremes in the vibratory cycle.

TABLE II. Parameters of the continuum model

Transverse shear modulus p 103 dyn/cm?*
Anterior-posterior shear y' 105 dyn/cm?
Transverse Poisson’s ratio v 0.99
Anterior-posterior Poisson’s ratio v’ 0.0
Damping ratio 0.2%*
Anterior—-posterior length L 1.5cm
Lateral depth D 0.7 cm
Vertical thickness T 0.5cm
Tissue density 1.03 g/cm3

*Chan & Titze (1999).

eigenmodes, rotational eigenmodes, and vertical eigenmodes. These classifications are
depicted in Figs 5, 6, and 9, respectively. In Fig. 5, the lateral eigenmodes exhibit
a predominantly lateral vibration pattern, which modulate the glottal airflow. The first
eigenmode, Fig. 5(a), is probably excited for relatively low subglottal pressures. The
higher eigenmodes, Figs 5(b) and (c), have slightly higher frequencies for the same glottal
configuration, and may be excited at slightly higher subglottal pressures. In Fig. 6, the
rotational eigenmodes exhibit an alternating convergent/divergent glottis, and thus
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Figure 7. Resonance spectrum of the continuum model. Composite spectrum is
shown as a ——, and individual resonance curves are shown as - lines. Two
major resonances occur, corresponding to anterior-posterior indices of n equals
one and two, respectively (see Equation (4)).

are closely associated with the intraglottal pressure. Note that small increases in eigen-
frequency in Figs 6(a)—(c), result in eigenmodes which manifest an increasingly predomi-
nant mucosal wave. In Fig. 9, although some glottal shaping may be involved, these appear
to be predominantly vertical modes of vibration, which may or may not be important in
vocal fold vibration. Since some glottal shaping is involved, they could perform a function
similar to the rotational eigenmodes at relatively small subglottal pressures.

Similar to the two-mass model, self-sustained oscillations of the continuum model
could be facilitated if an eigenmode from Fig. 5, which controls the net lateral tissue
velocity, were to entrain with an eigenmode from Fig. 6, which controls the intraglottal
pressure. Properly entrained, two such eigenmodes would generate optimum energy
transfer from the airflow to the tissues, facilitating self-sustained oscillations of the vocal
folds. Since the first resonance peak is considerably stronger than the second, the
eigenmodes of the first resonance are the most easily excited. Consequently, phonation
frequency usually corresponds to the frequency of this first resonance.

In contrast to the two-mass model, the continuum model predicts that an entire series
of eigenmodes exists within a single resonance of the vocal folds. The eigenmodes which
most easily entrain are the eigenmodes which fall within the same resonance peak.
Within the same resonance peak, there are many combinations of 1:1 entrainment which
may exist between many different eigenmodes. If eigenmodes within the same resonance
peak entrain, only a small shifting of eigenfrequencies is required for a 1:1 entrainment to
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Figure 8. A superior view of eigenmodes from the continnum model (Berry
& Titze, 1996) and from in vivo investigations (Svec et al., 2000), for
anterior—-posterior indices of (a) n = 1, (b) 2, and (c) 3, as defined in Equation (4).
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Figure 9. Low-order eigenmodes from the continuum model, shown in coronal
cross-section, which are predominantly vertical modes of vibration. They may or
may not be important in vocal fold vibration. The natural frequencies of these
eigenmodes are (a) 104.6 Hz, (b) 115.8 Hz. Columns 1 and 2 illustrate the
eigenmodes at opposite extremes in the vibratory cycle.

occur, in contrast to the relatively large frequency shift required for the two-mass model.
Thus, there are many additional possibilities for 1:1 entrainment in the continuum
model. This is indicative of a large, unrestricted region where modal phonation may
occur in the continuum model.

