PART III

International Journal of American Linguistics

Volume 23 Number 4
October 1957

Publication Five
of the
INDIANA UNIVERSITY RESEARCH CENTER
in
anthropology, Folklore, and linguistics

PROTO-MIXTECAN

By Robert E. Longacre

INDIANA UNIVERSITY RESEARCH CENTER IN ANTHROPOLOGY, FOLKLORE, AND LINGUISTICS

Editor: C. F. Voegelin
Director of Publications: Thomas A. Sebeok

Publication Five, pp. viii + 195, Issued October 1957
Also
Part III of the International Journal of American Linguistics Vol. 23, No. 4 (1957)

Priced separately, $\$ 3.50$. Orders will be received by the Director of Publications of the Research Center, at Indiana University, Bloomington, Indiana

TABLE OF CONTENTS

1. Introduction 1
1.1. The thesis: previous classifications of the Mixtecan languages
1.2. Data and sources
1.2.1. Word-lists
1.2.2. Published articles
1.3. Phonemic transcription employed
1.4. Acknowledgments
2. Diachronic and synchronic phonemic systems. 92.1. The consonants of $\mathrm{PMx}, \mathrm{M}, \mathrm{C}$, and T
2.1.1. Phonetic nature of $\mathrm{M}, \mathrm{C}, \mathrm{T}$ consonants
2.1.2. Distribution of $\mathrm{M}, \mathrm{C}, \mathrm{T}$ consonants
2.1.3. PMx consonants relative to M, C, T consonants
2.1.4. Probable phonetic nature of PMx consonants
2.2. The vowels of $\mathrm{PMx}, \mathrm{M}, \mathrm{C}$, and T
2.2.1. Phonetic nature of M, C, T vowels
2.2.2. Distribution of $\mathrm{M}, \mathrm{C}, \mathrm{T}$ vowels
2.2.3. $P M x$ vowels relative to M, C, T vowels
2.2.4. Probable phonetic nature of PMx vowels
3. Phonological developments in reconstructed ultimate syllables 32
3.1. PMx consonants in ultimate syllables
3.1.1. Stops
3.1.2. Spirants 3
3.1.3. Prenasalized stops
3.1.4. Lateral, nasals, and semivowels
3.2. PMx vowels in ultimate syllables
3.2.1. Non-nasalized reflexes
3.2.2. Nasalized reflexes
4. Phonological developments in penultimate syllables 544.1. Patterns of consonantal alternation in penultimatesyllables
4.1.1. Paradigm A
4.1.2. Paradigm B
4.2. PMx consonants in penultimate syliables
4.2.1. Stops
4.2,2. Spirants
4.2.3. Prenasalized stops
4.2.4. Lateral, nasals, and semivowels
4.2.5. Fusions of M, C dentals with *y-.
4.2.6. T r - in penultimate syllables
4.2.7. PMx *tn and PT *žd
4.3. PMx vowels in penultimate syllables
4.3.1. Non-nasalized reflexes
4.3.2. Nasalized reflexes
5. PMx glottal-stop 75
5.0. Preliminary considerations
5.1. 'Internal reconstructions of PT $*$?
6. 2. M, C, T reflexes of PMx final $*_{-}$?
5.3. M, C, T reflexes of $* ?$ in $\mathrm{PMx} *$? C clusters initiating ultimate syllables
5.3.1. Reflexes of PMx clusters composed of $*$? followed by nasal or semivowel
5.3.2. Reflexes of PMx clusters composed of *? followed by stop or spirant
5.3.3. Reflexes of PMx clusters composed of *? followed by prenasalized stop
5.4. M, C, T reflexes of $\$$? interrupting the vowel of the ultimate syllable
5.5. Sets ambiguous as to PMx final *-? vs. PMx * ${ }^{2}$ in $*$ C ultimate syllable cluster
5.6. Residues
1. PMx tones 936.1. Present-day tone systems
6.1.1. The tone system of M-SM
6.1.2. The tone system of M-SE
6.1.3. The tone system of C
6.1.4. The tone system of T
6.2. The tone system of PM
6.3. The tone system of PMx
6.3.1. The argument for four reconstructed register tones
6.3.2. The process of reconstructing the basic PMxtone patterns
6.3.3. Basic PMx tone patterns
6.3.4. PMx patterns occurring only in tone sandhi variants
2. Array of M, C, T cognates 113
3. Summary and suggestions as to future research 150
Appendix 155
Indices 159
Index of Mixtec forms 159
Index of Cuicatec forms 174
Index of Trique forms 181
Index of Amuzgo forms 191

1. Introduction

1.1. The thesis: previous classifications of the Mixtecan languages. In this study the thesis is propounded that Mixtec, Cuicatec, Trique and Amuzgo form a well-defined linguistic stock; the first three languages are compared in detail in an attempt to reconstruct some of the phonological and grammatical characteristics of that stock. Amuzgo has not been systematically included in this study for lack of adequate data relative to that language. However, reference to Amuzgo is occasionally made in the course of the following chapters and a few Amuzgo forms that are presumably cognate are included in the array of cognates.

Previous classifications have for some time recognized that Mixtec, Cuicatec and Amuzgo were genetically related, but there has been less certainty regarding the affinities of Trique. Since the abandonment of the Mixtec-Zapotec grouping so generally assumed by early Mexican investigators (Orozco y Berra, ${ }^{1}$ Pimentel ${ }^{2}$ and Cubas ${ }^{3}$), Trique has been usually assigned, not to the Mixtec 'family' or 'sub-stock' but to Popolocan or Otomanguean (i.e. with closest affinities to Popoloca, Chocho, Izcatec and Mazatec; cf. Lehmann ${ }^{4}$). The excellent Linguistic map prepared by M. de Mendizabal and J. Moreno ${ }^{5}$ (in consultation with Robert Weitlaner) likewise assigns Trique to the Popolocan family but with some hesitation. This map has, in my opinion, the virtue of recognizing the priority of Mixtecan-Popolocan affinities over more distant relationships by combining these two families into an Olmecan branch of the Olmecan-Otomanguean "stock. Mason, ${ }^{6}$ equally in doubt as to the precise placement of Trique in regard to related languages, sets up Triquean (along with Otomian and Popolocan) as sub-stocks of the Otomanguean stock and Mixtecan as a coordinate stock; his grouping does not recognize a priority of Mixtecan-Popolocan affinities as does that of de Mendizabal and Moreno. Mason's comment regarding the languages of the Mixtec stock merits quotation: "The three languages, Mixtec, Cuicatec and Amuzgo have always been bracketed in a Mixtecan group accepted by most authorities, but apparently they differ very greatly, so much that Rivet accords each an independent position. The apparent degree of difference probably entitles each to a rating as a family, although apparently
only one language is concerned in each...n ${ }^{7}$ Sapir's grouping ${ }^{8}$ of Mixtec, Amuzgo, Zapotec and Cuicatec into Mixtec-Zapotec reflects at once the persistency of the old assumption of Mixtec-Zapotec affinities, and the recognition of a bond berween Mixtec, Cuicatec and Amuzgo.

Among the attempts to classify these languages of Mexico I cite here as a bad example that of Jaime de Angulo, who abandoned the genetic hypothesis in favor of a novel theory of resemblance developed through 'mutual borrowing and infection.' This thesis, presented in two major articles' affirms that Zapotec, Chinantec, Mazatec, Chocho, Cuicatec, Mixtec and Chatino form a Zapotecan Group' but that they are not so grouped byvirtue of genetic relationship but by virtue of similarity of morphological structure developed through extensive mutual influence and borrowing. It is on the grounds of a supposed absence of cognates that he denies genetic relationship: 'I had no sooner commenced taking down vocabularies than I was astonished at the utter lack of semantic similarity. ${ }^{10}$ In regard to Mixtec and Cuicatec he admits, however, that there is a considerable amount of vocabulary similarity but attributes this similarity to borrowing: 'There has evidently been a great deal of direct semantic borrowing of Mixtec words in Cuicatec. A great many Cuicatec semantemas are practically identical with Mixtec ones. The morphological features, however, except in so far as both languages partake of the type common to the whole group, show that the two languages are genetically different. When the semantemas are not practically alike they are utterly differing. ${ }^{\text {th }}$ De Angulo's argument here takes a curious turn, for he who had cited absence of vocabulary similarity and presence of morphological similarity in support of his thesis, now, when confronted with the opposite set of circumstances, viz. with presence of vocabulary similarity and absence of morphological similarity, pleads the latter set of circumstances in support of the same thesis! Futhermore, as a matter of fact the vocabulary similarity between Mixtec and Cuicatec is not a matter of practical identity between certain items in the two languages versus total difference between other items, but rather, the degree of similarity among cognates in these two languages varies according to the proto-phonemes involved in those forms and according to the characteristic developments of those proto-phonemes in the two languages (e.g, in ultimate syllables tha> M, C ka; but „ndi>M či, C nę). Finally, there is no such absence of 'morphological similarity' as De Angulo indicates; but it is possible to sketch in reference to Mixtec, Cuicatec and Trique the broad outlines of a proto-grammar from which certain characteristic grammatical developments stem in each language. Thus, at the
point where I am best qualified to test it, de Angulo's hypothesis proves unsatisfactory. Nevertheless I have discussed his views somewhat at length with the purpose of underscoring the futility of such attempts to by-pass the comparative method.

I propose in this study to settle the question as to the linguistic affinities of Trique by demonstrating that Mixtec, Cuicatec and Trique reconstruct as a well-defined group with no obvious subgrouping of any two languages as opposed to the third. ${ }^{12}$ This study leaves open the question as to whether Amuzgo reconstructs in the same relative time-depth with the other three languages or whether it represents a slightly earlier layering-in which case Amuzgo-Mixte can might form a sort of Macro-Mixtecan family within the Olmecan stock. However, in spite of the fact that this study does not systematically take account of Amuzgo I am labelling the reconstructions here presented 'Proto-Mixtecan.' If Amuzgo should later prove to reconstruct roughly in the same time-depth as the other three languages, the systematic incorporation of Amuzgo will modify the picture of Proto-Mixtecan as here presented. If, on the other hand, Amuzgo should prove to reconstruct on a still earlier layer, the systematic incorporation of Amuzgo into the reconstructions of 'Protomacro-Mixtecan' will not seriously affect the reconstruction of Proto-Mixtecan proper as here presented.

The purpose of this study runs, however, beyond considerations of demonstrating relationships between these four languages to considerations relative to the structural characteristics-phonological and grammatical—of Proto-Mixtecan. For while Mason's emphasis on the degree of divergence within this linguistic group is perhaps not exaggerated, nevertheless Mixtec, Cuicatec and Trique have a sufficiently large stock of common cognates that the phonological and grammatical structure of Proto-Mixtecan can be perceived in broad outline if one will rigorously and patiently apply the comparative method,
1.2. Data and sources.
1.2.1. Word-lists. The following data, from various of my colleagues in the Summer Institute of Linguistics, have formed the basis of this study:
(1) The excellent Spanish-Mixtec, Mixtec-Spanish dictionary prepared by Ann Dyke in the Mixtec of San Miguel el Grande, Oaxaca. This dictionary contains about 2000 entries on the Mixtec.Spanish side and is liberally supplied with illustrative phrases and sentences that enhance the ugefulness of the work (Vocabulario de la Lengua Mixteca de San Miguel el Grande, Oaxaca, Instituto Lingüístico de Verano, México, D.F., 1951).
(2) A copy of the same dictionary with the corresponding dialect forms of the Mixtec of San Esteban Atatláhuca, Oaxaca, written
in between the lines by Ruth Mary Alexander.
(3) A typed word-list prepared by Howard Klassen and based on Dyke's dictionary. This list contains Mixtec of San Miguel forms (copied from Dyke), Mixtec of Jicáltepec, Oaxaca forms, and Spanish translation. Unlike the Mixtec materials mentioned above, tone has not been transcribed on the forms in this word-list.
(4) A brief mimeographed word-list compiled by Cornelia Mak with 100 entries in four Mixtec dialects: those of San Miguel el Grande, Oaxaca; Jicáltepec, Oaxaca; Metlatonoc, Guerrero; and Xayacatlán de Bravo, Puebla (Vocabulario Comparativo de Cuatro Dialectos del Idioma Mixteco, Instituto Lingüístico de Verano, México, D. F., 1948). I have used this word-list chiefly as a source of information regarding the Mixtec of Metlatonoc. However, inasmuch as the Metlatonoc data incorporated by Mak in this word-list were recorded somewhat hurriedly by Edward Overholt and Herbert Whealy during a survey trip in that region, I have rechecked the Metlatonoc data with Overholt. who has now been studying that Mixtec dialect for several years. However, although I have since obtained some additional data from Overholt, I have not had Metlatonoc data in quantity comparable to that on hand from the other three Mixtec dialects mentioned above.
(5) Several long word-lists in the Cuicatec of Concepción Pápalo, Oaxaca, prepared for me by Margaret Walker. These lists include some 800 nouns and some 700 verbs, with the latter listed along with variations for tense-aspect.

Overlapping somewhat with these lists but supplementing them to some degree is a list of some 600 items prepared by Marjorie Davis and Margaret Walker in the Cuicatec of Concepción Pápalo for use on their Cuicatec dialect survey.
(6) The Trique of San Andrés Chicahuaxtla data represents data from my own field notes as gathered from 1946 through 1952. I also obtained a brief list of some 364 words in the Trique of San Martín Itunyoso and of San Juan Copala during an afternoon spent in each village. This latter data was gathered hurriedly and has never been rechecked. Although I transcribed tone on the forms of the above two dialects I do not include this transcription here in that the tones as recorded are impressionistic and phonetic rather than phonemic. I also occasionally include dialect forms recorded at random during occasional contacts with speakers from Santo Domingo Chicahuaxtla, the 'twin' village of San Andrés.
(7) An Amuzgo word-list copied by me from the linguistic file of Cloyd Stewart. This list contains some 1300 items recorded by Stewart in the dialect of Ometepec, Guerrero. However, the fact that the transcription seems to reflect a few unsolved phonemic problems, together with the consideration that Amuzgo tone has not been analyzed and transcribed on the forms, decided me against trying to incorporate Amuzgo into the Proto-Mixtecan reconstructions at this time.

In referring to the above I use the following abbreviations: M-SM for the Mixtec of San Miguel el Grande, Oax.; M-SE for the Mixtec of San Esteban Atatláhuca, Oax.; M-J for the Mixtec of Jicáltepec, Oax.; M-M for the Mixtec of Metlatonoc, Guerrero; C for

Cuicatec of Concepción Pápalo; T_Ch for the Trique of San Andrés Chicahuaxtla whenever I quote forms from this dialect along with forms from other T dialects in a given set of cognates; otherwise T is to be understood as referring simply to this dialect; T _Co for the Trique of San Juan Copala; T-I for the Trique of San Martín Itun. yoso; T-SD for the Trique of Santo Domingo; A for Amuzgo of Ometepec.

I also use the following abbreviations referring to reconstructed forms: PMx for Protomixtecan, PM for Protomixtec, PC for ProtoCuicatec and PT for Proto-Trique.
1.2.2. Besides the above word-lists, this study draws on the following published articles:
(1) Pike, K. L. 'Tonemic Perturbations in Mixteco, with Special Emphasis on Tonomechanical Subclasses,' Tone Languages, 77-93, University of Michigan Publications in Linguistics, Vol. IV, Ann Arbor, 1948.
(2) Pike, K. L. 'Analysis of a Mixteco Text,' International Journal of American Linguistics, Vol. 10, No. 4 (October, 1944), 113-138.
(3) Pike, K. L. "A Problem in Morphology-Syntax Division," Acta Linguistica, Vol. V, No. 3, 125-138.
(4) Pike, K. L. 'Grammatical Prerequisites to Phonemic Analysis,' Word, Vol. 3, No. 3 (December 1947), 155-172.
(5) Pike, K. L. 'Note on Allomorph Classes and Tonal Techniques, ' International Journal of American Linguistics, Vol. 19, No. 2 (April 1953), 101-105.
(6) Mak, Cornelia. 'A Comparison of Two Mixtec Tone Systems,' International Journal of American Linguistics, Vol. 19, No. 2 (April 1953), 85-100.
(7) Needham, Doris and Davis, Marjorie. 'Cuicątec Phonology,' International Journal of American Linguistics, Vol. 12, No. 3 (July 1946), 139-146.
(8) Davis, Marjorie and Walker, Margaret. "Cuicatec: Morphemics and Morphophonemics,' International Journal of American Linguistics, Vol. 11, No. 1 (January 1955), p. 46-51.
(9) Longacre, Robert E. 'Five Phonemic Pitch Levels in Trique,' Acta Linguistica, Vol. 7, No. 1, 62-82.

In the succeeding sections of this study I refer to the above nine books and articles with the following abbreviations (cited in parentheses in the body of the text and thus avoiding footnotes):
(1) TL, (2) AOMT, (3) PMSD, (4) GPPA, (5) NACTT, (6) CTMTS, (7) CP, (8) CMM, (9) FPPT.
1.3. Phonemic Transcriptions employed. In transcribing the Mixtec forms I follow the transcription of Pike and Mak except that (a) I transcribe M-SM nasalized vowels with nasal mark under the vowel rather than with post-vocalic $-n$; (b) I transcribe M-SM, SE v rather than b; (c) I transcribe M-SM, SE y rather than ž; (d) I transcribe

M-SM, SE I rather than θ; and (e) I transcribe M-SE forms with hyphens joining items in the same stress-group (but with + preceding enclitics) following the precedent set by Pike in AOMT (but the + before enclitic is my own innovation). Inasmuch as the C wordlists were prepared for me in practical orthography rather than in phonemic transcription I make certain changes in the direction of the latter. My transcription of C is essentially that of NeedhamDavis in CP except that I transcribe v rather than b, and e and ε rather than ε and ξ. Davis and Walker (CMM, p. 46, fn 2) state that study subsequent to the publication of $C P$ has convinced them that ε and ξ_{ε} are freely varying allophones of e and ε respectively. In my own transcription of T, I depart in the following ways from the transcription employed in FPPT: \leq rather than \int; y rather than j; $\tilde{z}_{\text {rather }}$ than 3 ; \mathcal{I} rather than A; and i, ε, etc. rather than $\boldsymbol{I}, \boldsymbol{\varepsilon}$, etc. In the transcription of the tones, Itranscribe M-SM and C high, mid, and low tones with ' $\mathcal{\prime}$ respectively. I use the same three marks ${ }^{*}$ to transcribe respectively (1) the highest tone level of the M-SE four-level tone system; (2) the next to the highest level; and (3) the lowest level. The next to the lowest level is of such rare occurrence in our cognate sets (although not at all rare in MSE tone sandhi variants) so as to be almost negligible; in those few forms in which it does occur I transcribe numeral ${ }^{3}$ raised expon-ent-wise. The five tones of T, I number consecutively from high to low with raised numerals. In transcribing with identical diacritical marks the tones of M-SM and M-SE forms I high-light certain tone correspondences mentioned in 6.2. Trique, however, is distinct enough by virtue of its five tone system to warrant a differing tone notation. I could of course have transcribed the tones of the Mixtec and Cuicatec forms with raised numerals so as to make uniform the sort of tone notation employed in the three languages, but such uniformity of notation might possibly lead to some pseudoidentifications of Mixtec and Cuicatec tones with Trique tones: e.g. the tone ' 3 ' of the M-SM three-level system might in that case be superficially equated with the tone ' 3 ' of the Trique five-level system, while actually-as the lowest level of the M-SM tone sys-tem-the M-SM tone ' 3 ' is more parallel to the Trique tone ' 5 '. There is, on the whole, I feel, less confusion with these differing sorts of notation in which Mixtec and Cuicatec tone are kept distinct from Trique.
1.4. Grateful acknowledgments are made here to those of my colleagues in the Summer Institute of Linguistics who have generously given of their time to prepare me word-lists; to Cornelia Mak for checking over an earlier draft of the array of cognates (Section 7)
for accuracy of the Mixtec transcription; to Marjorie Davis and Margaret Walker who similarly checked for me the Cuicatec of the array of cognates; to Henry Hoenigswald of the University of Pennsylvania for teaching me whatever I know of the comparative method and for suggestions and stimulus throughout this study; to the University of Pennsylvania for a George L. Harrison Scholarship and a University Scholarship, which made this study possible; and to Zellig Harris, my group chairman, whose Development of the Canaanite Dialects remains an inspiration to aspiring young comparativists.

NOTES

1. Manuel Orozco y Berra, Geografía de las Lenguas y Carta Ethnográfica de México, México, 1864.
2. Francisco Pimentel, Cuadro Descriptivo y Comparativo de las Lenguas Indígenas de México, México, 1865.
3. Antonio García Cubas, Atlas Pintoresco, Geográfico y Estadístico, México, 1888.
4. Lehmann, Walter, Zentral Amerika, Berlin, 1920.
5. Vivo, Jorge, Razas y Lenguas Indígenas de México, Instituto Panamericano de Geografía e Historia, Mexico, 1941.
6. Mason, J. Alden, 'Native Languages of Middle America' in The Maya and Their Neighbors, New York, 1940.
7. Mason, p. 66.
8. Sapir, Edward, 'Central and North American Languages.' Encyclopedia Brittanica; 14th Edition. Vol. 5, 138-141. New York, 1929.
9. 'The Zapotecan Linguistic Group,' International Journal of American Linguistics Vol. VIII, 1-38; 'The Linguistic Tangle of Oaxaca,' Language I, p. 96 ff.
10. 'The Linguistic Tangle of Oaxaca' p. 97.
11. 'The Zapotecan Linguistic Group,' p. 33.
12. Since completing this study I have received from two sources further information confirming this claim regarding Mixtec, Cuicatec, and Trique along with some elucidation of the position of Amuzgo. This information is here summarized:
(1) Sarah Gudschinsky gives the following lexico-statistical data:
A. Using the 200 word list at first compiled and used by Swadesh:

Mixtec-Cuicatec	23.2%	3.4 millenia
Trique-Mixtec	22%	3.5 millenia (constant. 805)
Trique-Cuicatec	20.9%	3.6 millenia

B. Using the more recent 100 word list of Swadesh:

Mixtec-Cuicatec	28.5	4.1 millenia
Trique-Mixtec	$25 .$.	4.6 millenia (constant .86)
Trique_Cuicatec	25.8	4.5 millenia

In the former computation the standard error of 3.5 millenia is plus or minus .3 millenia, so that all three figures fall within the range of standard error of the middle one. In the latter computation the standard error of 4.5 millenia is plus or minus . 5 , so again the three figures are homogenous from a statistical point of view. (These interpretations along with the original computations are entirely the work of Gudschinsky), Thus, although there is a thousand years difference in time depth depending on the word list employed as basis for the computation, the figures bear out my contention that Mixtec, Cuicatec, and Trique reconstruct roughly in the same time depth without any obvious subgroupings.
(2) Robert Weitlaner has sent me a reprint of an article of his to which I did not formerly have access (Los Pueblos no Nahuas de la Historia Tolteca y el Grupo Lingüístico Macro Otomangue, Re_ vista Mexicana de Estudios Antropologicos, Vol. 5, No. 2-3, 249_ 269). This article, which contains the same classification found in the Mendi zábal-Moreno map mentioned above, groups Mixtec, Amuzgo, and Cuicatec into the Mixtecan family and Trique into the Popolocan family wi th the reservation that "El Trique se puede considerar tal vez mejor como un eslabón entre las familias Popoloca y Mixteca." (fn. 2, p 251). However, in the pedigree chart of MacroOtomanguean languages (p 269) Weitlaner puts Trique on the Mixtecan rather than on the Popolocan side of the common Mixtecan-Popolocan trunk. Weitlaner thus foreshadows the classification of this study more nearly than any of those mentioned in the body of this work.

Certain unpublished vocabulary counts of Weitlaner compiled before the days of lexico-statistics are of interest here in that while they show fairly close clustering of Mixtec, Cuicatec, and Trique, they tend to give smaller percentages of common vocabulary for Amuzgo with these languages. I here give these results without further comment (the lists on which the percentages are based contain 103 Mixtec words, 102 Cuicatec words, 96 Trique words, and 53 Amuzgo words): M-C 57%, C-M 57%, M-T 55%, T-M 59%, C-T 48%, T-C 51%, M-A 27%, A-M 52%, C-A 21%, A-C 41%, T-A 54%, A-T 45%.

2. Diachronic and synchronic phonemic systems

2.0. In this section the phonemic systems of Mixtec, Cuicatec, and Trique are briefly summarized in rough structural comparison with each other and with the phonemic system reconstructed for PMx. Detailed discussion of particular sound correspondences will come in the following sections; sound correspondences as such are sketched here only in broad outline, since the main concern is to compare the systems as systems.
2.1. The consonants of $\mathrm{PMx}, \mathrm{M}, \mathrm{C}$, and T .
2.1.0. In the accompanying chart the consonant phonemes reconstructed for PMx are given in the first column and the consonant phonemes of M, C, and T are given in the second, third, and fourth columns respectively. Parentheses inclose phonemes introduced from Spanish. Brackets inclose certain C or T clusters that are parallel to unit phonemes in M or PMx. The juxtaposition of phonemes from various languages across columns is not intended to imply anything definitive as to historical relationship, but is designed to facilitate comparison of the systems.

Notice that the PMx consonants line up into four main groups: (a) stops, ${ }^{*} t,{ }^{*} k,{ }^{*} \mathbf{k}^{w}$; (b) spirants, $* \theta$, ${ }^{*} x_{1} *^{*}$; (c) prenasalized stops, ${ }^{* n} \mathrm{~d},{ }^{* n} \mathrm{~g},{ }^{* n} \mathrm{~g}^{\boldsymbol{w}}$; (d) nasals and semivowels, ${ }^{*} \mathrm{~m},{ }^{* n}$, ${ }^{*} \mathrm{f},{ }^{*} \mathrm{w}$, *y. In respect to these groups the phonemes *? and *l are extrasystematic. For convenience, however, ${ }^{* ?}$ is discussèd here along with the stops, and $* 1$ along with the nasals and semivowels. 2.1.1. Phonetic nature of M, C, T consonants. ${ }^{\text { }}$
(1) Stops $p, t, \mathcal{C}, k, k^{w}$, and ${ }^{7}$ are voiceless unaspirated in M and T. The T stops are fortis in that they are characterized by phonetic gemination in intervocalic and by vigorous articulation. C stops and affricates are voiceless and slightly aspirated with voiced allophones occurring after nasals and with unaspirated allophones occurring in cluster with?. There is a contrast in C between [$\mathrm{n}-\mathrm{t}$] and [nd] (with n symbolizing syllabic nasal and hyphen symbolizing morpheme boundary). These clusters can be alternatively phonemicized as (a) nt and nd-with the statement that n preceding t is always syllabic (with intervening morpheme boundary), or as (b) nt vs. nt-with the statement that t is not voiced after syllabic nasal. However, since contrasting phonemes t and d exist in C (although the latter is a spirant), I prefer to assign the voiced

PMx	M	C	T
	（p）	（p）	（p）
＊ t	t	t	t
			c
	¢	ε	c
＊k	k	k	k
$* \mathbf{k}^{\text {w }}$	${ }^{\text {w }}$	$\mathbf{k}^{\mathbf{w}}$	［kw］，［gw］
＊ 7	$?$	$?$	$?$
	v	v	v
＊θ	d	d	d
＊ \mathbf{x}	g		g
	h	h	h
${ }^{*} \mathrm{x}^{\mathbf{W}}$			
	（mb）		［mb］
$*^{n} \mathrm{~d}$	${ }^{n} \mathrm{~d}$	［nd］，［nt］	［ nd ］
	ny（SM，SE）	［ $n \mathrm{C}$ ］	
${ }^{* n} \mathrm{~g}$	${ }^{\mathbf{n}} \mathbf{g}$	［nk］	［ng］
$*^{\mathbf{n}} g^{w}$		［nkw］	［ngw］
	s	s	s，z
	$\frac{3}{5}$		昌，立
＊1	1	1	1，1＊
	\mathbf{r}	r	\mathbf{r}
＊ m	m	m	m, m 。
＊n	n，N（only SE）	n	n, n－
＊${ }_{\text {\％}}$	［1］	［ny］	
＊W		＇	w，w＊
＊ y	y	y	y, y^{*}

stop [d] after n to the d phoneme, and therefore adopt alternative (a).
(2) $\mathrm{M}, \mathrm{C}, \mathrm{T} \mathrm{v}$ is a bilabial fricative varying phonetically to [w] in certain phonological situations in some of the M dialects.
(3) M d and g along with C d are voiced fricatives; T d and g are lenis consonants varying from slight to full voicing and from stop to fricative under conditions partly positional and partly free.
(4) Mh varies from velar fricative to frictionless spirant, while $C h$ is a velar fricative, and $T h$ is a simple aspiration (with a velar fricative allophone introduced by Spanish loans).
(5) $M^{n} d,{ }^{n}$, and ${ }^{n} g$ are prenasalized stops.
(6) M s and s along with C s are dental and alveopalatal sibilants. In M-SM certain speakers have a contrast between normal and retroflexed $₫$; this is by-passed in the present study, but should some day be investigated. T s and sare fortis in that they are phonetically lengthened, consistently voiceless, and articulated with some vigor. $T z$ and \tilde{z} are the corresponding lenis sibilants, which vary from voiceless to voiced.
(7) 1 is a lateral in all languages.
(8) r has trill/flap allophonic variation in M and C, but is a sort of flapped, retroflexed sibilant in T.
(9) M y varies phonetically from [y] to [ž] but is always the former in clusters.
(10) T 1* m^{*}, n°, w^{*}; and y^{*} are lengthened and phonetically syllabic. This syllabicity is clearly sub-phonemic in that the pitches recorded on these long consonants are non-contrastive while syllabic phonemes always bear contrastive tone.
2.1.2. Distribution of M, C, T consonants. M is here discussed with special detail in that it appears to be in some ways especially typical of the languages of this family.
2.1.2.1. In Mixtec.
2.1.2.1.1. A disyllabic unit which we here for want of a better term call the 'couplet' is the primary distributional matrix in M. This matrix consists of one disyllabic morpheme plus or minus additional morphemes that do not involve an additional syllable-viz., a consonantal proclitic; or a consonant, vowel, or tone replacive. The M couplet, thus defined, is phonologically marked by optional lengthening of its medial consonant (with voiceless element before medial t or k in M-M, e.g., گita [צihta] tortilla), and by optional stressing of its first-never its second-syllable. The couplet has a restricted number of canonical patterns summarized in the formula (C) CV (?) (C) $V(n)$-elements in parentheses are optional; all combinations of obligatory and optional elements occur except CV?CVn. 2.1.2.1.2. The couplet-especially when exhibiting CVV or CV?V
pattern (with identical vowels)-is phonologically reduced to one syllable in certain sequences. Pike, in two carefully written articles (AOMT, PMSD), has cogently shown that such reduced forms can not be analyzed with any consistency for M as affixes nor can sequences involving such reduced forms be consistently analyzed as compounds. There is, on the one hand, a clearly defined distributional matrix of two syllables in reference to which we can with great convenience describe the distribution of M phonemes; and there are, on the other hand, various grammatical layerings beginning within the disyllabic matrix itself and extending on up through the phrase, the clause, and the sentence. Various phonological clusterings and groupings cut across these grammatical layers at various points. The points of grammatical and phonological cleavage do not necessarily coincide. The disyllabic matrix itself, i.e. what we here term the couplet, is at least a unit not interrupted by pause as well as a unit of great descriptive convenience. In using the term couplet rather than 'morpheme' (Pike and Mak use the latter term), I am suggesting a term broad enough to allow some morphemic complexity within the unit.
2.1.2.1.3. The second pertinent phonological unit in M_beyond the couplet which has a certain phonological significance in that it is not interrupted by pause, lengthens its medial consonant, and entails certain restrictions on the distribution of the vowels and consonants within it-is a sequence which may be termed the stress-group. Two sorts of M stress groups are indicated by Pike (AOMT):
(a) Stress group with one couplet (normally unreduced) preceded by one or more reduced couplets and/or followed by one or more reduced couplets: tēniken dē and came out (<tē and, nỉi completed
 kití animal); nú-mà-fii? ${ }^{\text {º }}$-dé if we can't obtain a man (<núú if, hypothesis, màa potential negative, fili to obtain, yóo we, čå manwith suppletive alternate dé in reduced form); ${ }^{n}$ dé-ninhininri whereever have I seen... $\left(<7^{\prime \prime}\right.$ de where, nil completed action, hini to see, rū̀̀ I). (b) Stress-group with two reduced couplets: ${ }^{n}$ déó we'11 see (<n dè?é to see, yóo we); kúà it will be that...(<kūū to be, häà thing that, that which).

Of the unity and reality of the M stress group, there can be no doubt. I have not, however, been able to obtain detailed phonetic data as to the distribution of stress itself within the stress-group. Ann Dyke informs me that the main stress usually falls on the first syllable of such a unit, but that a secondary and weaker stress often falls on the first syllable of the unreduced couplet. By contrast in a phrase such as yāú kāva cave (which does not constitute a stress. group) there are two almost equally strong stresses on both nouns.
2.1.2.1.4. In citing M forms here and in the following sections I use hyphen to separate the component couplets of the M stress-group whether those couplets are full or reduced, except that, reduced couplets following the unreduced couplet I separate from each other and from the preceding unreduced couplet by + . By thus using a quasi-junctural symbolism I keep distinct enclitic elements from various preposed elements. This is of some advantage in that enclitic elements are often subjected to an especially radical sort of phonological reduction: yúkę̨ $>+\dot{q}$ that thing, sùčí $>+i$ child, yóó $>+y o / o$ we, our. Furthermore, $+r$ is a flap while elsewhere r is a trill; and d and g occur only after + -in which position, however, they contrast with t and k respectively.

Space may be taken to symbolize the beginning and end of a stress-group. But, in that most couplets may be pronounced as isolated forms, most couplets are potentially stress-groups. There_ fore, space preceding and following such a form as yúkę is an im plicit summary notation that the first phoneme y follows pause or rhythm-break in at least some contexts and that the last phoneme $\underset{z}{ }$ precedes pause or rhythmmbreak in at least some contexts. Such a summary notation_albeit implicit-is of some value in working with reconstructed materials where the items reconstructed are not whole utterances but, for the most part, isolated items forever separated from the context of living language in which they once occurred. Therefore, $* C V C V$ (with space preceding and following) informs us that in some contexts the first consonant of the reconstructed form followed pause or rhythm-break while the second consonant never followed pause or rhythm-break in any context. Since we presume that the sum total of phonological situation in which the now isolated reconstructed items once occurred has affected its historical development, these facts, implicitly summarized by the spaces, are of significance.
2.1.2.1.5. After space there occur all consonants except ${ }^{n} g$, d, and g; the first consonant occurs only in couplet-medial, the latter two occur only following + . After space there also occur the following clusters: s č, $s k, s k^{w}, s t, s{ }_{n}, \breve{s}^{n} d$. In couplet-medial all consonants occur except r; the following clusters also occur in this position: ${ }^{7} \mathrm{v},{ }^{\mathrm{m}} \mathrm{d},{ }^{7} \mathrm{l},{ }^{2 \mathrm{n}} \mathrm{j},{ }^{7} \mathrm{~m},{ }^{2} \mathrm{n},{ }^{7} \mathrm{f},{ }^{7} \mathrm{y}$. In M-SM there is an unique occurrence of st in medial position. Preceding space no consonant appears. In M-SM data, as phonemicized by Pike, there is final $-n$, but phonetically $-n$ is simply the nasalization of the preceding vowel, or of the preceding vowels in words $C V(2 / h) V n$ (with both vowels identical). Pike in positing $-n$ in M analyzes the nasalized vowels into simultaneous components, splits off an $-n$ component, and identifies this component with the consonant n that occurs elsewhere. Mak, following a somewhat different analysis, simply sets up the nasalized vowels
as phonemes. In citing M forms in this paper I follow the latter usage, and retranscribe M-SM Vn forms as Y. 2.1.2.2. In Cuicatec.
2.1.2.2.1. The following statement of the distribution of C consonants is substantially that of Needham-Davis (CP) modified somewhat by my own inspection of the C data available to me: All consonants occur in utterance-initial. In the same position occur the following clusters: (a) ${ }^{2}$ followed by any consonant except r, s, h, and c; ? preceded by \check{c} and r; and the complex clusters ${ }^{\text {Ty }}$ ty, ${ }^{2} d y$. (b) n followed by $t, \varepsilon, k, k^{w}, d$, and y; and the complex clusters $n \chi^{?}, n^{2} d$, $n^{2} y$. (c) y preceded by $t, x, k, d, v,{ }^{2}$, and n (the last two are included also under (a) and (b) respectively); and the complex cluster $s^{2} y$. (d) Clusters unique as to type: mbl, st. Within the utterance occur clusters listed above plus: (a) I_{s}, and $\mathfrak{\mathrm { c }}$, (b) nty, nky, ndy, $n^{2} k$, $n^{2} k^{*}$, and $n^{?} n$, (d) $m^{2} b$, and $s^{?} t$. Utterance-final, only ${ }^{2}$ occurs among the consonants. In rapid speech certain vowels are dropped in utterance-medial between enclitic morphemes and following morphemes. This results in the occurrence of a great many heavy consonant clusters involving up to six members (e.g., ${ }^{2} \mathrm{msn}^{2} \mathrm{t}$, $\mathbf{2}^{\mathrm{mn}} \mathrm{Pb}^{\mathrm{b}}, \mathrm{dsn}{ }^{\mathbf{2}} \mathrm{t}$). These latter clusters represent an exclusively C development which has no historical significance.
2.1.2.2.2. C canonical forms are mentioned briefly here for comparison with the M couplet; they will be more fully discussed in 2.2 .2 .2 . In C forms of one or two syllables the following schematically represented canonical forms are most common: (a) CVV \pm $\mathrm{V} / ?$, (b) CVVCV \pm, and (c) $\mathrm{CV}{ }^{2} \mathrm{~V} \pm \mathrm{V} / \sim$. In the above formulae C represents any single consonant or consonant cluster subject to the distributional limitations sketched above. Stress tends to fall on the first syllable of these forms as in the M couplet; but syllable break falls between the second and third vowel of a sequence of three vowels (i.e., CVV.V), and before the medial consonant elsewhere (i.e., CVV.CV, CV. 2 V , and CV.2VV). In structural type, M CVV corresponds to C type (a), viz., CVV, CVVV, or CVV?; while M CVCV corresponds to C type (b), viz., CVVCV or CVVCV?; and M CV?V corresponds to C type (c), viz., CV2V or CV?VV. Historically the simpler forms preserved in M seem to be the more representative of PMx structure (except for loss of final $*+7$). The C forms probably resulted from a lengthening of the vowel of the first syllable under stress. Since these C patterns here summarized do not give quite the complete picture (a few minor patterns exist), we may assume that the regularity of this development was broken by some factors unknown to us, so that the lengthened vowels became phonemic as geminate vowel sequences paralleling other VV sequences of dissimilar vowels developed by C diphthongization.
2.1.2.2.3. There apparently is a stress-group in C with a structure roughly parallel to that of the M stress-group. Characteristically, the C stress-group consists of one of the canonical forms schematically represented above preceded by various preposed CV-elements and followed by various postposed $+C V$ elements: ínā̄dà-kū̀ukū + de he will decorate (something). Walker-Davis also hyphenate together
 inside with the other constituents unknown to me). Walker informs me that in such 'compounds' as these there is alternating stress on the component forms from + on back. Possibly such sequences as these compose a further sort of stress-group in C. In my transcription of C data I hyphenate preposed CV_forms, but generally leave the latter sort of sequences separated by space. I have in a few instances, however, hyphenated CVV forms to following CVVCV forms particularly when such sequences are specifically cited as 'compounds' in CP.
2.1.2.3. In Trique.
2.1.2.3.1. The phonological word is well marked in T in that (a) nonphonemic stress and non-phonemic lengthening of unchecked vowels occur regularly on the final syllable before space; (b) syllable final h occurs only before space (syllable final ? occurs both before space and elsewhere; there are no other consonants before space); (c) syllables interrupted by ${ }^{2}$ or h occur only before space; (d) nasalized vowels occur only in syllables final in respect to space_except for the proviso that when the consonant separating the previous syllable from the final syllable is ? the nasalization may carry back through an identical vowel in the preceding syllable; (e) sequences of two or three tone registers appear only on syllables final in respect to space; (f) fortis consonants, $t, k, s, y^{\prime}, l^{\prime} ; n^{\prime} ; y^{\circ}$, and w^{*} appear only in such final syllables. Furthermore, T fortis lateral, nasals, and semi-vowels occur only following space as well and are therefore restricted to monosyllabic words. Nevertheless, although the phonological word is well marked in T it may contain elements that layer grammatically not simply with itself but with a sequence of words and which are therefore analyzed as clitics. 2.1.2.3.2. The preceding paragraph has anticipated certain features relative to the distribution of T consonants, viz., the restriction of fortis consonants to syllables immediately preceding space. In these final syllables all T consonants appear, while in non-final syllables the fortis-lenis contrast is neutralized and consonants of a non-distinctive sort-phones here assigned to the lenis phonemes-occur. The affricated stops c and \mathcal{C} are limited to final syllables in most idiolects-although some speakers pronounce $\check{\varepsilon}$ rather than \tilde{z} in the
non-final syllable of a few words. Semi-vowel w does not occur before o or u; y does not occur contiguous to i except across space. When morphological combinations would bring together these restricted combinations the semi-vowel is lost.

The following clusters of consonants occur in T words not borrowed from Spanish; clusters introduced by loans are, of course, pertinent synchronically but have no diachronic interest: ky, kw, gy,
 latter two are each of unique occurrence in my present T data. Cluster ky occura only across morpheme boundary. The above clusters occur most typically in final syllables; only gw, dr, ng, ${ }^{7} \mathrm{n}$, $z d$, and $z n$ are of at all frequent occurrence in non-final syllables. 2.1.3. $P M x$ consonants relative to M, C, T consonants. 2.1.3.0. Fifteen consonants are reconstructed for PMx. In the pre-sent-day languages there are 22 consonants in M-SM (including ${ }^{1} J$ occurring in this dialect and in M-SE), 23 in M-SE (including N which is not found in the other dialects here studied), and 21 in M-J (which has neither of the two additional consonants mentioned above). In C there are fifteen consonants, and in T-Ch there are twenty-four. In the following paragraphs we first consider C since it has the simplest system.
2.1.3.1. C, like PMx, has a series of voiceless stops, t, k, k^{w}, and ?, but adds p (from Spanish loans), and \boldsymbol{Z} (developed, in the main, from palatalization of $\# k$ and $\# x$ before front vowels). Final 7 is preserved in some instances and lost in others. The occurrence of C doublets from the same root-one form with - $?$ and the other form without it_-probably results from an old sandhi pattern in which certain ψ^{*} (space) C clusters were reduced by loss of first member. C has two voiced spirants, v and d, and two voiceless spirants, h and s. PMx had but two voiceless spirants, $\# \theta$ and $* x$. C vis a regular reflex of $* w$ and C is a regular reflex of $* \theta$. The C voiceless spirant h-which is limited to non-final syllables and to monosyllabic CVV forms_-represents to a large degree a development of ${ }^{*} x$ in those positions. C s is almost entirely limited to nonfinal syllables and even in the latter situation its occurrence is largely in forms involving the prefix sa-animal. Origins of both the prefix sa- and the phoneme s remain obscure. C 1 and rare rare phonemes; the former is a continuation of $\mathbf{P M x} * 1$, while the origin of the latter is obscure. $C \mathrm{~m}, \mathrm{n}$, and y represent continuations of the corresponding PMx phonemes except that C y is also a regular reflex of $P \mathrm{Mx}$ fi. The $\mathbf{P M x}$ prenasalized s tops have no corresponding unit phonemes in C, although the C clusters nd and nk (the latter as a reflex of both ${ }^{* \pi} \mathrm{~g}$ and ${ }^{\prime \prime \prime} \mathrm{g}^{\mathbf{\prime \prime}}$) represent reflexes of these PMx consonants under certain phonological conditions.

In summary, C modifies the PMx consonant system by adding two additional stops; by doubling the number of spirants-including a shift of PMx semi-vowel *w into the spirant series; by eliminating the series of prenasalized stops as unit phonemes; by adding a new liquid, r; and by decreasing the number of nasal consonants from three to two.
2.1.3.2. M adds two new stops, p (from loans), and \check{c} (chiefly from palatalizations of $P M x{ }^{*} t,{ }^{*} x, *^{\mathbf{w}}, *^{n}$ g, and $*^{n}$ d in phonological situations varying from dialect to dialecti. Final ${ }^{* ?}$ is lost everywhere. Medial clusters of $\# ?$ plus lateral, nasal, semi-vowel and prenasalized stop are preserved on the whole. M, like C, shifts *w into the spirant series as v (with a stop allophone). The other two M voiced spirants, d and g, are of such limited occurrence as to be almost negligible; g is, however, a reflex of PM . x_{x} following + . The three M voiceless spirants represent a rather different development than Ch and s , in that Mh is a reflex of ${ }^{*} \mathrm{x},{ }^{*} \mathrm{x}^{\boldsymbol{m}}$, and ${ }^{{ }^{\boldsymbol{n}} \mathrm{g}}$ in M-SM, SE final syllables, and of $* x$ in M non-final syllables; while Ms and $\check{\xi}$ are largely reflexes of $\% \theta$ (with the $\check{\xi}$ after front vowels). M, like PMx has a prenasalized series, with four such phonemes in M-SM and M-SE (where ${ }^{\mathbf{n}}{ }_{\mathrm{j}}$ occurs) but only three such phonemes elsewhere. In the M prenasalized series a phoneme corresponding to ${ }^{{ }^{\mathbf{n}} \mathrm{g}}{ }^{\mathbf{w}}$ is not found, but a new phoneme ${ }^{* \boldsymbol{B}} \mathrm{~b}$ comes in from Spanish loans. M, like C, has two liquids, 1 and r. While the origin of M r is somewhat obscure it seems possible that it may have developed originally from an allophone of ${ }^{*}$ (see next section). $M m, n$, fi, and y represent the corresponding PMx phonemes. M-SE N is a reflex of PMx *tn which simply gives t in M-SM, J.

In summary: M increases the number of stops from four to six; increases the number of spirants from two to six-including a shift of $* w$ to the spirant series and the split of $* \theta$ into two M sibilants; eliminates one of the PMx prenasalized stops but adds one or two new stops in this series, depending on the particular dialect; adds a new liquid \mathbf{r}-possibly by split of PMx $* 1$; and develops a voiceless nasal in one dialect (M-SE).
2.1.3.3. T is the most innovating of the three languages in respect to its treatment of the consonants. PMx stops are retained, but $\# t$ regularly becomes $T \mathcal{C}$ in all environments while T is largely a reflex of $* \theta$ in T final syllables before central and back vowels. T adds a further affricated stop c which developed originally from $* \theta$ before front vowels. PMx *k and ${ }^{*} \mathrm{k}^{\mathbf{w}}$ remain in T final syllables but are merged to the lenis atop g in non-final syllables; $T \mathrm{gw}$ cluster is largely a development of g in the situation u....a. PMx final ${ }^{*}$? is retained except after proto tone 1 (the highest level), but splits into -2 and -h in other situations. This split is conditioned by the consonant and vowel quality as well as the tone pattern of the syllable
which it closes. Proto clusters of $\$ 7$ followed by another consonant are in many cases metathesized from ?CV to CV? this metathesis was an early enough development in T that the final $?$ thus developed shares in the same sound changes as those previously stated for the original final ${ }^{*}$? . T lenis consonants d and g represent to a large degree developments in non-final (stressless) syllables; the influence of Spanish either was a factor in their becoming phonemic or in reinforcing the new contrast by bringing in loans with d and g in ultimate syllables. T d in non-final syllables is from PMx *n d and * $\boldsymbol{\theta}$. The PMx prenasalized series is preserved intact in corresponding T clusters $n d$, $n g$, and $n g w ;$ and mbis added from Spanish loans. Origin of the T sibilants fis only partially understood. $T z$ and z in non-final syllables are reflexes of $* \theta$ (before front vowel) and of $* t$ respectively; the provenience of these phonemes in final syllables-where their occurrence is statistically rareremains obscure. Fortis s and \mathbf{s} seem to be relatively recent splits from z and $z-a$ development in which Spanish loans may have played a role. T ris a reflex of $*$ tn in the final syllables of a few sets; in non-final syllables it represents a fusion of preposed $X V$ element and following stem. $T 1, m, n, f, w$, and y are reflexes of the corresponding PMx phonemes; the fortis $T I^{\circ} ; \mathrm{m}$; etc. reflect an extension in T of the fortis-lenis dichotomy by reinforcing these phonemes in monosyllabic words. This was usually a compensatory development on loss of penultimate syllables, but since some unanalyzed factors have interfered with the regularity of the development, these lengthened phonemes have become phonemic.

In summary: T modifies the $P M x$ consonant system-which was oriented according to (a) stops, (b) spirants, (c) prenasalized $s t o p s$, and (d) laterals, nasals, and semi-vowels by reorienting the entire system according to a new fortis-lenis dichotomy, so that only T C, c, r, h, and 7 are not thus distinguished. In this reorientation of the consonant system the T voiceless stops become fortis phonemes; T voiced stop-spirant phonemes come to pattern as lenis; the voiceless allophones of z and \ddot{z} become phonemic; and the lateral, nasals, and semi-vowels were split along the same lines, in that the lengthened varieties of these phonemes became phonemic. Not involvedin the emerging fortishlenis cleavage were the additional phonemes Σ and c developed in T. One further T innovation is the split of ${ }^{*}{ }_{-}$? into ? and h. In one interesting respect T is conservative: although reinterpreted as clusters, the prenasalized stops are preserved more faithfully than in any other language. 2.1.4. Probable phonetic nature of PMx consonants.
2.1.4.0. The comparative method reconstructs the phonemes of an
extinct language not its phonetics. Nevertheless, from a consideration of the phonetic qualities of the reflexes of a reconstructed phoneme something can be argued as to the phonetic characteristics of that phoneme. Such considerations can not, as a fact, be ignored; a posited course of development in the history of a language is customarily scrutinized from the standpoint of its phonetic plausibility. I therefore sketch here what can with some assurance be conjectured in regard to the phonetic characteristics of PMx phonemes.
2.1.4.1. It is reasonable to reconstruct the PMx stops as voiceless in view of the fact that these phonemes give voiceless reflexes. It is possible that $\# ?$ may either have been aspirated or had an allophone h in certain situations; in PT such allophonic variation existed with the spirant allophone become phonemic in present-day T. 2.1.4.2. The PMx spirants can be reconstructed as voiceless or voiced. It is slightly more plausible phonetically to reconstruct them as voiceless in that phonetic developments in each language are thus more easily accounted for: (1) in M, the spirants have voiceless reflexes, but $* \theta$ develops a grooved articulation (s and 3). (2) In C, $* \theta$ is voiced to d (phonetically d); $* x$ is palatalized to X; and ${ }^{*} x^{*}$ becomes ku or v. (3) In $T, * \theta$ is voiced in non-final syllables, but given a stop articulation (t) before central and back vowels in final syllables, and a stop articulation with sibilant offglide (c) before front vowels in final syllables; $* x$, in somewhat parallel fashion, gives \tilde{Z} in non-final syllables (from previous palatalization to $\check{\ell}$), but is given a stop articulation (k) before central and back vowels in final syllables and is palatalized to \mathbb{C} before front vowels in final syllables; while ${ }^{*} x^{\mathbf{w}}$ is voiced to gw in most situations. These posited developments would be more complicated if we were to assume voiced spirants as the PMx phonemes laying behind these various phonological developments. On such an assumption we would have to state, for example, that in M the $P M x$ alveolar (or dental) spirant was both given a grooved articulation and unvoiced, while by positing $P M x * \theta$ we need assume that only the former development took place. It is curious that PMx has no sibilant phoneme, and if we posit $P \mathbf{M x} * \theta$ it is plausible to assume that this phoneme had a sibilant allophone before PMx front vowels. 2.l.4.3. The prenasalized stops seem to reconstruct as unit phonemes. PMx consonant clusters possibly included only clusters of * 2 followed by another consonant, and the anomalous cluster $*$ tn (see 2.1.4.5.). However, the PMx prenasalized series may have come from pre-PMx clusters in forms in which the first syllable ended in $*-m$ (varying morphophonemically to n before $* t$, ${ }^{*} k$, and * kw) while the second syllable began with a stop. These pre-PMx
clusters would have been structurally parallel to the $\mathrm{PMx}{ }^{*}{ }^{*}$? C clusters in forms with first syllable ending in *? and second syl_ lable beginning with a consonant. It is quite probable that there were clusters with $* m / * n$ followed by other consonants than stops, (e.g. PMx * fi <pre-PMx *ny), but that the $* \mathrm{~m} / * n$ was lost without trace in most situations (See 2.2.4.3.). In pre-PMx the prenasalized stops were, therefore, probably the clusters *nt, *nk, and *nkw with the stops phonetically voiced after the nasal. Since there were other clusters of nasal plus consonant not of the stop variety (possibly almost any consonant could thus occur as second member of a cluster of this sort) and since there was a parallel series of $\psi^{\circ} \mathrm{C}$ clusters, the nasal plus stop sequences were pre-PMx clusters rather than unit phonemes. It was precisely the reduction of the other $* \mathrm{mC}$ and $* n C$ clusters containing consonants not of the stop variety which left these nasal plus stop clusters (and *ny) structurally isolated and led to their reinterpretation as unit phonemes in $P M x$. It is interesting to note that in T they pattern once more as clusters.
2.l.4.4. There is little to say about the phonetic characteristics of the remaining consonants. The lateral ${ }^{*} 1$ in early M and C (and to some degree in T) substituted for the Spanish trilled or flapped r in loanwords: e.g., M-SM lātú, C līātū <Sp. arado plow; M-SE lélú $<S p$. sombrero hat; $T 1 e^{2} r^{3}<S p$. arriero mule-driver. Furthermore, with some C speakers 1 and r are in free variation in a few words. This makes it appear plausible that the PMx lateral may have had a range of articulation that included certain 'r-colored' allophones. Further possible evidence for this is seen in the following etymology: M-SM +rò, M-SE +ró (with unabbreviated forms róó and ró?ó respectively) you; T re ${ }^{5}$? you (formal) perhaps $<$ $*+1 \rho^{2}$ —since there is a PMx ${ }^{*} 1$ phoneme but no evidence for $* r$ (the T reflex e rather than the more usual reflex a is another instance of 'r'effect in $T, 4.2 .6 .2$.). This etymology, which stands alone, may indicate that $* 1$ had an allophone [r] following $P M *+$.