2.3. Excised larynx experiments and human subjects

Fortunately, resonance studies of the vocal folds have not been limited to computer
models. Resonance studies of the vocal folds have also been performed on excised
larynxes, and on human subjects in vivo (Kaneko, Komatsu, Suzuki, Kanesaka, Masuda,
Numata & Naito, 1983; Kanecko, Masuda, Shimada, Suzuki, Hayasaki & Komatsu,
1986; Svec, Horacek, Sram & Vesely, 2000). Summarizing the results on excised laryxnes,
Kaneko et al. (1986) indicated that two prominent resonances appeared in the excised
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larynxes, with no tension applied. The average frequencies of the lower and upper
resonances were 120 and 180 Hz, respectively.

As noted before, typical Ishizaka & Flanagan (1972) parameters yield resonances of
120 and 201 Hz. Both Kaneko et al. (1986) and Ishizaka (1988) suggested that the
resonances observed in the Kaneko et al. (1986) excised larynx experiments correspon-
ded to the resonances of the two-mass model. However, no data were presented in the
excised larynx experiment to indicate that just one eigenmode was present in each
resonance, and that inferior-superior tissue was in-phase for the lower resonance, and
out-of-phase for the higher resonance.

Furthermore, the in vivo investigations of Kaneko et al. (1986) yiclded somewhat
different results. Summarizing the in vivo investigations, Kaneko et al. (1986) indicated
that higher resonance frequencies were observed just below the second harmonic of the
lower resonance, suggesting a near-octave spacing between the resonances. This observa-
tion was significant because the in vivo studies examined a wider range of fundamental
frequencies than the excised larynx studies. In a vibrating string, an octave spacing also
exists between its first two resonances, i.c., f,, = nc/(2L), where c is the wave speed, L is the
length of the string, and f, is the frequency of the nth harmonic. Note that in this
expression, the integer n is an anterior—posterior index just as it was in Equation (4).

A near-octave spacing would exist in the vocal folds if the stiffness parameters in the
anterior—posterior direction were substantially greater than the stiffness parameters in
the tranverse plane, so that the fundamental frequency was determined principally by the
anterior-posterior stiffness. This would create an overall resonance structure similar to
that of a vibrating string. This is precisely the situation considered in Table II for the
continuum model, in which y, the shear modulus in the anterior-posterior direction, was
100 times greater than y, the shear modulus in the transverse plane. Presumably, through
activation of the thyroarytenoid muscle and the external tension supplied by the
cricoarytenoid muscle, the in vivo studies of Kaneko et al. (1986) essentially duplicated
this condition: the anterior—posterior stiffness of the folds became considerably greater
than the stiffness in the transverse plane. Consequently, the resonance frequencies were
governed predominantly by the anterior—posterior stiffness.

This interpretation would suggest that the second resonance of the Kaneko study would
correspond to an anterior-posterior index of n = 2, as predicted by the continuum model.
Although no imaging data were available from the Kaneko et al. (1986) study to indicate
whether or not this was the case, Svec et al. (2000) recently duplicated the resonance studies
of Kaneko et al. (1986) in vivo, utilizing an endoscope to image the vibration patterns. On
the subject investigated in this study, Svec et al. observed three resonances in the folds
occurring at 110, 170, and 240 Hz. Presumably, with just a 3-octave spacing between
resonances, this was a glottal configuration in which the anterior-posterior stiffness did
not clearly dominate the transverse stiffness. Nevertheless, Svec reported that each reson-
ance corresponded to a distinct anterior—posterior index: n = 1, 2, and 3, respectively (see
Figs 8a, b, and c). Thus, even for less-than-octave spacing, the resonances of the vocal folds
corresponded to eigenmodes of distinct anterior—posterior indices, not to the eigenmodes
of the two-mass model. However, because imaging along the medial surface of the vocal
folds was not performed, it was not possible to determine which (and how many)
eigenmodes were present within each resonance peak.

Clearly, more studies are needed to provide a thorough comparison between computer
models and human subjects. However, recent investigations with continuum models and
human subjects appear to be converging on a similar description of the resonance
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structure of the vocal folds. Significantly, the resonance structure of the vocal folds is
known to be a critical feature which can either facilitate or discourage eigenmode
entrainment. From theory and observation, many vocal fold vibration patterns cor-
responding to both modal and nonmodal phonation can be explained by the en-
trainment/disentrainment of just a few underlying eigenmodes. The entrainment/
disentrainment of these eigenmodes is one of the distinguishing features of modal and
nonmodal phonation.