PMx *fin is here considered a unit phoneme in that there is little evidence that medial clusters of *Cy occurred; at any rate in PMx the only clusters of at all frequent occurrence seemed to have been the $*^{\circ} \mathrm{C}$ variety already discussed. $P M x *$ n, as suggested above, probably is a development from pre-PMx *ny cluster. 2.1.4.5. The anomalous cluster $* t n$, mentioned above in connection with the origin of the M-SE phoneme N, is the only PMx cluster not of ${ }^{2}$ C variety that is here posited with any confidence, (cf. speculation in 4.2.5. regarding possible $P M x$ penultimate clusters of dental followed by *y). In that such a cluster has no structural parallel in PMx, the question may well be raised as to whether or not it
should not be regarded as a unit phoneme in spite of the consideration that phonetic sequences of the pattern stop plus nasal are not usually so analyzed in present-day languages. This consideration may in turn suggest the possibility that $*$ tn is not the most fortunate reconstruction for this problematical sequence (which gives M-SM, J reflex t; M-SE N, and reflexes tn or $\boldsymbol{\xi}_{n}$ in M dialects not regularly cited in this study). In this connection the T reflex r of ultimate syllable $*$ tn is provocative in view of the possible tie-in of $M, C, T r$ and 1 as suggested in the above paragraph. It is therefore possible that such a unit phoneme as $*$ tl, so characteristic of the Nahuatl stocks, is a more fortunate reconstruction than $* \mathrm{tn}$. I retain the latter here, but do not want to discount the alternative possibility.
2.2. The vowels of $P \mathrm{Mx}, \mathrm{M}, \mathrm{C}$, and T .
2.2.0. In the accompanying chart the vowels of $P \mathrm{Mx}, \mathrm{M}, \mathrm{C}$, and T are juxtaposed in vertical columns. $P M x * V m$ is reconstructed as the source of nasalized vowels in the three daughter languages. This is not simply an analysis of nasalized vowels in terms of simultaneous components-as Pike's analysis of nasalized vowels in M-SM—but points to a time in early PMx or pre-PMx when the nasal timbre of these vowels was a sub-phonemic modification conditioned by a following nasal, viz., the syllable final $* \mathrm{~m}$ already mentioned, This is discussed in some detail under 2.2.4.3. 2.2.1. Phonetic nature of $\mathrm{M}, \mathrm{C}, \mathrm{T}$ vowels.
2.2.1.1. M, C, T i is high, close, front unrounded varying freely to a more open allophone in C before $t . M, C, T$ e is mid, close, front unrounded except that (a) in M an open allophone occurs in couplets of CV'V pattern, and in the first syllable of couplets of CVCV pattern when the medial consonant is a prenasalized stop or t; (b) in T there is a similar open allophone in a few restricted situations (after 1 ; and after r in non-final syllables when the following consonant is other than ${ }^{\text {2 }}$); (c) and in C such an allophone occurs as a free variant of the phonetically more close vowel. $\mathrm{M}, \mathrm{C}, \mathrm{T}$ a is low, central, varying freely to a somewhat back rounded [s] allophone in C; u is high, close, back, varying freely to an open allophone in C before + ; and o is mid, close, back rounded. M is high, close, back unrounded with a more central allophone after alveolar consonants; it is found in M-SM, SE but not in M-J, M; T i is high, close, central unrounded; it is only found in T-Ch. T A is a central vowel of neutral timbre found only in T-Ch and of restricted occurrence even in that dialect. The nasalized vowels are of approximately the same quality as the oral in all three languages —except for the additional nasal timbre. In C, however, ą is somewhat raised, backed, and rounded; while in T द̨ is raised somewhat

towards the position of $T \wedge$ (which itself is never nasalized). 2.2.1.2. M-SM has all vowels nasalized except e; while in M-SE even the latter vowel is nasalized. In C all vowels occur nasalized. In T-Ch all vowels occur nasalized except Λ, but $\underset{\mathcal{E}}{ }$ and Q appear to be rather recent developments influenced, at least in part, by Spanish loans. Spanish en and -on become T e and q respectively according to a regular treatment whereby any Spanish vowel plus final n becomes the corresponding nasalized vowel in T.
2.2.2. Distribution of M, C, T vowels.
2.2.2.1. In Mixtec. Only one vowel occurs to a syllable; and every vowel determines a separate syllable. Therefore, such sequences as CVV and CVPV are considered bisyllabic.

There are certain restrictions on vowel sequences. These are summarized by Pike as follows (Pike used the term 'morpheme' to describe the two-syllable distributional matrix that I term 'couplet', but he avoids examples that are morphemically complex; his statements of vowel restrictions would apply equally well, I believe, to what I term the M 'couplet'):

Once the morpheme unit has been recognized in Mixteco, one finds that there are systematic restrictions in the sequences of vowels that may occur within it. The vowel sequences are correlated with the syllabic pattern of the morpheme, CVCV, for example, being less restricted than CVV. ${ }^{\circ}$. Contiguous sequences (as in CVV) are much more heavily limited than noncontiguous ones (as in CVCV), and the types with final nasalization (CVCVn, CVVn, CVPVn) are more limited than corresponding types without nasal......The six vowels, i, a, u, i, e, o fall into two groups according to the freedom with which they occur in sequences within stems. The first three, forming the outer points in the vowel triangle, are relatively unrestricted. The second three, occupying inner points in vowel triangle, are very considerably restricted..... Except for the two least frequent of the stem types ending in nasality (CVVn and CV?Vn), there are occurrences for all stem patterns of: (a) all repeat sequences (i-i, e-e, etc.) both for outer and inner vowels; (b) all possible sequences of outer vowels (i-a, i-u. a-i, a-u, u-i, u-a). Sequences of inner vowels with each other are almost completely lacking: o-e in the morpheme $?^{0^{n}} d d$ 'up to' is the only case that has been found. The most usual combination of inner vowels is the repeat: $i=i$, e-e, o-o..... The vowel e is the most restricted of all, occurring only in CeCa [and in $\mathrm{CeCu}, \mathrm{R} . \mathrm{E}$. L.]. No combinations of o with u are found; since the same is true of e with i, one can generalize to the extent of pointing out that (except for repeat sequences) no combinations of palatal with palatal vowel or of labial with labial vowel occur. (GPPA 167-169)

There are restrictions on the occurrence of nasalized vowels: In CVCV forms only the vowel of the final syllable is nasalized. In

CVV, CVhV and CV万V forms, the vowels of the form are either both nasalized or both non-nasalized.
2.2.2.2. In Cuicatec. One or two vowels may occur in a syllable. Geminate clusters occurring in the same syllable involve all vowels nasal and non-nasal. Clusters of diverse vowels in the same syllable include ai, ąi, and ei, eif,' ${ }^{2}$ plus a few other clusters-eo, εq, iu, and iu (which occur only before -7 in a grammatical construction involving the fusion of an enclitic $-\mathrm{u}^{2} /-0$? with the preceding stem vowel).

Leaving out of account here certain longer morpheme sequences in the C stress-group and focusing our attention on forms roughly parallel in structure and function to the M couplet, we may describe the distribution of one-vowel syllables versus two-vowel syllables as follows: (a) forms involving two successive two-vowel syllables are much rarer than other types, viz., the three patterns already mentioned in 2.1.2.2.2. ($\mathrm{CVV} \pm \mathrm{V} / 2, \mathrm{CVVCV} \pm ?$ and $\mathrm{CV} ? \mathrm{~V} \pm \mathrm{V} /$); (b) forms that do invoive a succession of two two-vowel syllables usually are of the sort with a diphthong in both syllables (e.g., vēīyēi hominy, and ndéí? yèì? peach); (c) forms involving a succes_ sion of two one-vowel syllables in the penult and ultima-except for CV?V forms-are extremely rare, but apparently exist (e.g., bīiva yává cave, tāvā much) as reduced variants of CVVCV forms (e.g., tāāvā much in slower speech); (d) a few forms of CVCVV pattern exist and possibly arose by fusion of some initial CV-element to a following CVV.

C allows a somewhat more free distribution of nasalized vowels than either M or T-both of which limit their occurrence to final syllables except that ultimate and penultimate syllables separated only by ${ }^{2}$ or h may both be nasalized. In C not only may the vowel or vowels of a penultimate syllable be nasalized in this circumstance, but in addition the vowels of the penultimate syllable of a CVVCV form may be nasalized under the following conditions: (a) when the vowel of the ultima is nasalized the vowels of the penult are also nasalized if (1) $\mathrm{m},(7) \mathrm{n}$, or (?) y separate the two syllables; (b) when the vowel of the ultima is not nasalized and when (?) $\mathrm{m},(7) \mathrm{n},(7) \mathrm{y}$ or nd separate the ultima from the penult, the vowels of the penult are nasalized in some words but not nasalized in others. In brief, taking m as a symbol for medial nasal, y or nd (in situation (b) above) plus or minus accompanying ?, the situation may be formulaically represented as follows: (a) CYYmy, and (b) CVVmV, CYYmV. A person with a first-hand acquaintance with C might perhaps uncover some exceptions to these statements, but they cover all the data available to me at present. An aberrant exception or two-if existent-would not destroy the significance of these
quasi-universal restrictions on nasal vowels for comparative purposes. Undoubtedly they represent something of historical impor. tance in early C or in PMx itself. These considerations are dis. cussed in 2.2.4.3.4.
2.2.2.3. In Trique. But one vowel quality occurs to a syllable; two vowel qualities determine two syllables. Vowels in final syllables are phonetically lengthened if the syllable is not closed by ${ }^{?}$ or h . While this sub-phonemic lengthening is as long as that characterizing a CVV unit in M or C, it neither patterns in T as two syllables nor as a geminate cluster, but is an entirely automatic feature. A final syllable may be interrupted by ${ }^{2}$ or h ; in spite of the intrusive consonant and in spite of the fact that such a CV?V or CVhV unit is as long phonetically as corresponding disyllabic units in M and C, nevertheless the two phonetic moras bracketing the ${ }^{?}$ or h are to be regarded as but one phonemic vowel in one syllable. Such a monosyllabic unit is distinguished in my transcription from a disyllabic CVPV sequence (which unlike the monosyllabic sequence may have dissimilar vowels and which regularly lengthens the final vowel as described above) in that the monosyllabic sequence has tone indicated after the entire unit as in we ${ }^{3} e^{3}$ house, while the disyllabic sequence has a tone mark after each vowel symbol as in we ${ }^{3}{ }^{3} e^{2}$ beautiful.

Trique tends towards an alternating CVCV structure but a few vowel sequences occur across syllable boundary, viz., ia, ią, io, iu,

 $\mathrm{za}^{3} 3_{i}{ }^{3}$ mosquito, ga ${ }^{3} \mathrm{u}^{2} \mathrm{u}^{4-3}$ incense-burner, de ${ }^{3} \mathrm{u}^{4-3}$ season (Spanish tiempo).

Including the vowel sequences just illustrated, all possible sequences of T vowels in the penult and ultima (with or without intervening consonant) can be summarized as follows: (a) i, a, and u occur before every vowę, nasalized and non-nasalized, including themselves. (b) e occurs only before e, i, a, o, u, z, and ψ. (c) o occurs only before e, o, and q. (d) Nasalized $i, j, z, \underset{z}{2}$, and \mathfrak{y} occur in penultimate syllables only in repeat sequences with intervening ?. (e) Nasalized 9 has been recorded only following a or i. (f) Nasalized ε has been recorded in but one native form in which it follows u, but occurs in a loan form following o. Of the above sequences, $e-u$ and o-e are also confined to loans. In connection with the above statements note that i never occurs in non-ultimate syllables, and that ${ }_{z}$ occurs there only in repeat sequence with intervening? Not covered in the above statements is the further fact that Λ, which is never nasalized, occurs in penultimate syllables only in repeat sequences.
2.2.3. PMx vowels relative to M, C, T vowels. The vowel systems of the modern languages are here compared with the reconstructed PMx vowel system and with each other. In comparing these vowel systems it is convenient to refer to only the non-nasalized vowels; corresponding nasalized vowels occur in the various languages as previously summarized.

M, C, T vowel systems resemble the vowel system of PMx in that i, e, a, o, and u are phonemic in all languages and dialects. There has been considerable split and merger of vowels so that a given vowel in a modern language does not necessarily represent a continuation of the corresponding vowel in the vowel system of PMx. Some of the more outstanding developments are (I) C reduces *i as a phonemic entity; the phoneme is split and merged with C i, e, u, or o according to varying phonological situations. (2) $\mathrm{M}-\mathrm{J}, \mathrm{M}$ have mexged $P M * i$ with i unconditionally and everywhere. (3) M has unconditionally merged PMx *e with i. M-SE e is in many morphemes a reflex of PM and PMx *a. The provenience of M-SM e, is on the whole obscure, aside from a few developments involving $\mathbf{P M x} * a>e$ in restricted environments in penultimate syllables. (4) PT $*$ i has split in T-Ch into i and A under obscure conditions. Nevertheless, that this development took place seems clear from the almost complementary distribution which still characterizes these two phonemes. As was stated in 2.2.2.3., A is the phoneme occurring characteristically in repeat sequences, while i (except for the nasalized phoneme) never occurs in non-final syllables in repeat sequences or elsewhere. Furthermore n never occurs nasalized and is extremely restricted in distribution. T_CH A in situations contrasting with i may have originated in borrowings from another T dialect in which PMx *i had a consistent phonetic development as $[A]$-but the latter dialect in turn merged this vowel with one or more other vowel phonemes and eliminated it from its phonemic system. (5) All languages and dialects have eliminated PMx * O. T consistently merges this PMx vowel with T a, while M and C, on the whole, merge this vowel with u or o.

The above developments yield the following vowel systems: (a) five-vowel systems in $M-J, M$, in C, and in T outside of $T-C h$, viz., vowels i, e, a, o, u. (2) Six-vowel systems in M-SM, SE by virtue of the occurrence of a further vowel 1 . (3). A seven-vowel system in T-Ch, by virtue of the fact that $T-C h$ has both i and Λ in addition to the vowels mentioned in (a). It is probable that PM and PT had six vowel systems-a system reduced to five by internal developments in certain M dialects, but increased to seven in T - Ch by split of *i. PMx, by comparison, was characterized by a sevenvowel system.
2.2.4. Probable phonetic nature of PMx vowels.
2.2.4.1. Vowels ${ }^{*} i, * e, * a, * o$, and ${ }^{*} u$ probably had much the same quality as the corresponding phonemes in the modern languages. There was a lowered and more open allophone of *e in certain situations. PMx *i was either a back or central unrounded vowel with possibly a lowered and central allophone in some situations. 2.2.4.2. Regarding the phonetic quality of the PMx phoneme here symbolized as $\$$ o there is more uncertainty due to the circumstances that this phoneme has everywhere been eliminated as a distinct entity by various sorts of mergers. In general, *o seems to have been a back vowel; it gives M, C o or u in most situations. Further more, the uniform merger of this vowel with T a makes it likely that the general articulatory range of $* \rho$ was contiguous to that of *a. It is therefore plausible that the reconstruction as some sort of low, back rounded vowel is not an unfortunate choice. It could be argued, however, that this phoneme was some type of central or back mid unrounded vowel, i.e., a lowered vowel similar in general type to *i. The best arguments in favor of such an hypothesis would be those based on the parallelism in a few situations between reflexes of $P M x * i$ and what we have reconstructed as $*$) (a) following a nasal consonant both $\# i$ and $\geqslant 5$ do not give contrasting nasal. ized vs, non-nasalized reflexes in M, C, T, according to presence or absence of $*-m$; while other vowels occurring with $*-m$ do; these two PMx vowels may, therefore, have been somewhat similar in quality. (b) Both $* i$ and $* \rho$ give C i following ${ }^{*}$ w.

The PMx vowel system could be therefore schematized in two alternative ways-depending on what phonetic qualities we posit in the vowel just discussed. In schema (1) below *o is considered to be a low, back rounded vowel; in schema (2) this vowel, symbolized * \ddot{e} is considered to be a mid, central or back unrounded vowel:
(1)

2.2.4.3. Post-vocalic PMx *-m.
2.2.4.3.1. It remains to discuss $*-m$ which I posit as the source of M, C, T nasalized vowels. Of first concern here is to present my reasons for reconstructing any sort of final nasal consonant rather than nasalized vowels. One such reason has already been implied: as before mentioned in several places, except for the peculiar occurrence of C forms of general type CYYmV, vowel nasalization is either a feature of the final syllable or clearly a secondary development in a non-final syllable consequent upon vowel nasalization
in the final syllable; it is as if the nasal influence spreads from the end. To this consideration it is possible to add another: the occurrence of reflexes with nasal timbre is in many sets a sporadic, random, phenomenon which has led me to posit some sort of postposed morpheme or morphophonemic alternation in PMx itself. By positing a final nasal suffixal or enclitic element occurring with some frequency in PMx, it is possible to explain these inconsistencies in terms of haphazard survival of reflexes of forms with the final nasal versus forms without it. Furthermore, the projected final nasal is relevant, not only here in regard to the provenience of nasalized vowels, but in regard to the origin of the PMx prenasalized stops and $*$ fi; in regard to the survival in C of such forms as dāīnkūúvī rain water vs. dă̧z drops (45); and in regard to the occurrence in M of such dialect variants as k $\bar{y} \nmid v$ vs. kumi four (in that the latter may be regarded as PM *kum + analogically added -i from M numerals 'two' and 'three') (155). In brief, the final nasal as origin of M, C, T nasalized vowels fits into a broader framework as an item of considerable pertinence. Lastly, however, A has direct corroboration of our hypothesis in that it actually has -am in certain cognates corresponding to M, C, T cognates reconstructed with PMx *am and *om.
2.2.4.3.2. A second concern relative to the posited $*-m$ is the consideration as to whether the final nasal was ${ }^{*}-m, *-n$, or even *_m/ m. ${ }^{*}$. The last possibility may be disposed of first; for, in spite of the fact that $* m$ varied to ${ }^{*} n$ in word-medial (thus giving rise to the series of prenasalized consonants and $*$ in), there is nothing to indicate that more than one nasal consonant occurred before space. This narrows the choice to one or the other of these consonants. Here again the witness of A is of primary importance in that A has final m but no final n. Moreover, there are various developments in M, C, and T which make it phonetically plausible that the final nasal consonant was bilabial: (1) There is a general restriction in all three languages that in CVCV forms (CVVCV in C) two
 If we assume that this restriction partially held in reference to postposed elements as well, it is easier to understand the following developments by assuming $*-m$ than by assuming $*-n$: (a) the final nasal does not occur after *wV, in basic PMx forms (but does occur in a few instances in PMx verb forms bearing initial replacive $* \mathbf{w}$ aspect morpheme, cf. 4.1.2.); (b) a ${ }^{*} \mathbf{k}^{\mathbf{w}}{ }^{\mathbf{i}} /{ }^{*} \mathrm{kim}$ alternation is indicated in set 76 , and $a * x^{*} a / * x a m$ alternation in set 140 ; (c) the cluster ${ }^{*} 7 \mathrm{~m}$ varies to $* 2$ before $* V m$ (see 3.1.4.2.). (2) There are cer* tain phonological developments of PMx a followed by the nasal consonant that are more easily rationalized on the assumption that that
consonant was a bilabial: (a) $P M x * a m>M$ u or y after $* n$ and $* \hat{n}$, and (b) $\mathrm{PMx} * \mathrm{am}>\mathrm{M}, \mathrm{T} \psi$ after $*$ (see 3.2.2.3.).
2.2.4.3.3. The sporadic and random nature of nasalized vowel reflexes in M, C, T is seen in the fact that not many sets have consistently nasalized reflexes in all three languages, nor is it possible to group the languages and dialects as to consistent occurrence of such reflexes. This inconsistency is found not only from language to language, but even (in a few sets) in the M dialects themselves. Furthermore, there occur resemblant morphemes, apparently from the same root, but one with nasalized and the other with non-nasalized vowel; these etymological doublets are good evidence for some sort of morphophonemic alternation, suffixation, enclisis, or the like in PMx. Set 10 illustrates well these factors: M-SM has the forms ${ }^{n}$ dáhí to untie and ${ }^{n}$ diçiti wing. C has similar forms ${ }^{7}$ teēci to loosen and hēèd wing, arm plus another form nā-ndūūici to awaken. T has na ${ }^{3} \check{c i}_{i}{ }^{3}$ to untie, to loosen, du ${ }^{3} \mathrm{gwa}^{4}{ }_{i}{ }^{3}$ wing, and na ${ }^{3} \mathrm{r}_{\mathrm{i}}{ }^{3}$ to awaken. I posit for these various derivatives a common root with some such meaning as 'to take up', 'lift' or 'arise'. Notice the inconsistency of nasalized vs. non-nasalized reflex in that M^{n} dáhr to untie and C ? tēē̃ to loosen with non-nasalized vowels correspond to $T n^{3}{ }^{3}{ }_{i}{ }^{3}$ to untie with nasalized vowel; while, on the other hand, $M^{n}{ }^{n}$ drhi ming with nasalized vowels corresponds to C hectee and T du ${ }^{3}$ gwa ${ }^{4} \check{r}_{i}{ }^{3}$ wing with non-nasalized vowel. Furthermore, the existence of both $M_{-S M}{ }^{n}$ dáhí untie and ${ }^{n}$ dī̀hì wing points out the same inconsistency in M itself. Likewise, in set 7, M-SM, SE have nasal vowel quality, and M-J has non-nasalized vowel quality, while T-Ch has nasal vs. non-nasal quality in some resemblant morphemes:
 $\mathrm{ci}^{3}, \mathrm{ri}^{3} \mathrm{ci}^{3}$ a drop of.
2.2.4.3.4. There is some evidence that the order of disappearance of the final nasal consonant was (1) first in PT, (2) somewhat later in PM, and (3) comparatively late in C with (4) survival in certain phonological situations until the present day in A. In T, there is no evidence anywhere of the survival of *-m. There is, however, evidence that phonemic vowel nasalization-consequent on the early loss of *-m-continued as a living part of the grammatical structure of early T: e.g., in set 77, T has the non-nasalized form kihi ${ }^{3}$ mantain, and the nasalized form $\mathrm{da}^{3} \mathrm{kit}^{2}{ }^{2-1}$ hill of corn nose alongside another nasalized form da ${ }^{3}$ ką 3 slope, mountain-spur-all apparently from the same root. (There is evidence in the C cognates that the assumption of such a range of meaning is not gratuitous). The two nasalized reflexes in T suggest that one-probably the latter-reflects a PMx feature while the other is a development in PT. There are, furthermore, sets in which T has apparently independently nasalized certain vowels after retained ${ }^{2} \mathrm{~m}$, since in late $\mathrm{PMx} *{ }^{\mathbf{2}} \mathrm{m}$
$>* ?$ before ${ }^{*}$. Vm. Vowel nasalization still survives as a grammatical category in T in that there is a formal third person semifused enclitic which adds a mora of length to preceding stem vowel plus nasal quality, e.g., ra $a^{3} a^{3}$ her hand (informal) but ran $a^{3}+a^{3}$ her hand (formal).

There is some evidence for survival of final $*-m$ in $P M$ in the $M-J, M$ form kumi four already mentioned (see 2.2.4.3.1.; set 155). Also $\mathrm{M}_{-J^{7}}{ }^{7}$ di-kumi onion in set 80 may preserve the second alternate of some $P \mathrm{Mx}{ }^{*} \mathrm{k}^{\boldsymbol{W}} \mathrm{i} / * \mathrm{kim}$ form, with addition in M of vowel -i and consequent preservation of the nasal. The M evidence in regard to $P M *-m$ is slight, but it is more than is found in T, where no such examples of "fossilized" ${ }^{*}-\mathrm{m}$ are found at all.

In C there is solid evidence for survival of $P M x$ final nasal but *-m $>^{*}-\mathrm{n}$ surviving as such until comparatively recent times. The form dāinnkūúvī rain -drops vs. d $\bar{z} \bar{z} \bar{z}$ drops seems to indicate that at some period in C, final $*-n$ was dropped before space, but preserved medial in the stress-group before at least some consonants. Davis and Walker state that this example illustrates a regular morphophonemic alternation: 'When the prior form of the compound ends in a nasalized vowel or vowels and the second form has an initial stop, the nasalization is lost, and n is developed.' (CP 145). ${ }^{3}$ Nevertheless, the examples of this morphophonemic alternation are few in nouns (three examples in my word lists) and it does not always seem to happen in 'compound' verbs. The C kuùntúrni 'four bits', i.e. fifty centavos (23) is of some interest here in that túme is an early Spanish borrowing (tome) in C from about three or four centuries ago. At the time of the composition of the phrase 'four bits' -some where in this comparatively recent period, the C word for 'four' still bore a final nasal in some contexts (not in merely 'fossilized' phrases) so that n was added to the Spanish loan with initial t from preceding k $\bar{y} \bar{y}(n)$. Verb 'compounds' in which the addition of n does not take place (e.g. İ dǐk k kàanim de he will hurry) probably represent formations of a still more recent date-after the final * n ceased to occur freely in C contexts but was restricted to 'fossilized' phrases.

C forms with nasalized vowel in non-final syllable of forms of general type CYYmV structure remain somewhat problematical. Were they clearly C formations, it would be easy to explain their occurrence on the grounds of late survival of $C *-n$. But in the C of these sets in question the penultimate syllable seems to construct regularly enough. Therefore, it seems probable that the penultimate nasalization in such forms is some sort of grammatical development in earlier C. Note, for example, the following: (59) kứưná to take a bath vs. ka_? ${ }^{2}$ úưná to bathe (someone): here the penultimate syllable reconstructs regularly as $*^{w}$ w- in M, C, T aside from the penultimate nasalization in the first C form. Similarly in
from the penultimate nasalization in the first C form. Similarly in set 165 the second C form in 'yáánà dog vs. 'yúq́inà fox correlates with M cognate witnessing to *yu- and a T cognate witnessing to *tu- (regular PMx *y/*t alternation cf. 4.1.1.1.); the vowel of the first C form as well as the nasalization in the second form possibly reflect a C development.

NOTES

1. Needless to say, here as in 2.1.2., 2.2.1. and 2.2.2., for the M and C, I am dependent upon the published articles of my colleagues who have investigated these languages (especially AOMT, GPPA, CTMTS and CP).
2. I have assumed in this study that such C diphthongization does not reflect a PMx vowel cluster. Rather: (a) Some instances of C diphthongization are resultant on loss of PMx intervocalic *y before C i (sets 7 and 49 in which PMx *Cayim >C Cazi). (b) Other instances of C diphthongization are resultant on reduplication of $* \mathrm{ya}$ or $*$ ye with diphthongization of the penultimate vowel of the reduplicated form and with subsequent spread of the diphthongization to the ultima-provided that that syllable were of CVV pattern. Thus in 176 *2yaaya? >2yaiya?, while in 191 *i-yeiyee $>$ i-yeiyei. There are two problematical cases of diphthongization in CVV forms (142, 279).
3. On the basis of this data given in CP, Eric Hamp in an unpublished paper ('Cuicatec Phonology: An Historical Note') posited final $* n / * m$ (from earlier $*-m$) independently of me and about the same time as my own research. In the same paper he posited, however, a final * k as well. The latter seems to me to be extremely implausible in that no sort of final stop except ${ }^{* 2}$ seems to reconstruct in PMx or in an earlier stage of any daughter language.

3. Fhonological developments in reconstructed ultimate syllables

3.0. Reflexes of PMx segmental phonemes in reconstructed ultimate syllables are discussed here in some detail. Discussion of PMx glottal stop is postponed until section 5 where it is treated at length. In citing examples in this section, M-SM, SE dialect evidence is summarized simply by citing the M-SM form whenever the forms in the two dialects diverge only by tone.
3.1. PMx consonants in ultimate syllables.
3.1.1. Stops.
3.1.1.0. PMx stops $* t, * k$, $* k^{*}$, are relatively more frequent before proto central and back vowels than before proto front vowels in reconstructed ultimas. No examples occur in our present array of cognates for ${ }^{*} t$ before ${ }^{*} i$ in reconstructed ultimas, and but one example occurs for $* t$ before $* e$ in this position. Similarly, only one such example occurs of $* k$ before $* i$; there are no such examples for ${ }^{*} k$ before $* e$. Likewise, but one example occurs in reconstructed ultimas of $\# k$ before a proto front vowel-in this case ${ }^{*}$ i. PMx ${ }^{*} k^{w}$ is further restricted in that it does not occur before proto back vowels, $* \rho, * 0$, and $* u$ in reconstructed ultimas, nor before the latter two vowels in any phonological situation.
3.1.l.1. With the following exceptions, ultimate ${ }^{*} t$ has reflex t in M, C, and \check{c} in $\mathrm{T}:(1) *$ te $>\boldsymbol{\varepsilon}_{\mathrm{i}}$ in $\mathrm{M}-\mathrm{SM}, \mathrm{SE}$. (2) *ta>ca in M-SM following Mu or i in the penultimate. (3) *tu>čin M-SM, SE following Mu in the penultimate.

The following sets illustrate consistent reflex t in M, C; and \boldsymbol{X} in T : (105) MSM, SE, J kātā; C kāta; T (g) $\mathrm{a}^{3} \mathrm{c}_{\mathrm{a}}{ }^{2-I}$ to sing, (194) M-SM sčítú, M-SE skưtú, M-J sa-kutu to fill; C dā-kū̂̃utú to fill, dititu full; T ni ${ }^{4}$ ča 3 full, (g) a^{3} са 3 to fill. (234) M-SM, SE yūtù; C i. ?yưưtư tumpline; T zii 3 co $^{?} o^{4-3}$ the little straw mat on the tumpline.

These further sets illustrate the palatalized reflex in M-SM, SE as summarized in the three exceptions stated above: (50, *te) M-SM, SE (keò) yúčí alligator; C ? yáaté lizard. (108, *ta ff. M-SM u) M-SM yừa, M-SE yute river: T-Ch ca ${ }^{\text {l-2 }}$ valley, canyon, T-Co đ̀a?a river. (109, *ta ff. M-SMi) M-SM hičá, M-SE híté wide; C
 SE yư̌ powder, M-J, M yuti powder, sand; C (yఫ̨̣’ą) nduutè? sand;
$T \mathrm{ru}^{3-4-3}$ powder, ($\mathrm{yo}{ }^{3} \mathrm{o}^{2-1}$) cu^{4} sand. For the last set there also exists M-SM, SE forms illustrating the regular t reflex in words in which i rather than u precedes *tu: fintí sand.
3.1.1.2. PMx ultimate ${ }^{*} k$ has uniform k reflex in M; is palatalized to C X before ${ }^{*} \mathrm{i}$ and ${ }^{\boldsymbol{i}} \mathrm{i}$ (no examples before other proto front vowels), but elsewhere becomes $C \mathrm{k}$; and has reflex k in T except under the following special conditions: (1) PT *uka >ukwa. (2) PT *kakal? and ${ }^{*} \mathrm{kaka}^{1}{ }^{1}$ resulted in the palatalization of the medial consonant to ε with accompanying effecte on the vowels. (3) PT *k is weakened to g in certain clitic or quasi-clitic morphemes that presumably occurred in positions of relatively less stress in the PMx stressgroup. This latter development is the regular treatment of $*_{k}$ in T penultimate syllables (4.2.1.2.).

In the following sets the reflexes of *k are 'regular', i.e., uncomplicated by the special factors just enumerated in reference to T : (1) C téééé; T ri ${ }^{3}{ }_{k i}{ }^{2-3}$ to give. (70) M-SM, SE yikíi; C ${ }^{2}$ yūūči? cubit. (74) M-SM yiki, M-SE yikī bone, horn, shell; T zi ${ }^{3}{ }^{\mathrm{ki}}{ }^{2} \mathrm{~h}$ shell (of an egg). (118) M.SM, SE tākà; C ${ }^{2}$ dáákà; T zi ${ }^{3}$-ga $5^{5} \mathrm{ka}^{5} \xlongequal{2}$ bird's nest. (238), M-SM, SE, J łōkò; C ndīikū; T.Ch ko ${ }^{4}$, T-Co iko twenty. (271) M-SM ${ }^{2} 1$-sikí, M-SE ká-síkí to play; C nā-dà-kùùk \bar{i} to adorn; T $\mathrm{du}^{3} \mathrm{ku}^{3-4}$ to play, $\mathrm{zdu}^{3} \mathrm{ku}^{4-3}$ necklace.

In the following sets PT *uka >ukwa: (122) M-SM tī-yáká, čáká,

 kwa ${ }^{3}$ ant.

The following sets illustrate the special palatalization of $\% k$ in T according to exception (2) stated three paragraphs above: (123) M_SM, SE, J, M, kākā; C kááká; T (g) $\mathrm{a}^{3} \mathrm{c}^{2-1}$ walk. (In this set

 ndíká; T (g) $a^{3}{\underset{i}{i}}^{2-1}$ to ask for. (The inconsistencies in nasalized vs. non-nasalized vowel aretypical of ultimate syllables; see 3.2.2. In
 gives PT $\mathrm{ka}^{2} \mathrm{k}_{\mathrm{k}}{ }^{1}$? $>\mathrm{ga}^{3} \mathrm{c}_{\dot{i}}{ }^{2-1}$).

In the following sets $* k$ is weakened to g under the special conditions stated above. In the first of these sets $* \mathrm{k}$ is weakened to g in M-SM, SE as well. This unique development in M accounts for the only occurrence of the phoneme g in the M data available to me aside from Spanish loans. (125) M-SM, SE, + ga, M-J +ka; C +kā; T ga ${ }^{5}$, (a prefinal particle in T occurring in a position of little or no phonetic stress) more. (124) M-SM, SE, J kàa iron, bell; C kūu bell; $T \mathrm{ga}^{3} \mathrm{ga}^{\text {? }} \mathrm{a}^{3} \frac{\text { metal }}{3}$ bell, ga^{3} ? hour of day (weakly stressed in such phrases as ga ${ }^{3} \mathrm{~m}^{7} \mathrm{ngo}^{4} 3^{2}$ one o'clock). du $\mathrm{kwa}^{2}-\mathrm{ga} \mathrm{a}^{3}$ jail, i.e.,
'ironhouse' (with -ga'a ${ }^{3}$ more weakly stressed because of higher tone on preceding syllable). In this last set *k may have been weakened to g in positions of weakened stress, with analogical extension to all forms of the morpheme. Possibly the popularization of the form in g- as well as the T ga- reduplication may have been partially a mechanism to avoid homonynity with $\mathrm{ka}^{7} \mathrm{a}^{3}$ torch, candle. 3.1.1.3. PMx ultimate ${ }^{*} \mathrm{k}^{\mathrm{m}}$ has undergone a variety of conditioned sound changes in all three languages. In both M and C a proto front vowel (only $*_{i}$ and $*_{i}$ in our data) is lost following ${ }^{*} k^{w}$, and the labial component of that stop is vocalized to u ($u / 0$ in C). However, in M , *kw followed by a or $\underset{\text { z }}{ }$ is variously treated according to whether it is preceded by M a, u , ior i , or space. Specifically: (a) PM
 el is lost and the labial component is vocalized in the same manner in which ${ }^{*} \mathrm{k}^{\mathrm{m}}$ followed by front vowel is regularly treated; (c) PM *ikwa or ${ }^{* i k}{ }^{\text {wia }}$ > ika or ika, i.e., the labial component is lost; (d)
 labial component-in M CVV couplets. In C, PC *kwa and *kwzare
 forms, but become kuu and kuy in CVV forms (the C data are, however, scanty at this point). T retains ${ }^{*} \mathrm{k}^{w}$ as cluster kw except that * $\mathrm{k} \overline{\mathrm{F}}>\mathrm{T} \mathrm{ki}$. In T monosyllabic verbs the phonological development of $*_{k}{ }^{W}$ has been obscured by an analogical reshaping of PT $* k$ and *kw (<*k and *kw) to conform to the g-lgV- aspectual prefix (which began as a regular reflex of $* \mathrm{k}$ and ${ }^{*} \mathrm{k}^{(1)}$ in penultimate syllables); some such verbs show a g / gw or g / w alternation (4.1.2.2.3.).

Sets illustrating ${ }^{2} \mathrm{k}^{\mathrm{w}}$ before proto vowels $\mathrm{*}_{\mathrm{i}}$ and $\mathrm{*i}_{\mathrm{i}}$ follow: (3)
 wrap around; T na $^{3} \mathrm{kwi}^{2-3}$ to wind up, to coil up (oneself). (79) M-SM, $\overline{S E}, ~ J \gamma_{i k u}^{j} C$ rikion; T gu $^{3} \mathrm{ki}^{3}$ yesterday. Sets illustrating the varied developments of ${ }^{(k w}$ before proto vowel *a follow: (127) M.SM, SE
 mucus. (128) MSM, SE yükù bush, plant, shrub; C kūu (dīyúú?ņ̧?) river algae; T kwehe ${ }^{3}$ edible herbs. (129) M-SM hikà; C tiftkwà tho-
 row. (133) M-SM, SE, J, M k ${ }^{\text {Wą̨ }}$?
 T $\mathrm{gą}^{2-1 / \mathrm{waq}^{2-1}}$ to dig.
3.1.2. Spirants. Of the three PMx spirants, $* \theta, * x, * x^{*}$, the latter two do not occur before proto back vowels, *o, *o, and ${ }^{u} u$ in ultimate syllables, nor before ${ }^{o} 0$ and $* u$ in any position. 3.1.2.1. PMx ultimate $* \theta$ has uniform reflex d in C, but divergent reflexes in M and T according to whether it is followed by a proto
back or central vowel. Thus M has reflex $\underset{S}{ }$ before $* i$, ${ }^{*} e$, ${ }^{*} \mathbf{i}$, but s before $* a, * \rho$, and $* o \ldots$ with π / s before $* i m$ under obscure conditions. ${ }^{i}$ Similarly T has reflex c before ${ }^{*} i$ and $* i$, (but no data for $* \theta \mathrm{e}$ in T), and reflex t before $* a, * 0$, and $* 0$.

The following sets illustrate $* \theta$ before front vowels-including *i: (5) M-SM, SE, J, M visí sweet, ${ }^{n}$ dùšī honey; C na drin honey; T

 $\mathrm{di}^{\prime \prime}{ }^{1} ; \mathrm{T} \mathrm{di}^{3} \mathrm{ci}^{3-5} 2 / \mathrm{ci} \geqslant \mathrm{i}^{3}$ cactus-beer. (84) $\mathrm{M}-\mathrm{SM} \mathrm{ka} \bar{x}_{\mathrm{i}}$ to press, to chew, $k{ }^{w}{ }_{\text {sin }}$ to press, to nail, kīsī to tremble, quiver (with similar forms in $\mathrm{M}-\mathrm{SE}, \mathrm{J})$; C ${ }^{2} \mathrm{k} \bar{a} \bar{a} \mathrm{~d}_{\mathrm{i}}$ to shake something; $\mathrm{T}(\mathrm{g}) \mathrm{a}^{3} \mathrm{ci}^{3} \mathrm{~h}$ to touch, handle.

Sets illustrative of $\# \theta$ before $* a, * \rho$, and $* 0$ now follow: (135) M-SM tỉisàà, M-SE sàā; C ${ }^{2}$ yáádá; T za a^{3} taha $^{4-3}$ bird. (207) M-SM, SE, J^{n} dūsù tone, voice; C ndūūdū word; T (ga^{3}) ta ${ }^{3-4} \mathrm{~h}$ to say. (248) M.SM, SE, J kūsü; C kū-yààdō; $T(g) a^{3}$ to $^{3-4} h$ to sleep. 3.1.2.2. $P M x$ ultimate ${ }^{*} x$ gives uniform reflex h in $M-S M, S E$, but \boldsymbol{E} in $\mathrm{M}-\mathrm{J}$ (and possibly $\underset{s}{ }$ in $\mathrm{M}-\mathrm{M}$, but the data available to me are scanty). In $T, * x$ gives \boldsymbol{c} before proto front vowels $\left({ }^{*} i\right.$ and $\left.* e\right)$, but k before proto central vowels ($*_{i}^{*}$ and $\left.* a\right)$, with the exception that in one set (141) *xa? a > T ambisyllabic zipi-with the T reflex now occurring in the penultimate syllable (cf. 4.2.2.2.). In C, the usual reflex is $\boldsymbol{E}_{\text {; }}$ this is clearly the case before proto vowels $* i$ and $*_{i}$. There is possibly a C reflex k before proto vowel *a, but the C data are scanty at this point.

Sets illustrative of $\mathrm{PMx} * \mathrm{x}$ before proto front vowels (exclusive of *ī) now follow: (9) M-SM, SE kihī fever; C dà-kàaci to boil, ${ }^{\text {n }}$ yūữ
 wing; C hēèce wing, arm; $T d u^{3} g^{2} \mathrm{wa}^{4} \mathrm{Ci}^{3}$ wing, (52) M-SM ${ }^{3}$ dàhi; T $(\mathrm{g}) \mathrm{u}^{3} \mathrm{ce}^{3-4}$ to be wet.

Illustrative sets follow for *x before proto central vowels-including *i, before which *x splits up differently in C and T: (85)
 (139) M-SM háá, M-SE hé, M-J とaa; T na ${ }^{5} \mathrm{ka}^{5-3}$ new. (141) M-SM

 sandals.
3.1.2.3. PMx ultimate ${ }^{*} x^{w}$ gives reflex h in $M-S M, S E$ and $દ$ in $M-J$ preceding proto front vowel (inclusive of *i). Preceding *a, the M reflex is k^{w} after vowel but v in CVV forms. For C the data are scanty but the reflex is apparently ku (loss of vowel with vocalization of labial component) or v-with the former occurring before
*i and the latter occurring before *e. (which has C reflex a in most situations). Before *a, the C reflex is apparently ku after vowel but v in CVV forms-a development parallel to that just mentioned for M. T gives uniform reflex gw except that the labial component is dropped before ${ }^{*}$.

Illustrative sets follow: (14) C (kūūvē) nduúkù to be foined; $T \mathrm{du}^{3}$ gwi ${ }^{3-4}$ r together with, companion. (15) M.SM, SE káhí, M-J kačiz clear, clearly; T gwi ${ }^{5}$? readily, quickiy. (54) M-SM, SE kàhī, M-J kazi; C ndāāvā; T na ${ }^{3} \mathrm{gwi}^{3-4}$ to choose. (87) M-SM, SE kāh̄̄̄, M-J kačj warm, damp; T gíz warm. (142) M-SM, SE yákwá crooked; T du ${ }^{3} \mathrm{gwa}^{3}-4$ to turn or to twist down. (143) M-SM, SE, J kū-vàa to make an uproat, M-SM, SE vảà noisy; C (kūūvé) váá make an uproar, ${ }_{3} \bar{i}-?$? \bar{a} āk \bar{u} a sound, $k w a \bar{a} k \bar{u}$ to weep; T (g) $a^{3} g^{2} a^{2} h$ to scream, bellow, du${ }^{3} g^{3} e^{3} e^{3}$ to weep. 3.1.3. Prenasalized stops.
3.1.3.0. Of these $P M x$ consonants, only ultimate $*^{n}$ d is relatively unrestricted in distribution. In our present array of cognates, ultimate *ng occurì only before proto vowels $* a, * 0$, and $* 0$, while ultimate ${ }^{* n} \mathrm{~g}$ " occurs only before ${ }^{*} \mathrm{i}$, and ${ }^{*} \mathrm{a}$, and $* 0$. I discuss here also an anomalous cluster *tn which gives characteristic reflexes in M and T (see 4.2.7.1. for discussion of this cluster in penultimate syllables) in sets of which the C witnesses to ultimate $*^{n}$ d.
3.1.3.1. PMx ultimate $*^{n}$ d is subject to a variety of conditioned sound changes. (a) In M there is a consistent reflex ${ }^{n_{d}}$ in $C V V$ and $C V ? V$ couplets (presumably $\left\langle\mathrm{PMx} * \mathrm{CV}\right.$ and $\mathrm{FCV}^{\text {PV }}$ forms, respectively). In "daa forms recently fused with preceding CV-element the reflexes are ${ }^{\mathbf{n}} \mathrm{j}^{\mathrm{n}}{ }^{\mathrm{d}},{ }^{\mathrm{n}} \mathrm{d}$ for M-SM, SE, and J respectively. In CV' CV couplets (<*CV ${ }^{2} \mathrm{CV}(\boldsymbol{\prime})$) the ultimate syllable reflex is ${ }^{n} \mathrm{~d}^{2}$ in the M dialects when this phoneme precedes reflex of $*_{i}$; and ${ }^{\mathbf{n}} \mathbf{y}^{\mathbf{n}}{ }^{\mathbf{d}},^{\mathbf{n}} \mathrm{d}$ in M-SM, SE J when this phoneme precedes reflex of *a. In CVCV couplets the ultimate syllable reflexes of ${ }^{* n}$ d are \check{c}, $火, t$ in M-SM, SE, J. (b) C likewise has reflex nd in CVV and CVV?V forms-except when the following C vowel is nasalized in which case the reflex is n. The latter reflex is regular for ultimate syllables in CVVCV forms. One CVVCV form in which there is an ${ }^{n_{d}}$ reflex represents a recent fusion of a C auxiliary verb with a former CVV form in which ${ }^{n}{ }^{d}$ occurred as the regular reflex (Set 145 cited two paragraphe below). (c) There is a T n reflex occurring quite regularly in ultimate syllables (with strengthening of $P T n>n \cdot$ on loss of penultimate syllable). There is also a possible T d reflex for $P M x *^{n} d V$ and $*^{n} d V V^{2} V$ forms. While the latter is attested in sets $148,149,249$, and 251 , in all these sets (considering the first two to be either from the same PMx root or from closely related roots) there is a d / y alternation in the T possessed vs. unpossessed forms. It is therefore possible that $T \mathrm{~d}$ is an
analogical development involving $\# \theta$ in these sets-specifically a development of $\# \theta>P T$ t by regular sound change followed by analogical lenition of $* t>d$. In view of the fact that the M and C of these sets witness to $*^{\pi}$ d this latter hypothesis would make it necessary to assume that $P M x * \theta / * y / *^{n} d$ alternation lies back of these sets (4.1.1.2.); but, while ${ }^{*^{n}}$ d figures in such alternations in penultimate syllables there is no solid evidence for $*^{n}$ d alternating with $* \theta$ and $*^{*} y$ in ultimate syllables. As arguments for T d being a reflex of $*^{n} d$ in these sets, note that (a) $*^{{ }^{\boldsymbol{n}}} d(V)$ and $*^{n} d(V 7 V)>T$ d would parallel the M and C reflexes ${ }^{\text {n }} \mathrm{d}$ from PMx forms with these structures. (b) A split of $P M x{ }^{* n} d$ into T reflexes n and d in ultimate syllables would parallel the development in penultimate syllables where such a split surely took place (penultimate ${ }^{*^{n}} d>T n$ before c and velars, and $>T$ delsewhere 4.2.3.1.). (c) In set 149 of the related 148 and 149 sets, there is C witness to ${ }^{*} t$; if, therefore, $\#^{n} d$ were posited as source of $T d$ in these sets rather than $* \theta$, we would thereby avoid positing another instance of rare overlap of ' θ ' and ' t ' declensions (4.1.1.5.). I posit, therefore, provenience of T din these sets from $*^{\boldsymbol{n}} \mathrm{d}$ rather than from $* \theta$ reshaped by analogical development.

The following sets illustrate M, C, T reflexes of forms presumably harking back to PMx *CV and $\# C V^{2} V$ forms (i.e. with CVV and CV?V in M, C; and with $C V$ and $C V \rho V$ in T). (148) M-SM ${ }^{n}$ dàà (yáū);

 T ra ${ }^{3}{ }^{3} a^{3}$ hand (with fusion of $X V$. element in this form), (gi ${ }^{3}$) $\mathrm{da}^{3}{ }^{3} \mathrm{a}^{3}-4$ to sieze. (212) M-SM ${ }^{n}$ dō to stay, to remain; $C k \bar{a} n d \bar{u} \dot{u}$ to leave (something): $T(g) u^{3} n a^{2} h$ to stay, remain, $d u^{3} n a^{2} h$ to leave (something). (There was presumably no PMx penultimate syllable in this set. We would, therefore, expect T reflex d rather than n. The $T n$ reflex can, however, be rationalized on the supposition that T fusion of preposed element was earlier than the posited split of ultimate PT ${ }^{* n}{ }^{n}>{ }_{n}$ and d.) (249) M-SM ${ }^{n}$ dṑo ; C ndúú; T do ${ }^{3-4} /$ yo $^{3-4-3}$ sugar-cane. (251) M-SM ${ }^{n}$ dō $^{2} \%$; $T d^{2} / y^{2}$ tenate (handleless palm-leaf basket).

The following set illustrates M, C, T reflexes identical with those illustrated above, except for M-SM reflex ${ }^{\mathbf{n}} \boldsymbol{y}$ and $C^{\mathbf{n}} \mathrm{d}$; these divergent reflexes presumably reflect late fusions of M and C auxiliary
 M-J ku' da to be (somewhere); $T\left(\mathrm{ga}^{3}\right) \mathrm{n} \cdot \mathrm{e}^{3}$ to be (somewhere), to reside, to sit. Notice that in this set fusion in M-J has gone all the way to CVCV.

The following sets illustrate M, C, T reflexes of ultimate $*^{n} d$ in
 $\mathrm{ga}^{3} \mathrm{ni}^{3}$ to explode (for absence of -?- in C, T, see 5.3.1.2. and 5.3.1.3.).
 ?nęè? (pp) to break; T (g) $a^{3} ?_{n} e^{3-5}$? to cut (with loss of PMx penultimate in C).

Finally, the following sets illustrate PMx ultimate $\%^{n} \mathrm{~d}$ in $\% \mathrm{CVCV}$ forms, which is the most common environment of this phoneme in our data: (16) M-SM, SE tičí, M-J titi; C nपृष̄̄nệ; T ru ${ }^{2}$ ne 3 avocado.

 ${ }^{n}$ duča, $M_{-S E}{ }^{n}$ dūte, $M_{-J} J^{n}$ duta water; C nप̣̄̀̀è water, (tīivī) nęé to gprinkle; T da ${ }^{3} n^{3-4} / \mathrm{n} \cdot \mathrm{e}^{3-4-3}$ water (with indication that $P M x *$ (CV) ${ }^{n} d(a)>-c(a),-t(e),-t(a)$ respectively in M-SM, SE, and J rather than to $\check{\varepsilon}, \varepsilon, t$ as before other vowels).
3.1.3.2. PMx ultimate * $\mathrm{tn}>\mathrm{M}-\mathrm{SM}, \mathrm{J} \mathrm{t}$; M-SE N; and T r. ${ }^{2}$

It is not represented in the C of the two sets where it occurs; but rather, typical C reflexes of $*^{n} d$ in $* C V(?)$ and $* C V ? V$ forms occur:

 fare (well or ill), (g)a3 razi-4o (ru3wa ${ }^{2-3}$) to be pleased with. (151) C dàn' $n^{?}$ dé? 3.1.3.3. $P M x{ }^{* 1}$ g gives $M-S M, S E h$ and $M-J$ © before proto vowel $* a$, but $M k$ elsewhere (which includes occurrence before proto vowels *o and *o). The C reflex is k before $*$; no C cognates have been found for the sets with $*^{n} g$ before proto vowels *a and *o. Thas uniform reflex ng. Illustrative sets follow: (152) M-SM ${ }^{\mathbf{n}}$ díhā, M-SE ${ }^{n}$ dīhé, M-J ${ }^{n}$ diča in sincerity; T za $^{5}{ }^{n g a^{5}}{ }^{5}$ truly. (214) M-SM, Jkwâku,
 (253) M-SM yakì, M-SE hēkū some, az bit of; T ${ }^{9}$ ngo 4 one, ngo ${ }^{4}{ }^{\text {n }}$ ngo ${ }^{4}$ some.
3.1.3.4. $P M x{ }^{* n} g^{w}$ gives M_{v} after vowel, but ku (with vocalization of labial component) elsewhere. The C reflexes are somewhat similar: when following vowel, there is reflex v; elsewhere there is ku before proto vowel plus $*-\mathrm{m}$, but nku before proto vowel not followed by $*-\mathrm{m}$. Trique tends to eliminate the n component of the $P T$ unit phoneme or cluster. Etymological doublets occur in which T ngw (preserved sporadically in rare dialect forms, place-names, and 'fossilized' constructions) occurs alongside verbs with g / w alternation--harking back to PMx *k-and *w-aspects of the ' w ' conjugation (4.1.2.2.3.). Illustrative sets follow: (93) M-SM, SE kīvi, M-J kivi day; C hūūvē day; T gwi ${ }^{3}$ day, sun, $n^{*} e^{3-4} \mathrm{ra}^{3} \mathrm{ngwi}^{3}$ (place-name) 'water of the sun'. (154) M-SM, SE, J^{n} dāvā; C káávà to jump; T da ${ }^{3} n g w^{3-4} h$ to spring or jump away, w'e ${ }^{2} h / g^{2} e^{2} h$ to jump. (156) M-SM, SE kū̀̀,

four more (for $\mathrm{M}-\mathrm{J}, \mathrm{M}$ intervocalic m see 2.2 .4 .3 .1 .). (22) $\mathrm{M}-\mathrm{SM}$, SE, J kāvà to twist; C kā-nkúa to grind; $T d u^{3} \mathrm{gwa}^{2} \mathrm{~h}$ to twist, $\mathrm{ga}^{2} \mathrm{~h} /$ $\mathrm{wa}^{2} \mathrm{~h}$ to grind.
3.1.4. Lateral, nasals, and semi-vowels.
3.1.4.0. T frequently strengthens reflexes $1, m, n, w$, and y of $P M x$ lateral, nasals and semi-vowels to the corresponding fortis consonant on loss of PMx penultimate syllable or upon loss of penultimate syllable developed in PT itself (cf. 19, 20, 42, 48, 66, 67, 68, 187). 3.1.4.1. PMx ${ }^{*}$ is of very restricted distribution in that it presumably occurs only before proto vowels $*_{i}$ and ${ }_{\mathrm{u}}$ (but see 2.1.4.4.). There is a uniform reflex 1 in all three languages. The following sets include all examples of ${ }^{1}$ lin our present array of cognates: (12) M-SM, SE lúlí, M-J lu ?lu, lu ?u, M-M ̌ili, lo?o; C ${ }^{7} 1$ ífic T $1_{\cdot} \mathrm{i}^{3} \mathrm{~h}$ little. (236) M-SM, SE vílu; T-Ch ží ${ }^{3} \mathrm{lu}^{3}$, T-SD $1 \cdot \mathrm{u}^{3}$ cat. (237) M-SM víló little lizard; T $\check{z i}^{3}{ }^{3} u^{1-2}$ worm.
3.1.4.2. PMx *m like other PMx labials, does not occur before proto vowels *o and *u. There is a uniform reflex m in all three languages, except that medial cluster of ${ }^{*}$? m is sometimes reduced to ? before nasalized vowels; this development is regular in M but somewhat sporadic in C and T. It presumably reflects a late $P M x$ alternation in which $* ? \mathrm{mV}+*-\mathrm{m}>* ? \mathrm{Vm}$ (with loss of first $*_{\mathrm{m}}$) which later became $9 \mathrm{Y}(5.3 .1 .3$.). Irregularities in regard to the ${ }^{?} \mathrm{mV} /{ }^{\circ} \mathrm{Y}$ alternation in C and T involve occurrences of ${ }^{\mathrm{m}} \mathrm{my}$ in either language. In some such cases the nasalization after ? m is unsupported by parallel nasalizations in the other languages and is perhaps suspect of being a development in that particular language. The final bilabial nasal had been lost, and the nasalized vowels now phonemic-were becoming less restricted in distribution. Trique has a special reflex ?o of $*$? ma.