3. Direct observations of entrainment

3.1. Computer models

Although the resonance structure of the vocal folds may provide indications as to which
kinds of entrainment may be possible, direct observations of entrainment have also been
made along the medial surface of the vocal folds using computer models and excised
larynx experiments. In Berry et al. (1994), eigenmodes were extracted from a biomechani-
cal simulation of vocal fold vibration. The simulation used a finite element approach to
the solution of viscoelastic waves in a continuum (Alipour, Berry & Titze, 2000). Many
nonlinearities were incorporated into the model including the nonlinear stress—strain
relationship of vocal fold tissues, the nonlinearities due to collision, and nonlinear
interactions with the glottal airflow. Also, a three-layer tissue morphology was imple-
mented, including body, cover, and ligament, and more realistic vocal fold shapes were
utilized than in the analytic continuum model. Although these complexities prohibited
an analytical solution of the eigenmodes, empirical eigenmodes were extracted from the
vibration patterns using a standard statistical technique (Berry et al., 1994). For a typical
case of periodic oscillations, two eigenmodes explained 98% of the variance in the
vibration patterns, as shown in Fig. 10. Near the top of the glottal airway, these
eigenmodes were qualitatively similar to the eigenmodes shown in Figs 5(a) and 6(a).

Eigenmodes were also extracted from three segments of a bifurcation scenario (a
bifurcation is an abrupt jump between distinct oscillation patterns caused by a small
change in some parameter in the model). The bifurcations were induced by gradually
decreasing the stiffness of the mucosal cover. One segment contained periodic vibrations
with a frequency of 160 Hz, another segment contained aperiodic vibrations, and the
final segment contained periodic vibrations, but with a fundamental frequency of 80 Hz,
corresponding to a period doubling of the original vibration in segment one.

Although the vibration patterns in each segment were quite distinct, the three stron-
gest eigenmodes remained essentially constant throughout the bifurcations. The essential
difference between the vibration patterns was the entrainment/disentrainment of the
eigenmodes. In the first segment, a 1:1 entrainment existed; in the second segment, the
eigenmodes were completely disentrained; and in the final segment, a 2:2 entrainment
existed. This observation illustrates that sometimes the only difference between modal
and nonmodal phonation may be the entrainment of the underlying eigenmodes.

3.2. Highspeed, excised larynx experiments

More recently, eigenmodes have also been extracted from vibrating vocal fold tissues in
the laboratory. As described in detail elsewhere (Berry, Montequin & Tayama, in press),
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Figure 10. Empirical eigenmodes for the finite element model shown in coronal
cross-section (after Berry et al., 1994). (a) The first eigenmode, which explains 73%
of the variance, alternates between divergent (frame 1) and convergent (frame 2)
glottal shapes near the top of the medial surface of the folds. (b) The second
eigenmode, which explains 25% of the variance, describes predominantly lateral
vibrations near the top of the medial surface of the folds. Columns 1 and

2 illustrate the eigenmodes at opposite extremes in the vibratory cycle.

this was done by modifying a hemilarynx procedure previously investigated by Jiang
& Titze (1993). The left vocal fold was mounted against a glass plate. Vibrations were
induced by passing airflow through the trachea, and through the glottis (i.e., the area
between the glass plate and the left vocal fold). Microsutures were placed along the
medial surface of one coronal plane of the tissues, mid-way along the anterior—posterior
length of the folds, with approximately a 1.0 mm spacing between sutures. A prism was
placed on the opposite side of the glass plate, yielding two oblique views of the medial
surface of the folds. Without the oblique views from the prism, lateral vibrations could
not have been quantified. Finally, a highspeed camera (a Kodak EktaPro 4540) imaged
the vibrations through the two faces of the prism. Vibrations were imaged at a sampling
frequency of 4500 frames/s, with a spatial resolution of 256 x 256 pixels.