In the following sets either ${ }^{2} \mathrm{~m}$ occurs or $* ? \mathrm{~m}$-the latter, however, in sets which presumably do not involve *-m and the special development mentioned above: (20) M-SM, SE ña? mù, MJ ya?mi; C ? mifin sweet potato, tubular root; $\mathrm{T} \mathrm{du}^{3} \mathrm{mi}^{3}-5 \% / \mathrm{m}^{\prime} \mathrm{i}$? i^{3} soap-root, soap (C has presumably developed a nasalized vowel; T has shifted
 flatten; T ($\mathrm{gi}^{3}{ }^{3} \mathrm{na}^{3}{ }^{3} \mathrm{~m}{\underset{q}{ }}^{3}$ to cave in, fall down (T has presumably developed a nasalized vowel). (162) M-SM, SE, I máá he, himself, that one; C mę̨̨ oneself; T mą ${ }^{3}$? ą 3 oneself (reconstruct \#mam?).

In these sets ${ }^{* ?}$ m occurs in sets which involve $*-m$; wherever $?^{m}$ is retained in any language, I assume $P M x$ variant ${ }^{* ?} ?_{\mathrm{mV}}$, and where $* ? \mathrm{~m}>$? Y, I assume PMx variant *? Vm (<early PMx *? mVm): (21) M-SM, SE ka? $\mathrm{mu}, \mathrm{M} J \mathrm{ka}$? mi to burn something; C

$n \not z^{3 ?}{\underset{z}{c}}^{3}$ to smart, to irritate, $n \underset{\text { sa }}{ }{ }^{3}$? ąhą ${ }^{4-3}$ quicklime (T has developed a nasalized vowel in the first form). (95) M-SM tī-nì 71 , čict

 two -only in the phrase two more tortillas' (for T development ${ }^{*}{ }^{?} \mathrm{~m} \gg_{\mathrm{m}} . .^{?}$, see 5.3.1.3.), $\mathrm{nu}^{5} \mathrm{gwaq}^{5}$? together with (*numą ${ }^{?}>$ nuwą̨ ${ }^{9}>$ nugwą̨ ${ }^{?}$, cf. below under ${ }^{*}$ w).
3.1.4.3. $\mathrm{PMx} *_{\mathrm{n}}$ has uniform reflex n in all languages; illustrative sets follow: (24) M-SM, SE frinin, MJJ yani; C ?dîinc; T di ${ }^{3} \mathrm{nl}^{2-1}$ brother of a man. (165) M-SM, SE, J ?īnà dog; C ?yánà dog,
 yưúnợ; Tn* ąhz̨ ${ }^{3}$ cigarette (probably with tobacco as earlier mean-
 tion in the reconstructed ultima; for discussion of this alternation see 4.1.1.3; The sets follow: (110) M-SM yünū tree $K *_{n-}$), M-SE yūNu tree (<*tn-), MJJ yuty tree trunk (<*t-ar *tn-); C ną̣"á fire-
 tree $<*$ t). (111) M-SM hānù box, hīǹ̀ oyen, ($*_{n-}$), M-SE yenù box,

3.1.4.4. PMx *fi has reflex fin M, but y in C and T. Medial clus-
 $\sim T$ y correspondence is partially obscured on the T side by the ocm currence of reflexes of PMx * θ - replacive morpheme (with possible original meaning definite $>\mathrm{A}$ singular and T possessed) in the T of many sets of which the M and C cognates hark back to forms with $*_{\text {n- }}$. There was a $P M x * y, * \theta, *_{n}, *^{n}$ d penultimate alternation involving this $* \theta$ - replacive morpheme (cf. 4.1.1.2.); in ultimate syllables the same alternation occurred except that the alternation did not seem to include $*^{\boldsymbol{n}} \mathrm{d}$ - (cf. 3.1.3.1.). Ultimate $* \theta$ - became, by regular sound change, $T t$ before central and back vowels, while penultimate ${ }^{*} \theta$ - became T d before central or back vowels. PMx *f gave regular T reflex y, (merging with reflex of *y) with resultant PT *y/*t alternation in ultimate syllable and PT *y/*d alternation in penultimates. The T t reflex of this replacive morpheme survives in some T forms-especially those which add a fused element in front of this morpheme and thus 'freeze' the construction. In other cases the PT *t $/ * y$ and $* d / * y$ alternations survive as d / y in modern T. Presumably this is the result of an analogical leveling of the $* / / * y$ alternation found in ultimate syllables to d / y as found in penultimate syllables. This analogical leveling would parallel the leveling of ultimate PT $* \mathrm{k}$ to g - in the aspectual prefix.

At any rate, in spite of the fact that the old PMx ${ }^{* \theta}$ - is definitely a PMx morpheme and not simply a PT development (as witnessed by A and several sporadic survivals in M and C), it often happens that in a given set of cognates the M and C forms survive without this morpheme, while the T forms survive only with it. This leads to the apparent, but etymologically spurious correspondence, $M \tilde{n}$ $\sim \mathrm{Cy} \sim \mathrm{T}$ t. In one set the PMx replacive survives in both C and T so that the spurious correspondence $M \neq C d \sim T$ tresults.

In the following sets the $\tilde{\mathrm{n}} \sim \mathrm{y} \sim y$ correspondence is relatively clear; (99) M-SM, J fiì , M-SE firit $\mathrm{T} \mathrm{daz}^{3-4-3} / \mathrm{y}{\underset{z}{2}}^{3-4}$ salt. (100) M-SM, J sà-fiiz̀, M-SE sànī; T dą ${ }^{2} /$ yą 2 corn cob. 072) M-SM, SE,
 village (T regularly drops *y after front vowel i). (176) M-SM

 coyote.

In these sets the replacive *0- morpheme occurs as t in T; this results in the spurious fi $\sim y \sim t$ correspondence: (97) M-SM пníni, M-SE ñ̂ńn; C y C yą̧̨; T tąhą ${ }^{3}$ thorn. Another set, in which the ${ }^{*} \theta$ - survives in both C and T illustrates the $\AA \sim d \sim t$ correspondence mentioned a-
 mouse.

In still another set there is a spurious correspondence M fi \sim $\mathrm{Ct} \sim \mathrm{T}$ n-which is resultant on a PMx alternation ${ }^{\mathrm{n}} \mathrm{n},{ }^{\mathrm{t}} \mathrm{t},{ }^{\mathrm{n}} \mathrm{d}$ witnessed to by the three languages respectively. This is the sole instance of occurrence in an ultimate syllable of the PMx replacive *t- allomorph of * θ-. In penultimate syllables, however, both *t and ${ }^{*} \theta$ are frequent variants (4.1.1.1. and 4.1.1.2.). Furthermore, as an example of the ' t ' declension this set is atypical in that $\boldsymbol{*}_{\mathbf{n}}$ does not usually figure in this declenison, (178) M-SM kùñu; C yúút̀̉, T n ${ }^{\cdot} \mathrm{e}^{3-5-4}$ meat. :
3.1.4.5. $P M x$ *w generally has reflex v in M and C and reflex w in T. However, in $\mathrm{M}-\mathrm{SM}, \mathrm{SE} \boldsymbol{*}_{\mathrm{w}}$ is vocalized to $\mathrm{M} u$ before $*_{i}$ and ${ }^{*} e$, and dropped between $\mathrm{M} u$....a when the latter vowel is a reflex of PMx *o. In cluster with ${ }^{*}$?, $P M x *$ w is treated as above for $M-S M$, SE with the following minor exceptions: (a) the $*_{\text {w }}$ of the cluster is vocalized to u with loss of following vowel in the situation $\mathrm{Mu} .$. a when the latter vowel is a reflex of *a; (b) the *w of the cluster is lost before *a elsewhere. C has uniform reflex vexcept that *? wa $>$? a under obscure conditions in a few sets. T has reflex w except that $\mathrm{PT}^{*}{ }^{*} \mathrm{~W}>\mathrm{gw}$ in the situations T zu...we, žu...wi, and ru... wi, while PT *? $\mathrm{w}>$? in the situation T a...a when the latter
vowel is a reflex of $P M x * 2$. For apparent inconsistencies in M and T reflexes of ${ }^{*} ? \mathrm{w}$ vs. ${ }^{*}$ w see 5.6.

In the following sets ${ }^{*}$ w or ${ }^{*} ? \mathbf{w}$ occurs before ${ }^{*} \mathrm{i}$ and ${ }^{*} \mathrm{e}$; the first three sets are without the special complications in T just summarized, while the latter two sets illustrate these developments (42) M-SM, SE ? uù, M-J, M ? uvi; C ? ūulè; T w• i ${ }^{5} \mathrm{~h}$ two, T žu ${ }^{5}$ wi ${ }^{5}$ h twelve. (43) M-SM, SE kūu, M-J kuvi; C ${ }^{2}$ kuivè; T (g) a ${ }^{3}$ wi ${ }^{3-5}$? die. (67) M-SM, SE yāu, M-M yavi hole; C hīivā hole; T du ${ }^{3}$ we ${ }^{3-4} \mathrm{~h} / \mathrm{w}$ ehe cave, cliff. (38) M-SM, SE kū ? u ; C kúú? vè; $\mathrm{T} \check{z u}^{3} \mathrm{gwi}^{3-4}$ h sister of a woman (T shifted $* 9$ wi $>*$ wi? according to 5.3.1.3. In turn, $P \mathrm{FI} *_{\mathrm{wi}} ?>*_{\text {wih }}$ by regular sound change; $*_{\mathrm{W}}$ then $>\mathrm{gw}$ according to the above statement). (45) M-SM, SE sā̀u, $M-J$ savi; C dāī-nkūúvè rain drops, dāāve thunder: $T d u^{3}{ }^{3}{ }^{\text {wi }}{ }^{3}$ thunder.

The following sets illustrate ${ }^{*} \mathrm{~W}$ and ${ }^{*}{ }^{2} \mathrm{w}$ before ${ }^{*}, * \mathrm{a}$, and *o:
 tice witchcraft; C tī? vī to suck; T zdu ${ }^{3} ?$ waha ${ }^{4-3}$ witchcraft. (103) M-SM, SE tīvī, M-J tivi; C tiivi to blow. (181) M-SM, SE kwa ? a, $M-J$ ku? va to give; $C k \bar{a}$? a to give; taà? và to send things; T (g) a^{3} ? wi^{3-5} ? to give. (226) M-SM, SE, J, M yū ${ }^{\text {? }} \overline{\mathrm{u}}$ mouth; C dūuvī mouthful; T du ${ }^{3}$? wa ${ }^{3}$ mouth. (227) $M_{-S M}$, SE, J, M^{n} da?và; C n̄an? dùuvi; T na ${ }^{3}$? a^{3-4} h to be extinguished (in this and the previous set C shifts the $* ?$ to the fore of the word as described in 5.3.1.2.). (188) MSM ? āñu, M SE ? Źnva heart; T ru ${ }^{3} \mathrm{wa}^{2-3}$ insides of (apparently meant heart before displaced by Spanish loan). The MSM form of the last set is an aberrant development for which I cannot account at present.
3.l.4.6. $P M x{ }^{*} y$ has reflex y in all three languages except (a) for the loss of *y after immediately preceding vowel in either Mor T; and (b) loss of y before ${ }^{*}$ in C and T. Here also, in sets involving $* y$, the $P M x$ replacive morpheme $* \theta$ - is preserved in T as d- (in alternation with y). Sets follow: (190) M-SM, SE M ya? ā;
 ${ }^{n}$ dēy $\bar{u}, ~ M-J{ }^{n}$ dayu; T ni $^{3} a^{4-3}$ dinner; (261) M-SM, SE ${ }^{n}$ de ${ }^{?}$ yù, M-J ${ }^{n}$ da? yu mud; $T \check{z}_{i}{ }^{3}{ }^{?}$ yo ${ }^{1-2}$ mud hole. (262) M-SM hïठ, M-SE hiyd, M-J điyo; T ži ${ }^{3}{ }^{4-3}$ comal (the clay griddle for making tortillas). (189) M-SM, SE yáa; C $\boldsymbol{c}^{\text {Piiy }} \overline{\bar{a}} ; \mathrm{T} \mathrm{ya}^{3-4} / \mathrm{y} \cdot \mathrm{a}^{3}-4$ tongue (y strengthened to y^{*} analogically in some idiolects; there presumably was no PMx or PT penultimate).
3.2. PMx vowels in ultimate syllables.
3.2.l. Non-nasalized reflexes. In citing illustrative sets in this section, the proto consonant reconstructed for a given set will be given immediately following the number of the set in order to
facilitate the correlation of the illustrative sets with the statements of the conditioned sound changes in which the proto consonant preceding the proto vowel plays no inconsequential role. 3.2.1.1. $P M x{ }^{*} i$ has reflex i in M with the exceptions that (a) ${ }^{*}>_{i}{ }_{u}$ in $M-S M, S E$ after ${ }^{* ?} \mathrm{~m}$ when the cluster is retained and (b) F_{i} is

 In $T *_{i}>$ e after ${ }^{* \pi} d ; *_{i}>i$ after ${ }^{*} n$; and ${ }^{*}{ }_{i}>i$ elsewhere. The C i/e and o/u reflexes referred to above must be attributed to divergent dialect developments followed by considerable dialect borrowing. Freely varying forms of the same morpheme as well as resemblant morphemes constituting etymological doublets occur in
 root with ultimate syllable $*^{\boldsymbol{n}}$ di and with nasalization as a C development) illustrates the former; while such divergent C forms as the following in set 26 illustrate the latter: tū-viinú to disgust, but (kīuve) kā̀-?vīino to be disgusted (from a root with ultimate syllable *i).

 together with, relative. (27, *n) M-SM tī-hání grandchild; C (dãiya) dééno grandson; T (da ${ }^{3} ?_{n i}{ }^{24}$) $z i l^{5} ?_{n i}^{5}$ grandchild.
3.2.1.2. PMx *e has reflex i in M except for loss of vowel following ${ }^{*}{ }_{w}>u$ in M-SM, SE. The C reflex is a following ${ }^{*} w$, ${ }^{*} x^{*}$ and $*^{n} d$, but e elsewhere. The T reflex is i following $*^{*}$, but e elsewhere. ($59, *^{n}$ d) M-SM kūči; C ky̌qúna; T (g) a^{3} ne $^{3-4}$ to bathe. (54, * x^{w}) M-SM kàhī; C ndāāvà; T na ${ }^{3} \mathrm{gwi}^{3-4}$ to choose. (68, *w) M-SM yūû, M-M yuvii; C hīivā; T du ${ }^{3} \mathrm{we}^{2-1 / w} \cdot \mathrm{e}^{1-2}$ straw mat. (51,
 (g) $u^{3} \mathrm{c}^{3-4}$ to get wet.
3.2.1.3. $P M x * i$ has reflexes i, i, i, i in $M-S M, S E, J$, and M respectively -except for loss of vowel following ${ }^{*} k^{w}>k u$ in any dialect. Some sporadic irregularity in regard to $M-S M, S E i v s$. i reflex may reflect borrowing from a dialect of the type of MJJ . The C reflexes are (0) i following ${ }^{*} \theta$, ${ }^{\boldsymbol{n}^{n}} \mathrm{~d}$, and ${ }^{*}$ w, except that (2) uu is the reflex following ${ }^{\Psi^{n}} \mathrm{~d}$ when the C vowel is a geminate vowel cluster. (3) $*_{i}$ is lost following ${ }^{*}{ }^{*}>C \mathrm{ku}$. (4) Elsewhere the C reflex is e f which reflects again separate dialect divergence and dialect borrowing. The T reflexes are (a) ifollowing $\# t, * \theta$, and ${ }^{* n} g^{w}$, (b) a after ${ }^{*} w$, and (c) i elsewhere in T-Ch (but in other T

 blood, to practice witchcraft; C tii ${ }^{7}$ vi to suck; T zdu ${ }^{3}$? waha ${ }^{4-3}$ witchcraft. (77, ${ }^{*} \mathrm{k}^{w}$) M-SM, SE, M yükü mountain; C hìikù hill;
 ${ }^{7}$ yūū̆č ${ }^{\text {? }}$ fist ($\mathrm{M}-S M$ form probably reflects a special palatalization following initial h). (73, *k) M-SM yíkí; C ? yūū̃i? cubit. (74) M-SM yik $\bar{i}, ~ M-S E$ yikī, M-M ?iki bone, shell; $T z^{3}{ }^{3} \mathrm{ki}^{2} \mathrm{~h}$ shell (of an

 3.2.1.4. PMx *a has reflex a in M-SM, J except for loss of vowel in the former (and in M-SE) following ${ }^{*} k^{*}>k u$. In M-SE ${ }^{*} a$ is palatalized to e following $*_{x}>h,{ }^{k^{n}} g>h, *^{n} d>t$, and $*^{*^{n}} d>d$; and after ${ }^{*} t$ with preceding u or i in that dialect. C has reflex a in most situations but a is lost following ${ }^{*}{ }^{w}>C \mathrm{ku}$. Furthermore, there are special reflexes of *a in C CVV forms: viz. *ka and ${ }^{*} k^{W} \mathrm{a}>\mathrm{C}$ kuu, while ${ }^{*^{4}}$ da $>\mathrm{C}$ ndaa when the vowel timbre is oral, but ${ }^{{ }^{n}}$ da $>C$ nęe when the vowel is nasalized-presumably as a development in C itself. Similarly, ultimate ${ }^{*^{n}}$ da in C CVVCV forms, when nasalized, gives the reflex nįfę. T likewise has reflex a in most situations, but ${ }^{*}$ a $>e$ in a few special environments, viz. following $*^{n} g^{w},{ }^{*} n$, and $*^{\boldsymbol{p}} d$ (the last only when $>n$, not when $>d$); in the situations $k w, . . h$ in T itself; and following the special pala-
 e in the situations: (space)we, (u)? we? h and (u) gwe (h); but Treflex i in the situations (a) wi, (a) ?wi?/h and (u)gwi(?); and Treflex a in the situation (u)wa. After $T u^{7}$ w there occure, i, e respectively in T-Ch, T-Co, and T-I. A very restricted development is $\mathrm{PMx}{ }^{* ?}$ ma> $>$? 0 . Finally, $\mathrm{PMx}{ }^{* n} \mathrm{ga}^{\text {? }} \mathrm{a}>\mathrm{T}$ ambisyllabic ži?i.

Sets illustrating these varied developments of PMx *a follow: (139, *x) M-SM hâá, M-SE hḗ, M-J とaa; T na ${ }^{5} \mathrm{ka}^{5-3}$ new. (152,

 down. (The C has recent fusion of ${ }^{*}$ daa with $C V-$, hence is not representative of normal reflex of $*^{n}$ da in CVVCV.) ($108, *^{*}$) MSM yùca, M-SE yùte river; $T-C h a^{1-2}$ valley. (109, *t) M-SM
hīča, M-SE híté wide; C dā-? $\mathrm{k}^{\text {itita }}$ to grow; $\mathrm{T} \mathrm{ga}^{5}$ ča? a^{5-3} wide.
 a sound, $k w a ̄ a \bar{k}$ to weep; T (g) a^{3} gwa ${ }^{2} \mathrm{~h}$ to scream. ($124, * \mathrm{k}$) M-SM kàā metal, bell; C kūù bell; T ga ${ }^{3}$ ga" ${ }^{3}$ metal. ($128,{ }^{*} \mathrm{k}^{\mathrm{w}}$) M-SM, SE yūkù bush, plant, shrub; C kūū-(dīyúú ? nप̣̄") river algae; T

 $\mathrm{M}^{-S M}{ }^{4}$ dāvā; C kávà to jurnp; T da ${ }^{3} \mathrm{ngwe}^{3-4} \mathrm{~h}$ to spring away, $(\mathrm{g}) \mathrm{w} \cdot$ $e^{2} h$ to jump. ($165, *_{n}$) M-SM ? inà dog; C ? yáánà dog; $T z_{u}{ }^{3} n^{3}$ fox. (123, *k) M-SM kākā; C kááká; T (g) ${ }^{3}$ そ̌ e^{21} to walk. (180, *w) M-SM yüà̀; C ?í1và; T-Ch du ${ }^{3}$? we ${ }^{3}-4$ h/? wehe ${ }^{3}$, T-Co yu? wih, T-I yu? weh thread. (153 , *ng) M-SM ke-ha? á, M-SE kē-hée, M-J ke-

3.2.1.5. PMx*s has uniform reflex a in T, but varying reflexes in M and C. In M a is the reflex after ${ }^{*} w$, except that after ${ }^{* ?}$? preceded by $M u$, the ${ }^{*} w$ is vocalized to u and the proto vowel is lost. In PMx situations *t...? and *k...? the M reflex is il $>_{i}$ in MJ, M). In M CVV forms, the reflex is oo. In other situations there is reflex o or u (in accounting for this inconsistency, again I assume separate dialect divergence and dialect borrowing). The C reflexes are: i after *w, uu in CVV forms; and u or o elsewhere.

Sets illustrating these varied developments of PMx *o follow: (226, *w) M-SM yū ${ }^{2} \bar{u} ; C$ dūūvi; $T d u^{3}{ }^{3}$ wa 3 mouth. (227, *w) $M_{-S M}{ }^{\text {n }}$ dā ${ }^{\text {? và } ; ~ C ~ n a ̄ n ? ~ d u ̀ u ̀ v i ; ~} T n^{3}{ }^{9} a^{3-4}$ h to be extinguished. (197, *t... ?) M-SM ktì to boil; C (kūūve) kūūtù ${ }^{\text {? }}$ to get warm; T (g) u^{3} yą ${ }^{3-4}$ to boil. (199, *k.. ${ }^{7}$) M-SM ${ }^{n}$ dīkì; T ni ${ }^{5} \mathrm{ka}^{5}$? short. (195, *t) M-SM toठ; T nga ${ }^{3}$ とa $^{5-3}$ a span. (212, ${ }^{* \pi}$ d) $M_{-S M}{ }^{n}$ d ${ }^{2} \bar{o}$ to stay, to remain; C kā ${ }^{2}$ dūu to leave something; $T(g) u^{3} n^{2-3}$ to stay, $\mathrm{du}^{3} \mathrm{na}^{2-3}$ to leave something. $\left(217, *^{*^{n} \mathrm{~g}}\right.$) M-SM kìkū to sew; C (kā mę̀) kwa aku to swear, tontestify; T da ${ }^{3}{ }^{?}$ nga? ${ }^{4-3}$ scar, proof. (219, * ${ }^{*}$) M-SM vikd; T nga ${ }^{3}$ cloud. (200, *k) M-SM Cóko ant; C ? п̄тkб louse, ? y kúú; T zu $^{3}{ }^{\mathrm{k} w a}{ }^{1-2}$ snake (In this and the previous set ${ }^{*}$ k is labialized in T after T Cu-prefix; see 3.1.1.2.).
3.2.1.6. PMx *o has uniform reflex o in T. In M the most frequent reflex is o or u under obscure conditions which probably again involve the type of dialect borrowing already referred to several times previously (for a possible if reflex after certain nasal consonants see 3.2.2.5.). C presents a similar picture in that there are both o and u reflexes of *o, but the latter is preferred when the C reflex is a geminate vowel, and following $* t$;
while the former is preferred after ${ }^{*} y,{ }^{*} n$, or ${ }^{*}$ n. There are examples of both o and u reflexes after ${ }^{*} k$ and $* \theta$ for which we assume again a situation of dialect borrowing.

Sets illustrating *o follow: (234, *t) M-SM yūtù; C ī-? yúútù tumpline; T zí 3 ºn $_{0} 0^{4-3}$ straw mat on the tumpline. (236, *k) M-SM ${ }^{\text {n }}$ dàkū broom; C ndūūkū twig; T koho ${ }^{3}$ plant, bush. (237, *k) M-SM sдkठ; C kwítkō hunger; T zi ${ }^{3}$ ko ${ }^{4-5}$ stomach. ($248,{ }^{*} \theta$) M-SM kūsù; C ku-yà dō; $T(g) a^{3}{ }^{3} 0^{3-4}$ h to sleep. ($246, * \theta$) C dū̀̀dú fur, feathers, yūudd (lity) hair of the head; T to ${ }^{3-4-3}$ fur, feathers. ($253, *^{n} \mathrm{~g}$) M-SM yảkù some; T ? ngo ${ }^{4}$ one. (260, ${ }^{*} y$) C ndōōyd; T yo ${ }^{7}{ }^{3}$ year.
 $\mathrm{do}^{3-4} / \mathrm{yo}^{3-4-3}$ sugar cane.
3.2.1.7. PMx *u has reflex u in T with the exception that there is a special reflex i which occurs only in the situation ${ }^{*}$? $n . .$. ? (there happen to be no examples of T cognates for $*_{n u}$ except in two sets in which the T reflex is thus bracketed by ?). M-SE has reflex \ddot{i} after ${ }^{*} t$, ${ }^{*} \mathrm{k}$, and ${ }^{*} \tilde{\mathrm{n}}$; i presumably represents the PM reflex of PMx *u in these environments. M-SM reduces this $P M$ *i to i following ${ }^{*} \gg$ と (this particular development is shared by M-SE along with reduction of i to i following N in that dialect), following * n , and following *k when the $\mathrm{M} k$ reflex is preceded by hi in that dialect. Thus, PM *ir survives following *t and ${ }^{*} k$ only in certain situations in M-SM. In MJ, M ${ }^{*}$ is uniformly reduced to i. Elsewhere, viz. after ${ }^{*}, *_{n}$, and ${ }^{*} y$ in our present array of cognates, the M reflex is u for all dialects. One lone instance of ofter *l reflects another instance of separate dialect divergence and dialect borrowing -a complication which meets us at almost every turn of the way in discussing o vs. u in M and C, and e vs. i in C. The C data are somewhat scanty for $*_{u}$; but seem to indicate u after ${ }^{*}$, and e after ${ }^{*} t$ and $* \theta$.

Sets illustrating *u follow: (264, *t) M-SM, SE yūcī powder,

 horn, bone. ($270,{ }^{*} \mathrm{k}$) M-SM hīkì, M-SE yïkì; $T z_{i}{ }^{3}{ }^{k}{ }^{2}{ }^{2} \mathrm{~h}$ corner. (271, *k) M-SM, SE ? 1 -sikiki to play; C nā-dà kùuku to adorn; T du ${ }^{3}$ -ku^{3-4} to play. (272, *1) M-SM vílu; T $\mathrm{zi}^{3} \mathrm{lu}^{3}$ cat. (273, *1) M-SM
 to cut; $T(\mathrm{~g}) \mathrm{a}^{3}{ }_{\mathrm{ni}}{ }^{3-5}$? to cut, to chop. (277, *if) M-SM tīini, M-SE
 and T forms). (278, *y) M-SM te ${ }^{9} y \mathrm{y}$; $\mathrm{T}\left(\mathrm{gi}^{3}\right) \mathrm{ri}^{3}{ }^{3} \mathrm{yu}^{3} \mathrm{~h}$ to spoil, to rot.
3.2.2. Nasalized reflexes.
3.2.2.0. It is probable that some PMx roots ended in an inherent
*m, while other roots ending in a vowel, or vowel plus *?, received suffixal (or enclitic) *-m in grammatical construction. The former sort of roots are likely those that survive in our sets with nasalized vowel in all three languages (except for reduction of nasal quality by dissimilation after nasal consonant in certain M couplets), while the latter sort of roots are probably those with randomiy distributed nasalization in the three languages. But while this is generally probable, it is nevertheless possible that a given set with M, C, T nasalized vowel may result from PMx root which has happened to survive everywhere only in the form with the postposed ${ }^{*}-\mathrm{m}$. Furthermore, it is possible that a given set with inconsistent CV and Cy reflexes in the three languages may reflect an early development in one of the languages according to which a non-nasalized vs. nasalized grammatical alternation was analogically extended to a root basically of the *CVm or even of the *CV variety but not characterized in PMx by this alternation. In brief, there are not many sets in which it is possible to claim with certainty that a PMx *CVm lies back of the nasal reflex in one or more of the languages. It seems that we may consider it certain that such an alternation characterized PMx-since the phenomenon is much too wide-spread and general to be otherwise-without being unduly dogmatic about the status of a particular nasalized reflex in a given instance. In the array of cognates listed in section 7, all reflexes of a given vowel with a given consonant are listed under the schematically arranged reconstructed $* C V$ without attempt to label nasalized vs. non-nasalized reflexes according to origin in PMx vs, origin in an early stage of a given language. Immediately below, however, in the comments here made concerning nasalized reflexes of particular vowels, an attempt is made to distinguish these two chronologically different developments whenever it seems reasonably feasible.

When there is evidence for both *-? and *-m in the same PMx form either * CVm ? or *CV? m can be reconstructed, but the former is more probable in that A forms occur with final $-\mathrm{m}^{2}$ and final -m ? m but not with final $-? \mathrm{~m}$. This would indicate that there was a metathesis of PMx postposed *-m with original *-? of the PMx root. 3.2.2.1. Nasalized reflexes of PMx $\boldsymbol{*}_{i}$ are on the whole identical with those already described for this vowel under the non-nasalized reflexes except, of course, for the additional nasal timbre. The T nasalized reflex of $P \mathrm{Mx} \boldsymbol{*}_{\mathrm{i}}$ is ą after ${ }^{* ?} \mathrm{~m}$. The M nasalized reflex of $\mathrm{PMx} \boldsymbol{*}_{\mathrm{i}}$ after $\mathrm{*}^{\mathrm{w}}$ consists simply in the nasalization of the vocalized labial component of the preceding stop; the PMx vowel as such is lost. Set 10 mentioned under 2.2.4.3.3. is a very probable case of PMx *xi/*xim—since there are etymological doublets of
divergent meanings in both M and T . On the other hand, set 48 in which T has an etymological doublet $\mathrm{ga}^{3} \mathrm{w}^{3}$ to be (copulative), to become vs. na ${ }^{3}$ wi 3 to terminate, while M and C have cognates with only non-nasalized reflexes very probably reflects a nasalization in PT, since there is no other instance of nasal vowel after *w in our array of cognates (except where ${ }^{*}$ w is itself a replacive morph in the reconstructed verb aspect system) and consequently PMx*-Vm is assumed not to have occurred on basic forms after this consonant. Sets 16 and 17 (with ${ }^{* n}$ di) contain C cognates with nasalized vowel while the M and T cognates have only non-nasalized vowels. Similarly, set 19 (with *li) and set 20 (with *mi) display a nasalized reflex only in C. It is rather plausible that C in these sets has developed the nasalization independently. Hlustrative sets fol~ low: (21, *? mi) $\mathrm{M}-\mathrm{SM}, \mathrm{SEka}$? $\mathrm{mu}, \mathrm{MJJ} \mathrm{ka}$? mi to burn something;

 wrap around; C kwàakù to wrap around; T na ${ }^{3} \mathrm{kwi}^{2}{ }^{2} 3$ to wind up,

3.2.2.2. Nasalized reflexes of PMx I are, aside from addition of nasal timbre, like those previously described for this vowel except that $\psi_{i}>\mathrm{T}$ a after $*_{k}$ when the nasalized reflex harks back to PMx ${ }^{*}$ im. After ${ }^{*} \mathrm{x}$ the following nasalized reflexes occur: M-SM, M ą, M-SE $\underset{q}{ } ; T{ }_{z}$. Notice, by contrast, that the nasalized reflexes after
 n there appears to have been no nasalized vs. non-nasalized contrast left on disappearance of final $-\mathrm{m}$ following $*_{i}$ in PMx . The vowel ${ }^{-}$i was phonetically nasalized in these circumstances because of the preceding nasal consonant whether or not it was followed by a second nasal consonant. A given language may yield either a nasalized or a non-nasalized reflex for $*_{i}$ according to the particular nasal consonant, nevertheless there is no apparent contrast aside from one set in which the C may have analogically denasalized the vowel with subsequent loss of nasalized alternate. However, whatever may be the provenience of these nasalized reflexes,
 the former under certain conditions in M-SM, SE. In C, *? mi gives ? mą in one set, and ? ma in another -with the latter resulting from the C denasalization posited above; and *nin gives yut reflex in CVV forms. In $T,{ }^{* ?}$? mi $>$? ą or ? mą (for loss of *m see 5.3.1.3.), and $*_{\text {nin }}>$ yą.

Most of the sets involving a nasalized reflex of PMx * are
ambiguous as to the choice between $P M x * i m$ or nasalization in M, C, or T. Set l04, which seems to reconstruct as *?im (but which involves some apparent phonological difficulties possibly resulting from the fact that the rarity of this ultimate ? V combination does not yield us enough data to study the problem carefully) gives con-

 nasalized reflex only in T, but the presence of an etymological doublet pair with two contrasting nasal vowel qualities makes it probable that one is a reflex of PMx *im, while the other is a T development: $M-S M$ yūkū mountain; C hîiki hill, ?dáaḱ a pile, tíiko a little hill; T kihi ${ }^{3}$ mountain, da ${ }^{3} \mathrm{kaq}^{3}$ slope, spur (<PMx ${ }^{*}$ im), da ${ }^{3} \mathrm{ki}^{2} \mathrm{~m}$ hill of corn, nose (nasalization in T itself). Taking the cue from this etymological doublet pair, we can now proceed to i dentify kiz ${ }^{3}$ river in set 78 as a T nasalization, but $k_{z^{2}}^{3-4-3}$ seeds in set 75 , and kz^{3} squash in set 76 as reflexes of $\mathrm{PMx}{ }^{*}$ im. In set 76 an aberrant ku reflex in C (which presumably harks back to ${ }^{*}{ }^{*}{ }_{\mathbf{i}}^{\mathbf{i}}$ rather than to *kī cf. $77-80$) raises the possibility of a late PMx alternation ${ }^{*} k^{w_{i}} / \mathrm{kim}\left(<\right.$ earlier ${ }^{*} \mathrm{k}^{\boldsymbol{w}} \mathrm{im}$).

The following sets illustrate nasalized reflexes of $*_{i}$ after $*_{x}$, $* x^{w}$, and nasal consonants as described at the beginning of the paragraph preceding the one above: (85, *xi) M-SM y苗hä, M-SE

 $\mathrm{dą}^{3-4 / y q^{3}-4}$ salt.
3.2.2.3. Nasalized reflexes of PMx *a likewise generally parallel the non-nasalized reflexes of *a. There are, however, certain special developments. (a) After *n and *in in couplets of M CVV and CVCV pattern PMx $\ddagger a m>M$ u; after these same consonants in couplets of CV?V pattern (with both vowels identical) PMx *am > \mathbf{M} ц. This is probably a development of PMx and PM *arm rather than a latter M vowel nasalization in that the most plausible phonetic rationalization of the rather unusual vowel reflex in M is that it reflects influence of the PMx and PM bilabial nasal. Likewise,
 am rather than to a M vowel nasalization in that loss of ${ }^{} m$ from *? m cluster is most easily explained by positing such a development (See 3.1.4.2.). There is a special development, late PMx
 above situation involving ${ }^{*} ? \mathrm{~m}$, there is no distinction of nasalized
vs. non-nasalized reflexes in M following ${ }^{*} m$ and ${ }^{*} y$; presumably both PMx*a and *am are merged in M a after these consonants. This fact together with the consideration that even when PMx *am $>\mathrm{M} u$ the reflex is not nasalized may indicate that there was a weak sub-phonemic nasalization of a conditioned by the preceding nasal consonant so that loss of following nasal did not leave any contrasting nasal timbre. The rather weak phonetic nature of the nasalization is suggested by the fact that these vowels are merged with the non-nasalized rather than with the nasalized M vowel phonemes. However, with medial - ${ }^{\text {? }}$. in the form the nasalization appeared to have been stronger so that PMx *am has a M reflex which is merged with the nasalized high back vowel, viz., y. Notice, finally, that the development after ${ }^{*} y$ remains obscure, since it is difficult to imagine how this particular consonant would result in a neutralization of following nasalized vs. non-nasalized qualities. (c) Following *t, PMx *am $>\mathrm{M}$ and $\mathrm{T} \underset{\mathrm{w}}{\mathrm{w}}$; in this situation final ${ }^{*}-\mathrm{m}$ conditions a rounded vowel reflex in T as well as in M.

The developments in the preceding paragraph are such that it is possible to claim with some assurance that the M reflexes in question are derived from $P M x * V m$ rather than from innovations in M itself. I now list a few nasalized reflexes which, like other nasalized reflexes which involve nothing more drastic than the addition of nasal timbre to reflexes of *a already described, are in many sets difficult to classify as to origin in PMx or in an early stage of one of the three languages: C has a reflex $\mathcal{\varepsilon}$ e or $\underset{\varepsilon}{ } / \dot{z}$ after $*^{n} d$. T has a reflex \boldsymbol{c}_{i} for $C V$ combination ${ }^{*} k a$ in the very special set of circumstances ${ }^{*} k a^{2} \mathrm{kal}^{2}$; this is parallel to the non-nasalized reflex ce in the same circumstances (see 3.1.1.2., 3.2.1.4.), It is of some interest here that A-which we do not regularly cite in this study-preserves am reflex of PMx *am. This witness is crucial, although outside the framework of this study.

In this paragraph I list illustrations for PMx *am after nasal consonant and *y as described two paragraphs above. In these sets it appears probable that the nasalized M vowels or the non-nasalized a or u reflex are developments of $\mathrm{PMx} * \mathrm{Vm}$. This fact, along with A am reflex for many of the sets makes it fairly certain that M, C, T nasalized reflexes hark back to PMx *am (166 , *nam) M$S M, S E, J$ nuù face, towards, in front of, place where, time when;
 of, place where, time when; A nam (sg) face, edge. (167, *nam?) M-SM, SE, M fiūnū; C yāānà; $T n^{*}$ ą $^{3} \mathrm{~h}$ net-work bag (C reflex here either bears witness to a PMx *na variant or reflects a denasalization development in that language itself). (170, *fiam) M-SM, SE

J n̄ūù; C y

 Mv form is obscure). (162, *mam?) M-SM, SE, J máa he, him-

 Columbian stone idols; T yą ${ }^{3}{ }^{3}$ ąhą $^{4-3}$ god, saint, gi^{3} ? yąhą ${ }^{4-3}$ holy

 wood, firewood, tree; Ats? am (sg), $\mathrm{n}^{\text {? }}$ am (pl) stick.

The following sets illustrate nasalized reflexes of $\mathrm{PMx} * \mathrm{a}$ of less certain status historically-although some are quite probably

 spatter; $T \mathrm{da}^{3} \mathrm{ne}^{3-4 / n} \cdot \mathrm{e}^{3-4-3}$ water (in this and the preceding set, the nasalization in the C forms is probably a C innovation). (126,

 stance of late PMx alternation consequent on reduction of sequence of labials.
3.2.2.4. Nasalized reflexes of PMx *s include only: (1) Two M, T sets with nasalized reflexes in both languages (M y. T z) following *k. (2) Three M, C, T*sets with nasalized reflexes in T (in all three sets), in C (in two of the three sets), and in M (in one of the three sets) following *n. The reflexes are: $M y$ (in CV?V) and u (in CVCV); Cuor o(non-nasalized) and y or q (nasalized); T ą. (3) One M, T set in which the T reflex is nasalized ($M \circ, T$ ą) following *y. Of these sets there is perhaps a presumption in favor of believing that those following *k may possibly preserve reflexes of $\mathrm{PMx} *{ }^{*} \mathrm{~m}$, in that the M, T cognates (no C in these sets) are consistently nasal. For two of the sets with ${ }^{*}$ following ${ }^{*} n$ there are A cognates with am which afford direct evidence of PMx *3m. The set following *y is the most ambiguous in respect to PMx *om vs. vowel nasalization in one of the particular languages;
in this set the nasalization of the T cognate is suspect. These six sets follow: (202, *ks) M-SM, J súkú; T $\mathrm{za}^{5} \mathrm{kaç}^{5-3}$ tall. (203, *ko) M-SM, SE sūkù neck; T $g a^{3}-\left(y_{i} i^{3} a^{2}\right)$ windpipe, $z i^{3}-g z^{4}-5$ throat (with *k possibly weakened to g in the former phrase and subsequent generalization of this weakened form; cf. under*k in 3.1.1.2.). (221,

 to run, (g) $a^{3} n_{z}^{2} h$ to weave; A nam to run, hnam looms. ($223,{ }^{*} n$)
 rettes (older meaning was probably tobacco; cf. T ko ${ }^{3} \mathrm{~h} \mathrm{ny}{ }^{3}$ tobacco -which may be a borrowing from M). (233, *y) M-SM, SE, J koyo; T (g) $a^{3} \mathrm{ya}^{3-4} \mathrm{~h}$ to pour out, to empty.
3.2.2.5. There is no clear evidence that both *u and *o occurred before $\%-m$; very probably only one of these vowels occurred in that situation. In a few of the sets here pertinent-sets characterized by both nasalized and non-nasalized reflexes randomly distributed through the three languages -there is an M, C or T non-nasalized reflex that indicates *o rather than ${ }^{*} u$ (cf. 3.2.1.6. and 3.2.1.7.). I assume, therefore, that PMx *o alternated with *om in these particular sets, and posit *om rather than *um. However, having posited $P M x *$ om to the exclusion of ${ }^{*} u m$, we are confronted again with the problem of distinguishing PMx *om from later nasalizations in the particular languages. The nasalized reflexes are summarized together in the following statements; in statement (2) in particular it is phonetically feasible to trace certain developments as stemming from PMx *om in that while some of the reflexes show influence of a bilabial (viz. *-m) there are others that do not: (1) M has y after ${ }^{*} t, * k$, and $*$? (2) M has also the following reflexes -presumably < PMx *om: u after ${ }^{*} n$ and ${ }^{*} n, ~ M-S E q$ after N. The following contrasting nonnasalized M reflexes are presumably from PMx *o (although both *o and *u may be merged in the M reflexes in these particular environments-in which case we would assume that both these vowels alternated with PMx *om): M-SM, J i after fi and after $t<* \operatorname{tn} ; \mathrm{M}-\mathrm{SE} \mathrm{i}$ aftex $\mathrm{N}(<* \operatorname{tn})$ and i after f . (3) T has nasalized reflex u. (4) C has y in CVV and CV $\geqslant V$ forms and possibly 9 in CVVCV forms (there is but one set, however, to witness to the latter.)

Illustrative data follow: (235, *to /*tom) M-SM tự̆ M-SE Nųý black; C tíu soot; T ($\mathrm{re}^{3} \mathrm{ko}^{4-5}$) cq^{5-3} black (zapote), čo ${ }^{3-5-4}$ soot. (244, *ko) MッSM, SE 各kù niece; C dáákù nephew; T zdu ${ }^{3} \mathrm{kq}^{4-5}$? nephew (similarly, M 'nephew' $\sim C, T$ 'niece'). (243, *ko) C dàkųut to dry; T na ${ }^{5} \mathrm{ko}^{5-3}$ dry. (245, *ko) M-SM đ̌úkư louse, cūkȳ fly; $T \mathrm{zu}^{3} \mathrm{ku}^{3}$ insect, animal (for T, I assume that PT ${ }^{*}$ fo $>\mathrm{ku}$
after development of žu ${ }^{3}$ - in first syllable; the sequence u...o does
 ${ }^{7} y^{5}{ }^{7} y^{5}$ five (cf. A aum five, kin ${ }^{\text {? }}$ aum fifteen). (256 , *fiom) M-SM (y̛ukù) fiuù palm-tree, M-SE fīù palm; C hity (257, *fio/*fiom) M-SM tífī, M-SE Nii, M-J tifii; C ?dạ̧́ fingernail.
 the consonantal alternations see 4.1.1.1.). (254, *no) C kūùno,

NOTES

1. Certain M dialects not cited in this study have uniform d reflex (voiced alveolar or dental spirant) of $\mathrm{PMx} * \theta-$ thus paralleling C. Representative of such dialects is the M of Tonahuixtla, Puebla (data from Ann Dyke). I posit PM *d reflex with subsequent palatalization to s / x in such M dialects as those included in this study.
2. The M dialect of Tonahuixtla, Puebla is typical of a group of dialects in which reflex tn occurs.

4. Phonological developments in penultimate syllables

4.1. Patterns of consonantal alternation in penultimate syllables. 4.1.0. The phonological developments in PMx penultimate syllables are much harder to trace than those in the ultimate syllables. This difficulty springs from the fact that, while there is a modicum of consonantal alternation in the ultimate syllables, such alternation is typical of the penultimate. Procedurally then, one finds that the consonants of the penultimate reconstruct with less consistency than the vowels. Proceeding, however, on the assumption that the consonants of the penultimate reconstruct on lines parallel with those laid down for the consonants of the ultima, one is able to reconstruct the patterns of consonantal alternation. These reconstructed patterns are of two differing types which I term paradigm A and paradigm B, corresponding to PMx noun and PMx verb respectively.
4.1.1. Paradigm A- which most often involves cognates that are nouns in the present day languages-essentially consists of $\% \mathrm{t}$ - or $* \theta-$ alternating with ${ }^{*} y$ - plus a few additional elements. The ${ }^{* t}$ or $* \theta$ - element is the same as the $* \theta$ - definite morpheme posited in 3.1.4.4.; the *y- was possibly a morpheme marking indefinite. Beyond this, it seems pointless to conjecture as to the semantic import of the other elements involved in the sub-varieties of paradigm A as described below:
4.1.1.1. ' t ' declension consists of ${ }^{* y} \mathrm{y}$, ${ }^{* t} \mathrm{t}$, and ${ }^{*^{n}} \mathrm{~d}-$. In pre-PMx times this declension probably represented ${ }^{*} y-$, and $*(m) t-; * m t$ had become ${ }^{*^{n}} \mathrm{~d}$ by PMx times. One atypical set of this sort seems to exhibit $* y-, * t-$, and $* x-$ alternation. Set 62 is typical of this declension; although this set involves cognates that are M, C, T verbs rather than nouns, the verbs are presumably derivatives of
 (${ }^{\mathrm{A}} \mathrm{d}-$); $\mathrm{T} \mathrm{zu}^{3} ? \mathrm{wi}^{3-5}$? to be afraid (${ }^{3} \mathrm{t}-$). More frequent than the full ${ }^{*} \mathrm{y}-$, ${ }^{*} \mathrm{t}-$, ${ }^{* \#} \mathrm{~d}-$ alternation $\mathrm{is} * \mathrm{y}-$, ${ }^{* t}$ - alternation in such sets as 70 :
 examples of this declension see 77, $107,110,135,200,209,229$, $234,240,245$ (*y*, *t-); sets 44, 86, 266, (*t-, *n $\mathrm{d}-$); and set 71
(*y-, *t-, * $\mathrm{x}-$).
4.1.1.2. ' θ ' declension consists of ${ }^{*} \mathrm{y}$, ${ }^{*} \theta-$, $* \tilde{n}-$, and ${ }^{* n} \mathrm{~d}-$. In pre-PMx times this declension probably consisted of $*(m) y-$, and * $(\mathrm{m}) \theta-$; F_{my} and ${ }^{\mathrm{m}} \mathrm{m} \theta$ had become ${ }^{\mathrm{ff}}$ and ${ }^{* \mathrm{n}} \mathrm{d}$ respectively by PMx times. In two atypical sets of this type *1- also occurs; in two other such sets $\boldsymbol{*}_{\mathrm{x}}$ - occurs. Set 264 is illustrative of this declen-

 what more frequent than the above are sets involving simply ${ }^{\mathrm{y}} \mathrm{y}$-,
 squash. For further examples of this declension see sets 66, 67, $68,69,74,76,132(* y-, * \theta-)$; sets $226,238\left(* y-, * \theta-, *^{n}{ }^{\mathrm{d} *}\right)$;

4.1.1.3. ' n ' declension consists of $* \mathrm{y}-$, $*_{\mathrm{n}}$, ${ }^{*} \mathrm{t}-$, and ${ }^{2} \mathrm{tn}-$. Two sets of this sort have $*^{n} d, *_{n}$ alternation. This declension type is not as statistically frequent as the former two declension types. Set 277 illustrates *y-, *t-, *tn- alternation: M-SM tiñ, M-SE