Following image capture, a 3D calibration grid was established so that image coordi-
nates could be mapped onto physical coordinates. This was done by removing the left
vocal fold from the glass plate, and replacing it with a glass reticle containing a 2D
calibration grid. The reticle was mounted against the glass plate using a micrometer. The
reticle was imaged. Then, the reticle was perpendicularly displaced from the plate
1.0 mm, and imaged again. This procedure was repeated up to a 7 mm displacement. In
this way, an entire 3D grid was imaged from the two views of the prism. Using the direct
linear transform (Abdel-Aziz & Karara, 1971), a precise mapping was established from
image coordinate to physical coordinates.

One typical cycle of a periodic oscillation is shown in Fig. 11(a). Vibrations of vocal
fleshpoints were quantified with sufficient temporal and spatial resolution to compute
the underlying eigenmodes. Although Baer (1981) previously tracked 1-3 markers
simultaneously in excised larynx experiments, this did not yield sufficient spatial resolu-
tion to make an estimation of the eigenmodes. Also, because highspeed imaging was not
available, the Baer study was not able to investigate irregular oscillations.
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Figure 11. (a) Microsutures attached along the medial surface of a coronal
cross-section of the vocal folds during excised larynx experiments, with
approximately a 1 mm spacing between sutures. Frames 1-9 illustrate one full
cycle of periodic vibration of the vocal fold fleshpoints. Owing to space limitations,
only every fifth frame from the highspeed movie is depicted here. Only the left side
is imaged; the right side is shown as a reflection to illustrate glottal shape. (b) First
eigenmode, which explains 69% of the variance, describes predominantly lateral
motion near the top of the glottal airway. (c) Second eigenmode, which explains
29% of the variance, describes an alternating divergent/convergent glottis near the
top of the glottal airway. Ticks on the coordinate axes indicate a 1-mm spacing
(after Berry et al., in press).
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For the vibrations under consideration, two eigenfunctions explained 98% of the
energy of the vocal fold vibrations. The first eigenmode captured 69% of the energy, and
the second eigenmode explained 29%. This is similar to the Berry et al. (1994) computa-
tional study, in which the two dominant eigenmodes from a finite element model
captured 73 and 25% of the energy, respectively. In both studies, two eigenmodes
captured 98% of the vibrational energy.

In the hemilarynx experiment, the first eigenmode captured the net lateral vibrations
of the vocal fold, as shown in Fig. 11(b). In comparison to the two-mass model (Ishizaka
& Flanagan, 1972), this eigenfunction is related to the mode in which both top and
bottom masses vibrate in-phase with each other. It is the mode responsible for modula-
ting the glottal airway, and generating the acoustic signal.

The second eigenmode captured the glottal shaping of the vocal folds, alternately
shaping a convergent (Fig. 11(c), frames 5-8) and divergent glottis (Fig. 11(c), frames 1-4,
and 9). This is especially true for the top two or three fleshpoints. It is known that
a divergent glottis possesses a relatively low intraglottal pressure and that a convergent
glottis possesses a relatively high intraglottal pressure (Titze, 1988). Thus, this eigenmode
is intimately related to the intraglottal pressure. To facilitate self-oscillation of the vocal
folds, the energy transfer from the airflow to the vocal folds needs to be maximized
(Stevens, 1977; Broad, 1979; Titze, 1988). This condition is met when the intraglottal
pressure (in this case, controlled by eigenmode 2) is in-phase with the net lateral velocity
of the folds (in this case, controlled by eigenfunction 1). Thus, a specific entrainment or
temporal phase relationship between the eigenfunctions is known to facilitate self-
oscillation. For example, as the vocal folds approach the glottal midline (Fig. 11(b),
frames 1-4), a low pressure condition is created by a divergent glottis (Fig. 11(c), frames
1-4), thus helping the folds to approximate. On the other hand, as the vocal folds
separate (Fig. 11(b), frames 5-8), a high-pressure condition is created by a convergent
glottis (Fig. 11(c), frames 5-8), thus helping to push the folds apart. Such relationships
have already been discussed in relation to eigenfunctions extracted from a finite element
simulation of vocal fold movement (Berry et al., 1994). However, such hypotheses
concerning physical mechanisms of self-oscillation have never been studied previously on
actual vibrating tissues.