 For further examples of this declension, see set $40\left({ }^{*} t-, *_{n-}\right)$; set 58 (${ }^{(} \mathrm{y}-, *_{t-} *_{\mathrm{n}-}$); and sets $227,230\left(*^{\text {n }} \mathrm{d}-, *_{\mathrm{n}-}\right)$.
4.1.1.4. Sets in which no reflex of $* t-$, $* \theta$, or $*_{n-}$ occurs are ambiguous as to declension type; cf. set 39 (${ }^{*} y-$, ${ }^{* n} d-$); sets 30 ,
 (* ${ }^{\mathrm{n}} \mathrm{d}-$, ${ }^{2} \mathrm{l}$-).
4.1.1.5. There are three sets that seem to involve both *t- and * θ - in the same paradigm. It is necessary to examine these sets in order to see whether this overlap between the declensions is real or only apparent. These sets are sets 101, 77, and 202. We first examine set 101 : M-SM tī? vī to suck, suck blood, practice. witchcraft (${ }^{*} \mathrm{t}-$); C tiì ${ }^{2} \mathrm{vi}$ to suck (${ }^{*} \mathrm{t}-$); $\mathrm{T} \mathrm{zdu}^{3}$? waha ${ }^{4-3}$ witchcraft ($* \theta_{-}, \mathrm{PT} * \mathrm{z} \mathrm{d}$). In that this set contains the T zd reflex of PT *žd, it need not detain us long; the overlap is here not clearly one be-
 of which remains obscure (4.2.7.2.). The crucial forms from set 77
 tilk6 a little hill, ? tíikù top, summit ($* \mathrm{t}-$); T da ${ }^{3} \mathrm{kta}^{3}$ slope, da ${ }^{3}{ }_{\mathrm{kiz}}{ }^{2-1}$ a hill of corn, the nose ($* \theta-$). (For the differing vowel reflexes in the T ultimate syllable, see 3.2.2.2.). In evaluating this set for
its evidential value regarding $* t-* \theta$ - overlap, it is well to note the penultimate vowels. Significantly enough, the C and T forms reconstructing with $* \theta$ - reconstruct also with penultimate vowel ${ }^{*}$ a; while the M forms reconstructing with ${ }^{*} y-$, and the C forms reconstructing with ${ }^{*} t-$ reconstruct with penultimate vowel ${ }^{*} u-$. Apparently then, we have in this set forms deriving from two different PMx nouns, one noun with penultimate vowel *u that belonged to the ' t ' declension, and another noun with penultimate vowel ${ }^{*}$ a that belonged to the " θ " declension. The overlap between declensions is only apparent in this set. The third case of apparent overlap is in set 202; M-SM súkí (* $\theta-$); T $\mathrm{za}^{5} \mathrm{k}_{\mathrm{k}}{ }^{5-3}\left({ }^{5} \mathrm{t}-\mathrm{)}\right.$ tall. This is possibly the best set from which one could argue for overlăp between the declensions, but the forms of the set are few and we may here have mixture of forms from two different PMx nouns. However, it is perhaps significant that the M and T forms can be reconstructed with penultimate vowel *s while in set 77 two different penultimate vowels must be reconstructed. In summary then: of the three cases of apparent overlap between ' t ' and ' θ ' declensions only one set gives us anything at all solid, but the hypothesis of mixture of forms from two declensions cannot be ignored even in that one case. It remains that the ' t ' and ' θ ' declensions are clearly defined patterns within paradigm A.
4.1.l.6. It is interesting to note that M typically preserves *yforms of the above paradigms, while T preserves $* t$ - and $* \theta$ forms with much greater frequency, and exhibits a ${ }^{*} y / * d$ alternation in its present day grammar (cf. 159, 172, 190, and 231). Nevertheless, the reality of the assumed PMx consonantal alternations described above is established by the following facts: (1) M in a few sets (3, 147, 238) does preserve ${ }^{*} \theta$ - forms where C and T do not. (2) C agrees with T witness to $* t$ - or ${ }^{*} \theta$ - in a few sets ($24,27,77,107$, 226) as opposed to M witness to $* y=$. (3) An altered form of this consonantal alternation exists both in A as well as in T (see discussion under 3.1.4.4.).
4.1.2. Paradigm B-which most often involves cognates that are verbs in the present day languages-involves the following consonan-
 four elements were tense-aspect morphemes with some such meanings as: (I) potential or future, (2) continuative or present, (3) completed or past, (4) state of completion or prior past. These four tense-aspects survive as such in C where they are indicated by the abbreviations po, pr, pt, and pp respectively (CMM, p. 50). Nevertheless, all three languages have modified the original tenseaspect system in various ways. These grammatical developments
are described below before considering the consonantal alternations involved in this reconstructed paradigm:
4.1.2.1. M, C, T grammatical developments obscuring PMx paradigm B.
4.1.2.1.1. M has completely lost the distinction between ${ }^{*} \mathrm{k}^{w}$ - and ${ }^{*} k$ - aspects. By a sort of syncretism, some M verbs have come to have $k^{\prime \prime}$ - in their basic form (the M potential), while others have k-. In a few sets (notably 84), related verbs from the same PMx root exhibit $k^{w}-\mathrm{vs}$. $\mathrm{k}-$. Filling somewhat the function of the old ${ }^{*} \mathrm{k}$ completitive or past tense-aspect is the M construction ni (completitive) plus verb (with form of the M continuative except for tone). The old $*_{x}-/ *_{x i}-/{ }^{w}$ w- $/ * y$ - aspect survives as a living part of M structure, but the third allomorph is eliminated; there has been some extension of the palatalizing effect of the second and fourth allomorphs (cf. set 248 which has kūsù in the basic form but līsi in the continuative); and there has been a regular tendency to raise the tones of the continuative (this may have beginnings in PMx itself, cf. set 222). The ${ }^{* n} \mathrm{~d}-/ *^{n}$ - aspect survives in some verbs as a sort of stative formation (cf. 48 kưu to be, to be able, ${ }^{n}$ dūu to become); in other verbs it has become the basic form in one or more of the M dialects (sets 8,52).
4.1.2.1.2. C has somewhat-but by no means entirely- syncretized the $*_{k}{ }^{W}$ - and ${ }^{*} \mathrm{k}^{-}$aspects, so that a potential of a given C verb may hark back to either one or the other form. Nevertheless, the latter tense-aspect (the completive or past) has been preserved as a living category in the course of the following developments: (1) Many verbs originally taking $\mathrm{PMx} * \mathrm{x}$ - or ${ }^{*}$ w- continuative were analogically shifted to ${ }^{x}$ xi- continuative. (2) The ${ }^{\text {i }}$ vowel of the ${ }^{*}$ xi- continuative was then extended to the $* \mathrm{k}$ - aspect of most verbs. This was presumably a very early development in PC. (3) Following this, the PC *ki went by regular sound change to $\chi_{i}-$ which is typically the formal indication of the C past. (4) Allomorph $* y$ - of the $P M x$ continuative has survived as C i- present with analogical extension to many C verbs. (5) In more recent times two further sorts of analogical developments sporadically modified the form of the C past in verbs that had not shared in steps (1) and (2): (a) some verbs with ka- past received vowel i of the present, thus passing through step (2) after the sound change of step (3) had ceased to operate; these verbs remain ki- or ke- in the past (123, 145); (b) others analogically became ca- (143). (6) There still remain, however, a few verbs with ka- form in the past (160). (7) Because of the syncretism of ${ }^{*} \mathrm{k}^{w}$ - and ${ }^{*} \mathrm{k}$ - forms referred to at the head of this paragraph, there are C verbs that have the same form in the
potential and past (63, 116). Other verbs distinguish the potential from the past by virtue of a tone change in the latter (101, 103). Tone pattern mid-low on the penultimate and low on the ultima has become a favorite C tone pattern for the past (6.1.3.7.). (8) Somewhat akin to the development sketched above is the C extension of vowel i of the present and past to the stative or prior past which consequently becomes quite regularly ndi- or ni-. This preference for vowel i in the last three tenses results in a certain amount of similarity between these forms as opposed to the form of the potential.
4.1.2.1.3. Sound change in T wrought considerable havoc with the old PMx tense-aspect system. PMx consonant-vowel penultimate
 regular development. There was, therefore, obliteration of the distinction between PMx completitive and continuative for verbs having the ${ }_{4}^{*} x$ - allomorph before penultimate vowels $* a$ and $*$. Furthermore, since the $*_{x}$ - allomorph seemed to have been preferred to *xi- in PT (a tendency contrary to that in PM and PC where the sphere of distribution of the 'palatalizing' allomorphs was extended), this was a serious impairment of the distinction between these two PMx aspects. Furthermore, before $*_{i}$ (where sound change did not obliterate the distinction between PMx *ki and $*_{x i}$), the sound change gave, on the contrary, reflexes so divergent
 possibly impaired. Somewhat less serious, but nevertheless disturbing, was the merger of ${ }^{*} \mathrm{k}^{\boldsymbol{w}} \mathrm{O}$ and $\mathrm{*k}_{\mathrm{k}}$ into T ga-. Since ${ }^{*} \mathrm{k}^{\mathrm{w}}$ occurred only before $P M x * i, * a$, and $* \rho$ in penultimate syllables, and since the latter vowel was statistically rather frequent in PMx, the merger of ${ }^{*} k^{*} כ$ and $* k$ meant an impairment of the distinction between the $\mathrm{PMx} * \mathrm{k}^{w}$ - potential and ${ }^{*} \mathrm{k}$ - past. Sound change here aided the general M, C, T tendency towards syncretism of the ${ }^{*}{ }^{W}{ }^{W}$ and ${ }^{*} \mathrm{k}$ - forms. Only in one respect does T preserve more clearly than M or C a feature of the old aspect system, and this is in the survival of the old *w- allomorph of the continuative or present in a restricted class of T verbs (see below).

On the ruins of the old PMx aspect system, T built a new system along the following lines: (1) Ag(V)-morpheme (comprised historically of the remnants of the aspect-marking morphemes of the first three PMx aspects) became the marker of a non-continuative aspect. (2) This $g(V)$ - element was dropped from the verb to form a new continuative aspect (e.g. ga ${ }^{3} \mathrm{xa}^{2-1}$ sang vs. $\mathrm{a}^{3} \mathrm{ca}^{2-1}$ singing; $\mathrm{gi}^{3}{ }^{3} \mathfrak{c}^{2-1}$ washed vs, $n \underset{\text { ą }}{ }{ }^{2-1}$ washing). An initial model for
this development may have been provided by the T elimination by regular sound-change of initial ${ }^{*} y$ - from continuatives of the ' y ' conjugation (cf. set 248). (3) In a development, the details of which are as yet obscure, the tones of the forms with the $g(V)$ element were lowered to form a new potential (e.g. ga ${ }^{4 \times a^{4}}$ will sing and gi ${ }^{5}{ }_{n a ̨}{ }^{5} h$ will wash). (4) Some verbs have retained forms with dV - or nV - elements (coming by regular sound change from the $P M x{ }^{* n} \mathrm{~d}-/{ }^{*} \mathrm{rl}$ - aspect). But there has ceased to be any paradigmatic connection in that these elements now pattern as derivative rather than inflectional. It is, indeed, a synchronic problem in T itself as to whether or not these elements should even be accorded morphemic status in many verbs.
4.1.2.1.4. In all three languages some old forms basically of paradigm A, i.e., PMx nouns, are given aspectual proclitics or prefixes and treated as verbs. This gives an overlap of paradigm A with paradigm B in some sets. Furthermore, one PMx aspect is sometimes 'frozen' as the stem form of the verb and appropriate particles (abbreviated auxiliary verbs) introduced to round out the aspects; this is especially typical of C (sets $48,113,116,123,227$). 4.1.2.2. Paradigm B as reconstructed-once one has cleared away the M, C, T developments described above- has four subvarieties according to the allomorphs of the continuative or present aspect. These conjugations are illustrated below.
4.1.2.2.1. The ' x ' conjugation is well illustrated by set 84: M-SM

 with obliteration of the h reflex by metathesized?), と吕idi (pt< PMx *k- plus vowel i from the pr , and with passage of $*_{\mathrm{ki}}>\mathrm{r}_{\mathrm{i}}$.) n ? difidi (p p $<P M x{ }^{*}$ nd- plus vowel i from the pr) to shake something; T (g) $a^{3} \mathrm{ci}^{3} \mathrm{~h}$ to touch, feel (with merger of $\mathrm{PMx} * \mathrm{k}(\mathrm{a})$ - and ${ }^{*} x(a)$ to T ga-; with develepment of new cont $a^{3} \mathrm{ci}^{3} h$ by loss of $g-$; and with development of po $\mathrm{ga}^{4} \mathrm{ci}^{3} \mathrm{~h}$ will touch.) Set 181 is one of the rarer sort of sets in which C does not extend vowel i through the last three tenses of the paradigm: M-SM $\mathrm{k}^{\mathbf{w}} \mathrm{a}^{\text {? }} \overline{\mathrm{a}}$ ($\mathrm{po}<\mathrm{PMx}^{*} \mathrm{k}^{\mathrm{W}}-$),

 (<PMx ${ }^{*} n_{n-}$) to give, to sting; $T(g) a^{3} 9$ wi $^{3-5}$? to give, to strike (with merger of $\mathrm{PMx} *_{k}(\mathrm{a})$ - and ${ }^{*} \mathrm{x}(\mathrm{a})$ - to $\mathrm{T} \mathrm{ga}^{3}$; with development of new cont by loss of $\mathrm{g}-$; and with development of new po ga ${ }^{5}{ }_{\mathrm{wi}}{ }^{5}$? will give). For further examples of this conjugation, see sets 7 , 21, 36, 116, 274, 275.
4.1.2.2.2. The 'xi' conjugation (not presence of pentultimate syllable ${ }^{*} x i-$ per se, but a $* x i-p r$ alongside of other vowel quality in the reconstructed penultimate syllables of the other aspect forms) is illustrated by set 222: M-SM kūnū (po), kúnū (cont) (both < PMx ${ }^{*} k^{w}$ (a) with analogical creation of new cont by raising of tone after this verb split off from the following one) to weave; kuñ (po, same form as above), hiñ (cont < PMx *xi-) to run; C kánu (po< PMx ${ }^{*} \mathrm{k}-$), hénd ($\mathrm{pr}<\mathrm{PMx} * \mathrm{xi}$-for the e reflex rather than the expected i, cf. 3.2.1.1.), とénठ ($\mathrm{pt}<\mathrm{PMx} *$ k- plus vowel i of the present, and subsequent passage of ${ }^{\text {; } k i->~ と e-), ~ n e ́ n d ~(p p ~}<\mathrm{PMx}$ ${ }^{n}$ d- plus vowel i from the present) to run; $T(g) u^{3} n q^{2} h$ to run
 $(g) a^{3} n \not z^{2} h$ to weave ($\mathrm{PMx} * \mathrm{k}(\mathrm{a})$ - with development of $a^{3} n{\underset{z}{c}}^{2} h$ cont
 has survived here 'frozen' as a T noun). For further examples of this conjugation, cf. $56,59,60,105,123,126$.
4.1.2.2.3. The ' w ' conjugation is illustrated by set $26: \mathrm{M}-\mathrm{SM}$ kīni disgusting, repulsive (M adj. from PMx verb in $* \mathrm{k}-$ aspect);
 disgust (all these forms are built on PMx *w- aspect 'frozen' as the C stem-form); $T n^{3} n_{n i h i}{ }^{4-3}$ disgusting ($<P M x *_{n}$ - aspect). Set 133-involving PMx ultimate syllable of *CV?V structure-illustrates sets of the sort in which *W- survives as a grammatical

 $\mathrm{gaq}^{3}{ }^{3} \mathrm{a}^{3-4} \mathrm{~h}$ went ($<\mathrm{PMx}{ }^{*} \mathrm{k}-$), ną ${ }^{3}{ }^{3}{\underset{q}{ }}^{3-4} \mathrm{~h}$ to go back, return (possibly $<\mathbf{P M x} *_{n-}-$. In positing the priority of the ${ }^{*}$ w- form witnessed to by T as over against a possible ${ }^{*} x$ - form witnessed to by both M and C, I simply argue that analogical pressures are everywhere at work in M and C verb paradigms in the direction of eliminating old $*$ w- forms, while there are no evident analogical pressures to account for the $T \mathrm{w}$ reflex. The $T \mathrm{w}$ - form bears the appearance of an archaic feature in that it characterizes a restricted class of verbs and is no longer a productive pattern. For further examples of this conjugation-involving consonantal alternation in either the penultimate or the ultima, see sets $4,131,134,145,206$. 4.1.2.2.4. The ' y ' conjugation is illustrated by set 9: M-SM, SE khī fever (noun <PMx *k- aspect); C dà-kàǎ̌íi (po), î-dà-kàài

on PMx *k- aspect 'frozen' as the C stem-form); ${ }^{2} \mathrm{y} \bar{u}_{\mathrm{u}} \mathcal{C}_{i}$ (po), I-
 built on PMx *y- continuative 'frozen' as the C stem-form); T (ny ${ }^{3-4}$) $\mathrm{ga}^{3} \mathrm{c}_{\mathrm{i}} \mathrm{Pi}^{4-3}$ to have a fever (noun or adjective $<\mathrm{PMx}{ }^{*}$ koand/or *k ${ }^{w}$ - aspects). Set 11 preserves a M witness to the PMx *y- continuative: M-SM Čī- ${ }^{\text {n }}$ dühī ($<\mathrm{PMx}$ *n $^{\text {n }}$ d- aspect), yùhï (<

 palatalization and passage of *ki> r_{i}), $\mathrm{n}^{\text {? }}$ difč ($\mathrm{pp}<\mathrm{PMx} *^{\mathrm{n}} \mathrm{d}-\mathrm{as}-$ pect) to plant, to sow; $T(g) a^{3} \mathrm{C}_{2}{ }^{3-5}$? to bury (with mexger of PMx ${ }^{*} \mathrm{k}^{*}(\mathrm{o})$ - and $\mathrm{m}_{\mathrm{k}}(0)$ - aspects to $\mathrm{T} \mathrm{ga}^{3}$-; with loss of $\mathrm{*}_{\mathrm{y}} \mathrm{y}$ - from PMx continuative creating by regular sound change one of the vowelinitial forms which served as model for development of T continuative by dropping of $\mathrm{g}-\mathrm{gV}$ - from other verbs; and with development of new potential form $\mathrm{ga}^{5} \mathrm{r}_{i} 5$? by lowering of stem tones. For other examples of ' y ' conjugation, see $28,205,248$.
4.2. Reflexes of PMx consonants in penultimate syllables. 4.2.1. Stops.
4.2.1.1. PMx penultimate *t has uniform reflext in M, C, and z in T. In comparison with reflexes of $*$ in ultimate syllables, it may be noted that: (a) in M, there is no palatalized \check{C} reflex before front vowels in penultimate syllables, although such a reflex does occur in ultimate syllables. (b) T ž reflex is probably the nearest phonetic equivalent of T ' $\check{\text { which occurs only in ultimate }}$ syllables, where it is the regular reflex of PMx *t. (101, *tu-)
 play a wind instrument, to blow. (102, *ti-) M-SM (s) tíví, M-J sa-tivi to exr, to destroy; C dā-tùnvi to destroy. ($107,{ }^{\text {T}} *$ ta- $) \mathrm{C}$ tátá tile; T ži ${ }^{3} \mathrm{xa}^{2-1}$ back of, roof, ($110, *$ to-) $\mathrm{M}-\mathrm{M}$ tutu firewood; T $z_{i}{ }^{3} \mathrm{X}_{\mathrm{y}^{2}}{ }^{2-1}$ (poss) wood, stick, firewood. 4.2.1.2. PMx penultimate ${ }^{*} k$ has uniform reflex k in M; reflex $\mathcal{C}_{\text {in }} C$ before $\mathrm{PMx} \boldsymbol{*}_{i}$, butw reflex k elsewhere; and uniform reflex g in T . In comparison with reflexes of $\mathrm{*}_{\mathrm{k}}$ in ultimate syllables, it may be noted that: (a) In M, there are no palatalized h (M-SM, SE), દ ($\mathrm{M}-\mathrm{J}$) reflexes before ${ }^{*}$ in penultimate syllables (set 26), although such reflexes do occur in ultimate syllables. (b) T g is the lenis stop corresponding to the fortis k which occurs only in ultimate syllables where it is the most frequent reflex of PMx*k. (84, *ka-) M-SM kāsiz to press, to chew; C ${ }^{\circ} \mathrm{k}$ 确di to shake something; T ga ${ }^{3}{ }^{3}{ }^{3}{ }^{3}$ to touch, feel. (105, *ka-) M-SM kātā; C kāātā; T ga ${ }^{3} \mathrm{ca}^{2-1}$ to sing. (123 , *ka-) M-SM kākā; C kááká; T ga ${ }^{3} \varepsilon^{2-1}$
 fever. (197, *ku-) M-SM kītì to boil; C (kū̄ve) kūūtù? to get warm;
$\mathrm{T} \mathrm{gu}^{3} \mathrm{ya}^{3-4} \mathrm{~h}$ to boil (with *t, *y alternation in last syllable). 4.2.1.3. PMx penultimate ${ }^{*} \mathrm{k}^{*}$ has M reflex ku (with loss of following vowel) except when the following syllable began with *? C clus-ter- in which case the reflex is ${ }^{*} k^{\text {w }}$ with retention of following vowel. C has reflex $* \mathrm{k}^{*}$ before PMx *i, and reflex ku (with loss of following vowel) in other situations except that: (a) reflex k occurs before ${ }^{*}\left({ }^{(?}\right.$ w), and (b) reflex $k^{\prime \prime}$ occurs before ${ }^{*}(? n g)$. T has reflex gu before PMx *i and *a (with loss of following vowel), but reflex g before PMx *s (with loss of labial component). (28, ${ }^{*} \mathrm{k}^{\mathrm{w}} \mathrm{i}-$) M-SM
 hear. ($48,{ }^{*} \mathrm{k}^{\boldsymbol{m}} 3-$) M kūu to exist, to be able; C kū̄$\overline{\mathrm{v}}$ e to complete;

 give, to sting (cf. T form <*ka-: $\mathrm{ga}^{3} \mathrm{owi}^{3-5}$? to give, to strike),

 a^{4-3} scar, proof). (254, $* \mathrm{k}^{w} \mathrm{a}-\mathrm{C}$ Cuùnd; $\mathrm{T} \mathrm{gu}^{3} \mathrm{ny}^{3-4}$ to plant, to sow.
4.2.2. Spirants.
4.2.2.1. $P M x$ penultimate * θ has uniform reflex d in C, but divergent reflexes in M, T according to front vs, back articulatory position of the following proto vowel. These conditions were stated under 3.1.2.1. in reference to ultimate syllables and apply with a modicum of adaptation here: In M, reflex soccurs before ${ }^{i}$ i and $*_{i}$, but s elsewhere; in T z occurs before $*_{i}$ and $*_{i}$ (rather than the affricate c which is restricted to ultimate syllables, where it is the regular reflex of * θ before front vowels), and d elsewhere (rather than the fortis t which is restricted to ultimate syllables, where it is the regular reflex of $* \theta$ before proto back or central vowel). (48, *өa-) M-SM sāù, M-J savi rain; C dāave thunder; T $\mathrm{du}^{3}{ }^{2}$ wi ${ }^{3}$ thunder, rain-deity. ($24, * \theta a-$) C ? diin 6 brother; T di ${ }^{3}$ ni^{2-1} brother of a man (cf. M-SM<*fia-: fiani brother of a man).
 palatalization of $\mathrm{s}>$ к); $\mathrm{T} \mathrm{da}^{3} \mathrm{ra}^{2-1}$ (poss) tortilla. ($23, * \theta \mathrm{i}-$) M-SM
 copper-colored, yellow, $\mathrm{zi}^{3}-\mathrm{mi}^{2-1}$ yolk (of an egg) (Notice that the M and T forms have retained typical pre-front-vowel reflexes of $\% \theta$ even though subsequent developments in both languages have resulted in central or back vowel following the reflex of * θ). ($238, * \theta i-$ in M ,

 stomach.
4.2.2.2. PMx *x gives reflex h in $M, C(h, h, \varepsilon$ in $M-S M, S E$ and J respectively) - apparently without the C palatalization
$\left(*_{x i}>y_{i}\right)$ that is characteristic of this phoneme in ultimate syllables． When there occurs in C a metathesis of the $\% ?$ of $P M x * ? C$ medial cluster，this metathesized $?$ replaces the h reflex．T has reflex $\underset{Z}{ }$ before ${ }^{*} i$ ，and g elsewhere；these reflexes are the phonological equivalents of reflexes \mathcal{C} and k which are phonemes restricted to ultimate syllables．（ 176 ，＊xi－）M－SE hī？ñā；T（gi ${ }^{3}$ ） $\mathrm{Zi}^{3}{ }^{3}{ }^{7} \mathrm{yaz}^{3.4} \mathrm{~h}$ to bark（of a dog）．（222，＊xi－）M－SM hínu（cont）to run；C hénd （pr）to run；$T \check{z i}^{3}{ }_{n \not q}{ }^{\text {l－2 }}$ loom（for the semantic tie－in，see 222 ）． （27，＊xa－）M－SM tī－hăni；C（dāyā）hifn6 grandson．（13，＊xう－）C hứと我；T du ${ }^{3} \mathrm{gwa}^{3}$ ri $^{3-4}$ ？niece（with PT＊ga－$>$ gwa－after preceding
 to shake something（with＊xa－replaced in PC by＊xi－and oblitera－ tion of h reflex by metathesized＊？）；$X \mathrm{ga}^{3} \mathrm{ci}^{3} \mathrm{~h}$ to touch，to feel （presumably reflecting merger of $P M x{ }^{*} k a-$ and $* x a-$ ）． 4．2．3．The pre－nasalized stops．
4．2．3．1．$P M x *^{n} d$ gives more uniform reflexes in penultimate than in ultimate syllables．M has uniform reflex ${ }^{n} d$ except for one set that seems to indicate reflex n before following syllable be－ ginning with n ．The C data are extensive enough to establish the above as valid for penultimate syllables in that language；viz．，C has reflex n before following syllable beginning with n ，and has reflex nd elsewhere．$P M x *^{n} d$ does not survive as a cluster in T penultimate syllables，but splits into two reflexes：n before T $દ$