Aperiodic oscillations have also been imaged using the highspeed digital imaging
system. Following analysis, these data should provide a description of the disentrain-
ment of the eigenmodes. However, these analyses of aperiodic oscillations involve
tracking sutures across thousands of frames, and have not yet completed. Nevertheless,
the process is being automated, and results will be reported in the future publications.

4. Discussion and conclusions

Both direct and indirect investigations of vocal fold entrainment have been reported. The
experiments on the resonance structure of the vocal folds provided an indirect investiga-
tion of vocal fold entrainment, i.e., eigenmode entrainment was not explicitly observed in
these studies. However, the entrainment patterns most likely to occur during sustained
oscillations could be inferred from the natural frequencies of the system. A powerful
advantage of the resonance method was that it could be conducted in vivo on human
subjects (Kaneko et al., 1986; Svec et al., 2000), as well as in excised larynx experiments
(Kaneko et al., 1986) and computer models (Berry and Titze, 1996).
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Direct observations of vocal fold entrainment/disentrainment have been made in
computer models (Berry et al., 1994), and in sophisticated highspeed imaging studies of
the hemilarynx (Berry & Montequin, 1998; Berry et al., in press). In particular, eigen-
modes have been extracted from the vibration patterns, yielding explicit examples of
entrainment/disentrainment. While these direct studies yield powerful, explicit evidence
of vocal fold entrainment, they are too invasive to be used on human subjects. Thus,
a combination of both direct and indirect methods would be useful for advancing our
understanding of entrainment issues in vocal fold vibration.

How can we apply these techniques to explore specific mechanisms of modal and
nonmodal phonation in language? Consider the parameter of glottal stricture mentioned
earlier. Using computer models, excised larynx experiments, and human subjects, the
eigenfrequencies and eigenmodes of the vocal folds could be computed systematically for
various degrees of glottal stricture, ranging from widely separated folds to tightly pressed
folds. Using computer models and excised larynx experiments, direct observations of
entrainment/disentrainment of the eigenmodes also could be made over these same ranges of
glottal stricture, explicitly illustrating examples of disentrainment in nonmodal phonation.

What implications might eigenmode entrainment have in phonetics and language?
Presumably, an individual must acquire skill in the entrainment/disentrainment of
eigenmodes to convey certain types of linguistic meaning. The low-dimensionality of the
vocal system, as suggested by the small number of eigenmodes, may facilitate the
development of this skill. As previously has been suggested with regard to music (Titze,
1994), the whole concept of vocal control may be one of learning to entrain/disentrain the
vocal eigenmodes. In singing, the concept of formant tuning using the vocal tract is
already understood, allowing a singer to produce maximum perceived intensity. Sim-
ilarly, in phonation, a speaker must learn proper tuning of the vocal fold eigenfrequencies
to convey linguistic meaning. Indeed, for nonmodal phonation, many types of complex
vibration patterns must be produced.

In summary, eigenmodes and eigenfrequencies may be useful for characterizing the
vibrations of the vocal folds, just as they are useful for characterizing the resonances or
formants of the vocal tract. Owing to inherent nonlinearities in vocal fold dynamics,
eigenmode entrainment plays an important role in vocal fold vibration. Significantly,
many types of modal and nonmodal phonation are generated by the entrainment or
disentrainment of just a few underlying eigenmodes. Indeed, modal and nonmodal
phonation have been distinguished on the basis of this entrainment, where modal
phonation corresponds to a 1:1 entrainment, and nonmodal phonation corresponds to
all other more complex vibration patterns. Although the investigation of physical
mechanisms of modal and nonmodal phonation may still be in its infancy, many
concepts from vibration theory, linear dynamics, nonlinear dynamics, and chaos theory
have provided a strong theoretical framework for investigation. Certainly, this investiga-
tion of physical mechanisms of nonmodal phonation is a rich field of study, complement-
ary to the many perceptual, phonetic, and linguistic investigations which are being
performed concurrently.
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