 ${ }^{n}$ dáhí to untie；C ndūū \bar{i} to awaken；T na ${ }^{3} \mathrm{r}_{\mathrm{i}}{ }^{3}$ to untie（presumably $<\star^{n} d a-$ ），na ${ }^{3}$ či 3 to awaken（presumably $<*^{n}$ do－）．（ 17 ，＊n ${ }^{n} d u-$ ）
 $\mathrm{da}^{3} ? \mathrm{wi}^{3}$ to owe．（54，＊in da－）C ndā̄ā̄；T na ${ }^{3} \mathrm{gwi}^{3-4}$ to choose）． （82，＊n ${ }^{n} \mathrm{di}-$ ） $\mathrm{M}-\mathrm{SM}{ }^{\mathrm{n}} \mathrm{di}$ M－SM nūni；C nifing；T di ${ }^{3}{ }^{2} \mathrm{ni}^{2-1}$（poss）corn．
4．2．3．2．It is very doubtful whether $P M x{ }^{* n} g$ and ${ }^{* n} g^{w}$ occurred in penultimate syllables．There is in our cognate sets one apparent reflex of the former in T ．However，in this set（224）it is doubtful whether a PMx penultimate syllable should be reconstructed at all； the M ti－may represent a recent fusion of ti animal（＜＊tu？），the C ？ij－may hark back to some PC yu（m）－element，and the T ngu－ is the doubtful element here under examination．However，it is possible that these preposed elements hark back to PMx＊tu－， ＊yum－and＊n gu－respectively：M－SM tī－nûú hens，tī－ñư（Eini） stars；C ？${ }^{\text {giyy }}$ stars； T ngu ${ }^{3} y^{4-3}$ road－runner．
4．2．4．The lateral，nasals，and semi－vowels．
4．2．4．1．Slightly more substantial，but nevertheless scanty，is the
evidence for $\mathrm{PMx} * \mathrm{I}$ in penultimate syllables. The reflex is uniformly ${ }^{*} 1$ in the two languages (M, T) in which it is attested. (127,
 ${ }^{\text {n }}$ di - also in M-SM, in other M dialects, and in T) M-SM lîki,
 in T) M-SM yakwa crooked; $T \mathrm{du}^{3} \mathrm{gwa}^{3-4}$? to turn, or to twist downward, $\mathrm{du}^{3} \mathrm{gwą}{ }^{3}$? $\mathrm{a}^{2} z^{4-3}$ a forked stick, $\mathrm{la}^{3} \mathrm{kw}^{4}{ }^{3}$ lame. But the T form with la- in the latter set may be a back formation from the preceding form (cf. 142).
4.2.4.2. $P M x *_{n}$ has uniform M, C, T reflex n in penultimate as well as in ultimate syllables. ($91,{ }^{*}$ nam- in C, ${ }^{*}$ na- and ${ }^{n}$ ni- in
 hi ${ }^{5-4}$ open (the latter may be some sort of T development, rather
 of; $T n^{3}{ }^{3} a^{4} \mathrm{~h}$ nothing of, none of. Of interest here is the particle or proclitic *na resumptive-repetitive that occurs as na in all languages. I give here examples of its use even though these examples involve prior syllables: M-SM sa? ${ }^{\text {a }}+\mathrm{na}$ I'm doing it vs. nā-sá? + ná I'm going to do it again; Cn? daâtī + dē he loosened it vs. nān ? daāti + dē he loosened it again; $T g^{3} ? \mathrm{ya}^{3} \mathrm{~h} \mathrm{zi}^{3}$ he did it vs. na ${ }^{3}$ gi^{3} ? $\mathrm{ya}^{3} \mathrm{~h} \mathrm{zi}^{3}$ he repaired it. 4.2.4.3. PMx $*_{\text {h }}$ very probably occurred in penultimate as well as in ultimate syllables. There are ten occurrences of \tilde{n} in the penultimate syllables of the M cognates in our sets. There can, however, be no C or T confirmation of $P M x * \tilde{n}$ in penultimate syllables, since (a) PMx * ${ }_{\text {ñ }}$ and *y uncorditionally merged into C, T y everywhere, in ultimate as well as in penultimate syllables. Consequently C or T reflex *y is often ambiguous as to origin. (b) The situation in regard to the consonantal alternation in the penultimate syllables is fluid enough that it would be possible to contend that \tilde{n} in M penultimates is exclusively a development in that language. Nevertheless, the frequent occurrence of PMx *in in ultimate syllables (where consonantal alternation is comparatively infrequent) along with the occurrence of $M \tilde{n}$ in the ten sets just mentioned, makes it rather probable that PMx *fin occurred in both positions. Therefore, in 4.1.1.1., I not only posited penultimate ${ }^{\text {fir }}$ but accorded it a place in the patterns of consonantal alternation that comprise PMx paradigm A. The consistency and symmetry of the ' θ ' declension of that paradigm- the declension in which $P M x * n ̃$ plays a part-may be regarded as indirect confirmation of the existence of that phoneme in PMx. (159, with $* \tilde{n}$ in M , but with ambiguous
 (157, as above, except that $M-J$ reflects *y rather than *n) $M-S M$
 gummy deposit made by smoke from a wood fire. (264, with *fio and ${ }^{*} y \mathcal{O}$ in M-SM etymological doublet; with ${ }^{* n}$ do- in C; and with *日o- in T) M-SM yū̌̌i something powdered, nití sand; C (yą "̧̨) ndūutè ? sand; T da $^{3}{ }^{3} u^{4-5}\left(\right.$ ču $\left.^{3}\right)$ saw-dust.
4.2.4.4. $\mathrm{PMx} * \mathrm{y}-$, which has a virtually uniform reflex y in M , C, T ultimate syllables, is subject to some conditioned sound change in penultimates. The basic Mreflex is y, but *yi-, *ya-, and ${ }^{*} y u->M{ }^{2}{ }_{i-}$ preceding certain alveolar consonants in the following syllable. The conditions seem to vary somewhat according to occurrence of *y directly before each of the three vowels mentioned above, but this variation may be more apparent than real since our data are limited. Specifically, however: *yi- $>$?i-before n and N (the latter phoneme found only in M-SE); *ya->?ibefore s, f, and ${ }^{2} y$; *yu- $>\rho_{i}$ - before n, s, y, and \mathcal{C}. C has reflex y except that (a) *ya->hii- before va and 'ma; and *yu-> hii- before (?) va, ko, and ku. (b) ${ }^{2} y(\mathrm{~m})->$?ii before y . (But the sets illustrating the latter are poor, and this ?ii- may be a PC development.) The C hii- reflex vs. the ${ }^{\text {iii- reflex }}$ is somewhat obscured in some sets by metathesis of the *? of PMx medial -? Cclusters; when the *? is shifted to medial position it regularly replaces the original $C h$. Thas reflex y except that in $T-C h$ (as opposed to $T-C o$) there is a very widespread tendency to drop y before a ($<$ *a or $* 5$), and to eliminate entirely old *yu- penultimate syllables. T-Co, on the other hand, preserves most of these features, but shares a parallel development with T-Ch in that both dialects entirely eliminate *y before i. (68, *yu-) M-SM yūu; C hīī̄ā; T-Chw $\cdot \mathrm{e}^{1-2}$, T-Co yuwi strawmat. $(69, * y a-1) \mathrm{M}-\mathrm{SM}$ nùya?ù market-place, yà? metathesized *? from *-? w- replacing former h reflex); T-Ch ? we ${ }^{3-4-3}$, T-Co yu ? wi market place. (67, *ya-) M-SM yā̀ ; C
 direction towards; C ý̧̧qné road; $\mathrm{T}-\mathrm{Ch} \mathrm{ne}{ }^{3-4}$? direction towards. (41, *yo-) C yưūvè toe-nail; T-Ch a ${ }^{3}$ wi ${ }^{3}$, T-Co yawi head. (77, *yu-) M-SM yūkū mountain; C hîikù hill; T-Ch kīīi ${ }^{3}$ mountain. (30, *yi- in M, but *xi- in C, with loss of penultimate in T) M-SM ?iní insides, non-physical, metaphorical; C hiìnō insides, non-physical, metaphorical; $T{ }^{7} \mathrm{ni}^{5} \mathrm{~h}$ inside of. Set 224 has a C form that possibly harks back to PMx penultimate *yum-, but as described above, this
 T ngu ${ }^{3}$ ya $^{4-3}$ road-runner.
4.2.4.5. $\mathrm{PMx}{ }^{*} \mathrm{w}$ is of infrequent occurrence in penultimate syllables. As stated in section 4.1.2.1., $*_{w-}$ initial forms have been
analogically leveled in paradigm B in almost all the M and C of our sets. Furthermore, T itself- which preserves forms of the ' w ' conjugation more frequently than do the other two languages-seems to have eliminated all *wi-syllables in a development parallel to that which eliminated *yi- syllables. As a result, *w appears in our cognate sets before ${ }^{*} i$ and ${ }^{*}$ a in the M and C of the sets, but only before the latter vowel in the T. PMx *w has reflex v before $*_{i}$ in both M and C, and uniform reflex w in T. In $M * w a>?^{u}$ before ni, and $>?_{\text {i }}$ before fiu. In $C * w a->?_{\text {ii- before nus }}$. These latter reflexes involving *wa- illustrate the general tendency to eliminate y and w / v from M, C, T penultimate syllables. As we have already had occasion to note, this tendency is especially marked in $\mathrm{T}-\mathrm{Ch}$, but is also at work in M and C . (219, *wi in M , with loss of penultimate syllable in one T cognate, and ${ }^{1 d}$ di- in another T cognate) M-SM vīkd cloud, T nga ${ }^{3}$ cloud, $n i^{5}$ nga ${ }^{5-3}$ damp, moist. (57, *wi- in M, with loss of penultimate syllable in T; trace of this loss is preserved in the strengthening of $\left.T n>n^{*}\right) M-S M$ vict; T $n^{0} e^{5-3}$ naked. (26 , with *wi- only in C; with $* \mathrm{ki}-$ in M, and ni- in T) M-SM kini disgusting, repulsive; C tü-viiñ to disgust; T ni ${ }^{3}$
 three. (173,*wa-) M-SM ?ifiu; T wa ${ }^{5}$ tą 5 ? gix (with $* \theta /{ }^{*} n$ alternation in the ultimate syllable). The last set-on which the posited PMx *wa- $>\mathrm{M} \mathrm{T}_{\mathrm{i}}(\mathrm{nu})$;hinges-is somewhat suspect in that there exists a T form ya 3 tą 4 ? six more which may be more original than the w-initial form. The latter might conceivably be an analogical reshaping to conform to $\mathrm{wa}^{5}{ }^{9} \mathrm{nim}^{5} \mathrm{~h}$ three and $\mathrm{w} \cdot \mathrm{i}^{5} \mathrm{~h}$ two. If this alternative hypothe sis should prove correct, the ${ }^{i} \mathrm{i}$ - of the M is here simply the regular M reflex of *ya. 4.2.5. Fusions of M, C dentals with *y-. 4.2.5.0. The above paragraphs summarize developments of PMx consonants in penultimate syllables. There are a number of sets, however, in which M or C と or ty seems to reflect recent fusions of $t V$ - with *y-in those languages. There are also a few sets in which C d followed by front vowel seems to reflect a similar fusion of some $C d V=$ element with *y. There is a possibility that some of these reflexes hark back to PMx *ty- and *dym, but there is little solid evidence to substantiate this.
4.2.5.1. $\mathrm{MtV}_{\mathrm{y}}->\boldsymbol{\varepsilon}_{\text {in }} \mathrm{M}-\mathrm{SM}, \mathrm{SE} ;>$ ty in M-J. Many of the forms exhibiting this fusion involve ti-/ti- animal, thing followed by *y-initial stem. In M-SM both fused and unfused forms are current. (200) M-SM ti-y
 other examples of this sort of fusion are phonologically similar
but seem to involve unidentified tV-elements: (69) M-SM yà? \bar{u} pay, wages, ca? $\overline{\mathrm{u}}$ to pay, M-J tya? vi to pay. (158) M-SM ni-夭̄̄? mà, M-SE nï-čmā flattened. (278) M-SM, SE te? yü, M-J tya ${ }^{\text {? }}$ yu to spoil, to rot. The latter set probably is a special situation in which ty $>$ te in $M-S M, S E$ (rather than $>x$) before ? y in the following syllable.
4.2.5.2. In the C of our sets there are two examples of \mathcal{C} and two examples of ty. I assume fusion of some PC *tV- element to ${ }^{*} y$. initial stem with this fusion resulting in ℓ before following ${ }^{7} v$ or n, and in ty before following k or d. Further data might make possible a more general and hence less trivial statement of the factors conditioning these two sorts of fusion. (69, cf. M in paragraph above) C ?ifvà market place (*ya-), cif?và wages (PC *tVy-).
 tyáaká banana. (277) C ? yūùde, ? tyüùde mouse.

There are two sets in which the C presumably reflects fusion of some $P C{ }^{*} d V$ - element with initial $\psi^{y}-$. In each case the fusion results in dii-. (69) C nā-d $\bar{r} ?$ vā (note that in the above paragraph, PC $*_{t V y}>$ C $_{i i}-$ in this set). (194) dīitū full.
4.2.5.3. Peculiar significance attaches to set 194 in which the M apparently involves fusion of a PM *dV- element ($<* \theta \mathrm{~V}$-) to following ${ }^{*} \mathrm{y}$ - initial stem. Unlike the fusion of $\mathrm{MtVy}->\boldsymbol{c}$ as described above, the PM dVy- fusion occurs everywhere in all dialects here cited and gives $\mathfrak{\varepsilon}$ in $\mathrm{M}-\mathrm{J}$ as well as in $\mathrm{M}-\mathrm{SM}$, SE. This set gives the only instance in my M word-lists of penultimate $\measuredangle \sim \zeta \sim \varepsilon$ in these three dialects. Thus, while fusions of $* t V y-p r o c e e d$ at different rates and manners in these three dialects, the fusion here described must have taken place in PM itself in that it occurred before the split of $P M \neq d>s / \leftrightarrows$ and d in the various dialects. It should furthermore be noted that, as shown in the above paragraph, C also involves a $d V y$ - fusion. It is therefore possible to argue that we have here a $P M x$ * $d y$ - cluster rather than parallel $P M$ and PC developments. Nevertheless, since we have but one set with such a consistent M witness, and since other such fusions seem to be M and C developments, I assume here that the parallel PM and PC developments simply reflect fusions of the same preposed PMx ${ }^{*} \theta V$ - element, but that this fusion took place after the PMx period. The M of this set follows: (194) M-SM Cítú, M-SE Citú, M-J Citu full. 4.2.5.4. A further type of fusion involves $P M$ or $P C *^{n} d V-$ to ${ }^{*} y-$ initial stems. In the three such sets in our array of cognates, all such ${ }^{*} y$ - initial stems are those with penultimate *ya-. The fusions
 M-M ${ }^{\text {n }}$ dya-; PC *ndVya- >ncaa-. Examples follow: (116) M-SM
 $\mathrm{M}-\mathrm{SE}{ }^{\mathrm{n}}$ dēkà, $\mathrm{M}-\mathrm{J}^{\mathrm{n}}$ daka, $\mathrm{M}-\mathrm{M}^{\mathrm{n}}$ dyaka glue. (121) C yááká pine. wood, i-nčáka? ladder (with preposed C i- as well. 4.2.6. T r - in penultimate syllables. 4.2.6.0. There are twenty instances in our cognate sets of Trin penultimate syllables. There are three possible explanations of this r-reflex: (a) as a late fusion of certain $X V$ - morphemes to the following roots in T; (b) as a reflex of one or more of the following PMx clusters \rightarrow provided such clusters existed: *ty, * θ y, ${ }^{* \mathbf{n}}$ dy; and (c) as an allophone of PMx *l in certain environments.

Of these three explanations, I believe that the Iatter two are less plausible. Alternative (b) again raises the possibility of reconstructing certain PMx clusters consisting of dental consonant plus *y; it would imply that the $\mathbf{T} \mathbf{r}$ is of the same origin as the M and C 'palatalized' reflexes described in the preceding section. But I hope to show that alternative (a) is a wholly satisfactory explanation of the origin of T penultimate r-. If this is satisfactorily established, it will have been demonstrated that such PMx *Cy clusters need not be assumed in reference to T at this point. There is, in fact, no need at any point to assume such clusters in reference to T. This makes it increasingly probable that the fusions posited in the preceding section are M and C developments.

Alternative (c) is mentioned here because of the statement in the closing paragraph of 2.1.4.4. to the effect that "the PMx lateral may have had a range of articulation that included certain ' r 'colored allophones." However, the positive argument for alternative (a) - if conclusive-would establish that the Tr in penultimate syllables arose as incidental to certain middle or late T fusions, and that consequently no tie-in of $\mathbf{T} \mathbf{r}$ in this position with $\mathrm{PMx}_{\mathrm{M}} \boldsymbol{1}_{1}$ is to be posited. To this positive argument for alternative (a) I now turn.
4.2.6.1. Some instances of T rV-undoubtedly reflect recent fusions of CV - morphemes to following stems. The clearest instances of this development are those involving fusion of EV - morphemes to Spanish loan words: $\mathrm{re}^{2} \mathrm{kwa}^{3}$ hoe $\left(<\varepsilon y^{3}\right.$ wood +sp . coa hoe), ru ${ }^{3} \mathrm{gu}^{3} \mathrm{ci}^{5-3}$ cross $\left(<\varepsilon \psi^{3}\right.$ wood +Sp . cruz cross). Also of very probably recent origin is ra ${ }^{3} \varepsilon_{y} 1-2$ bread (ca ${ }^{3}$ tortilla + cy $^{1-2}$ box or oven) in that it represents fusion of a descriptive phrase invented to describe a new cultural item introduced into Trique culture sometime within the past three or four centuries.

On the basis of the above indisputable cases of recent fusion, it seems safe to assume that such cases as the following with T rare recent (i.e., middle or late T, rather than PT) fusions of this
sort: (121) $\mathrm{re}^{3} \mathrm{ka}^{9} \mathrm{a}^{4-3}$ stick (čut ${ }^{3}$ wood +ka ? a^{3}). (236) $\mathrm{re}^{3} \mathrm{koho}{ }^{4-3}$ leaves (Eq^{3} wood $+\mathrm{koho}^{3}$ herb, plant). (239) re ${ }^{3} \mathrm{ko}^{4-3}$ anona ($\mathrm{Ku}^{3}{ }^{3}$
 gwi ${ }^{3}{ }^{2} \mathrm{i}^{3}$-the latter with M cognate meaning plum). (16) $\mathrm{ru}^{2} \mathrm{n}^{3}$ avocado ($\mathrm{Cu}^{3} \mathrm{~h}$ fruit + constituent meaning 'avocado' in $\mathrm{M}, \mathrm{C}, \mathrm{T}$). (17) ru ${ }^{3} n^{4-3}$ beans ($X_{u}{ }^{3} h$ fruit, oval-shaped + constituent meaning 'beans' in M, C, T). (129) $z_{i}{ }^{3}-\mathrm{ru}^{4} \mathrm{kwa}^{4}$ rib ($\mathrm{cu}^{3} \mathrm{~h}$ fruit, ovalshaped + constituent meaning 'rib' in $\mathrm{M}, \mathrm{C}, \mathrm{T}$). (7) $\mathrm{ri}^{3} \mathrm{ci}^{3}{ }^{3}$ a drop of ($\mathrm{Cu}^{3}{ }^{3}$ h oval-shaped + root ranging in meaning from 'breast' to 'drop' in M, C, T cognates). (166) $\mathrm{ri}^{3}{\underset{z}{2}}^{3-4}$ face of, surface of ($\mathrm{cu}^{3} \mathrm{~h}$ oval-shaped + yą $^{3-4}$ face). (250) $\mathrm{ri}^{3} \mathrm{o}^{4-3}$ trough, measure, manger ($\mathrm{Ku}^{3} \mathrm{~h}$ oval-shaped $+\mathrm{yo}^{3}-4$). (2) $\mathrm{ri}^{3} \mathrm{ki}^{3}$ stomach ($\mathrm{X}_{\mathrm{u}}{ }^{3} \mathrm{~h}$ oval-shaped $+\mathrm{ki}^{3}$).

The above hypothesis accounts for eleven of the occurrences of $T \mathrm{r}$ - in penultimate syllables. Notice that in the above, the vowel u of the fused $c_{y}{ }^{3}$ or $c_{u}{ }^{3} h$ is treated rather regularly in that (1) nasal quality is dropped when present; (2) there is resultant vowel i before c, y, and ki; (3) there is resultant vowel e before k; and (4) there is resultant vowel u elsewhere.

The nine instances of $T r$ - as yet unaccousted for in the above paragraph are found in sets $47,64,69,93,130,201,246,278$. It seems very probable that in these T forms there has also occurred fusion of some T とV- morpheme to a following stem-even though we cannot now identify the fused element. I nevertheless list them here separately since it is to these sets that one would have to appeal if he were to argue for alternatives (b) or (c) above. 4.2.6.2. It is of some interest here that reduction of $x_{y}{ }^{3}$ wood or $\mathrm{Ku}^{3} \mathrm{~h}$ oval-shaped to phonologically dependent elements of the gen.. eral $r V$ - type involves some phonological developments of $P T *$, and ${ }^{\text {a }}$ that elsewhere have no parallel in T. This characteristic ' r ' effect on vowels carries through the ultimate syllable in the T of two sets: (121) $\mathrm{re}^{3} \mathrm{ke}^{2} \mathrm{e}^{4-3}$ splinter ($\mathrm{cq}^{3}+\mathrm{ka} \mathrm{P}^{3}$); (130) $\mathrm{ri}^{3}{ }^{3} \mathrm{ri}^{3}$ kil ${ }^{1 / 2}$ grasshopper ($C V$ - unidentified element $+k w a^{1-2}$). In respect to the first example there exists a similar form $\mathrm{re}^{3} \mathrm{ka} \mathrm{Pa}^{4-3}$ stick which is assumedly from the fusion of the same two elements as $k^{3}{ }^{3} e^{\text {? }} \mathrm{e}^{4-3}$ splinter. In respect to the second example, there exists in set 129, a form involving fusion of some CV - unidentified element with another -kwa stem ($\mathrm{zi}^{3}{ }^{3}-\mathrm{ru}^{4} \mathrm{kwa}^{4}$ rib) but without the ' r ' effect in the ultimate syllable. It seems reasonable to believe, then, that the examples of ' r ' effect in ultimate syllable resultant on ' r ' effect in penultimates, occur in forms borrowed from some T dialect (group of idiolects) having this characteristic; while the forms $\mathrm{re}^{3} \mathrm{ka}^{9} \mathrm{a}^{4-3}$ stick and zi^{3} - ru ${ }^{4} \mathrm{kwa}^{4}$ rib without such consequent ' r ' effect in the ultimate syllables represent the dialect
(group of idiolects) from which the majority of our forms come. 4.2.7. Penultimate reflexes of $P M x * \operatorname{tn}-$ and of $P T \not z_{d-}$.
4.2.7.1. There is clear evidence in the M dialects that the *tn cluster existed in PM penultimate syllables as well as in ultimate syllables (see 3.1.3.2.). There also occurs in one set a T znpenultimate cluster which is assumed to be from the same source, and which parallels the penultimate reflexes of $\% \operatorname{tn}$ in the M of this set. On the strength of this one set (22) I posit PMx penultimate *tn. The M reflexes of $* \operatorname{tn}$ are $\mathrm{M}-\mathrm{SM}, \mathrm{J}, \mathrm{M} \mathrm{t}$; M-SE N : (22) $\mathrm{M}-\mathrm{SM}$,
 (proclitic) language.
4.2.7.2. PT *žḍ is posited as source of T zd. This cluster has no clear PM parallel-although an st cluster has arisen in M-SM, SE by fusion of $s V$ - morphemes to $\%$ t- initial stems. Possibly žd arose in PT by fusion of $X V$ - morphemes to *d- initial roots. This fusion of *とY- + *d- > *žd in PT would give then, a phonological result quite different from later fusions of $と V$ - morphemes-which, as just described, give rV-. (244) $z d u^{3} \mathrm{kyq}^{4-5}$? nephew. (271) $z d u^{3}$ ku^{4-3} necklace. The latter set might possibly reflect a fusion of the statistically frequent classificatory noun $\chi_{u}{ }^{3} h$ fruit, oval-shaped with the stem du ${ }^{3} \mathrm{ku}^{3-4}$ to play.
4.3. PMx vowels in penultimate syllables. Only $*_{i}, *_{a}$, *s, and $*_{u}$ occurred in PMx penultimate syllables.
4.3.1. Non-nasalized reflexes.
4.3.1.1. PMx*i gives $\mathrm{M}, \mathrm{C}, \mathrm{T}$ i in most phonological situations in penultimate syllables. There are, however, specially conditioned reflexes in the three languages: (1) M-SM, SE has reflex i before i in the following syllable except that SM yi (ki) occurs corresponding to $S E$ yi (ki) as reflex of $P M x * y i-. \quad M$ drops ${ }^{\text {i }}$ after ${ }^{*} k^{m}>k u$, and this $k u$ further assimilates to ko preceding Co in the following syllable. There is also an instance of ${ }^{*} \theta i>\gamma_{y}(?)$ pursuant to the regular phonological restriction that there be only one vowel quality in CV?V couplets. (2) C has i/e reflex (See 3.2.1.1.) after ${ }^{* t}$ and $*_{x}$; and u reflex before following labial. (3) Thas u reflex before labials; drops the $*_{i}$ after $k^{\text {T}}>$ gu-, and assimilates $*_{i}>$ ą in CV ? $̨$ द̨hą (pursuant to a regular restriction that only one vowel quality occurs in words of CV? VhV pattern). (26, *ki- in M, *wi- in C, and ${ }^{n} \mathrm{ni}-\mathrm{in}$ T) M-SM kīnī disgusting, repulsive; C tū-vīinú to disgust; T ni 3 nïhi $4-3$ disgusting. (74, with *yi- in M, and ${ }^{\boldsymbol{\theta}} \mathrm{ii}-$ in T) M-SM yīki, M-SE yiki bone, shell, horn; $\mathrm{T} \mathrm{zi}^{3}{ }_{\mathrm{ki}}{ }^{2} \mathrm{~h}$ shell (of an egg). (273, with $*_{\text {wi- }}$ in M and $* \mathrm{tin}_{\mathrm{i}-\mathrm{in}} \mathrm{T}$)
 in C) M-SM ${ }^{n}$ dîhì , $M-J{ }^{n}{ }^{n} d_{i} \mathcal{C}_{z}$ wing (the nasalization of the penultimate vowel is a regular assimilation to nasal quality of the following
repeat vowel across h); C iteexè to untie, heade wing. (28 , with
 to look at; $\mathrm{Tgu}{ }^{3} \mathrm{ni}^{3}$ to hear. (94, with $*_{\mathrm{ki}}$ and $*^{\mathrm{n}}$ di- in M , $*_{\mathrm{xi}}-$ in C, and *ti- in T) M-SM kīvì day, " ${ }^{\text {an }}$ " díví the heavens; C hūūve day; T gwi ${ }^{3}$ day, zu ${ }^{3} \mathrm{gwi}^{3}$ name-of. (23, with ${ }^{*}{ }^{\theta i-}$ in $\left.\mathrm{M}, \mathrm{T}\right) \mathrm{M}-\mathrm{SM}$
 bit, mi^{1-2} copper-colored, yellow, $\mathrm{zi}^{3}-\mathrm{mi}{ }^{1-2}$ (ču ${ }^{3} \mathrm{~h}$) yolk (of an egg). (102 , with *ti- in M, C) M-SM stíví, M-J sa-tivi to err, to destroy; C da-tùvin to destroy. (226, with *yi- in M, *日i- in C, and ${ }^{* n}$ di- in T) M-SM yū ${ }^{7} \bar{u}$ mouth; C dūūvī mouthful; T du ${ }^{3}$? wa ${ }^{3}$ mouth. The latter set is striking, in that the $u \sim u \sim u$ would initial. ly lead one to posit $*_{u}$, but the fact that $*_{u}>C$ i before labials, while ${ }^{\text {i }}>\mathrm{C}$ u before labials is decisive here. (81, with $*^{n}$ di- in M and T) $M-S M{ }^{n}$ dïsì cane-whiskey; $T \mathrm{di}^{3} \mathrm{ci}^{3}-5$? $/ \mathrm{Ci}_{\mathrm{i}}{ }^{3}{ }^{3}$ cactus-beex. 4.3.1.2. PMx *a gives $\mathrm{M}, \mathrm{C}, \mathrm{T}$ a in most phonological situations in penultimate syllables. There are, however, the following specially conditioned reflexes: (a) In M, (1) there is loss of *a after $* \mathrm{k}^{W}>\mathrm{ku}$ (with passage of $\mathrm{kuCo}>\mathrm{koCo}$); and preceding $\mathrm{M}-\mathrm{SM}, \mathrm{SE}$ -taa (but *a>i(ta) in this environment in M-J). (2) There is a reflex e after M-SE h, and in the M-SM, SE situations nd...y and n...n. (3) There is reflex ${ }^{i} i($ fuu) of PMx *ya-, and M-SE reflex ye(Nu) of the same. (4) There are reflexes $? u(n i)$ and $? ~(f u)$ of $\mathrm{PMx} *$ wa. (b) In C, (1) dii-/dee-, hii-, and ${ }^{\text {iii- occur as re- }}$ flexes of * θ a, *xa, and *wa respectively before $C-n o /-n u$. (2) hiialso occurs as reflex of PMx*ya-before C-va $<\mathrm{PMx}$ * we fout not before any other proto labial consonant and vowel combinations).
(3) kuu- occurs as regular reflex of PMx $\mathrm{F}^{\mathrm{m}} \mathrm{a}$-, except that kaaoccurs preceding either -7 wa or ${ }^{7} \mathrm{a}<*$? wa. (c) In $\mathrm{T},{ }^{\text { }}$ (1) z_{i} and di-occur as reflexes of *ta and $* \theta$ a respectively before \mathcal{K}, c, n, y, or (y) a, (the latter from *ya; *ta-plus *-ya > Eia and * θ a- + *ya $>$ dia). Similarly ni- occurs as reflex of *na-before (y) a (*na-$+*$-ya $>$ nia). (2) du- occurs as reflex of * θ a before labials; and yu- as T-Co reflex of *ya in the same environments.

Ilustrative sets follow: (123, with *ka-in M, C, T) M-SM kaka; C káaka; T (g) a^{3} と e^{2-1} to walk. (116, with ${ }^{*} \mathrm{k}^{\mathbf{w}} \mathrm{a}$ - and $* x a-$ in M; with *ka- and $*^{n}$ da- in C; and with *ta- and $*^{n}$ da- in T) M-SM
 erate (something), ndāakà to get, to find; $T z_{a}{ }^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to take, to get, to fetch; na ${ }^{3} \mathrm{ka}^{3}-4 \mathrm{~h}$ to gather up. (59 , with ${ }^{*} \mathrm{kw}$ - in $\overline{\mathrm{M}}, \mathrm{C}$; with *ka- in T) M-SM kūči to take a bath; C kā-? kúnna to bathe someone: $T \mathrm{ga}^{3} \mathrm{ne}^{3-4}$ to take a bath. (254, with ${ }^{*} \mathrm{k}^{*} \mathrm{a}$ - in C, T; with $*_{n a-i n ~ T) ~ C ~ k u ̄ u ̀ n o ~ t o ~ p l a n t, ~ t o ~ s o w ; ~ T ~}^{\text {nu }}{ }^{3} \mathrm{ny}^{3-4}$ to plant, na ${ }^{3} \mathrm{nq}^{3-4}$ to dress oneself. (261, with $*^{n}$ da- in M, and with ${ }^{*}$ ta- in T) M-SM,
 in M ，and with $*_{\text {na－}}$ in $\left.T\right) M-S M, S E{ }^{n}$ dey $\bar{u}, M-J^{n}$ dayu；$T n^{3}{ }^{3}{ }^{3} 4-3$ dinner．（ 169 ，with $*$ fia－in M ，and with ambiguous reflex of＊fa－or ＊ya－in T）M－SM，SE（no M－J data）fieñ̄̄；T a ${ }^{3} \mathrm{tz}^{4}{ }^{4-3}$ blackberries．
 foam，suds．（111，with＊xa－in M－SM，J；with＊ya－in M－SE）M－SM hānù，M－SE yēNù，M－J Caty box．（31，with＊wa－in M，C，T）M－SM
 ＊ya－in M－J；with＊日a－in C，T）M－SM，SE n̄̄ni，M－J yani brother of a man；C ？dyfn6 brother；T di ${ }^{3}{ }^{2}{ }^{2-1}$ brother．（27，with＊xa－in $\mathrm{M}-\mathrm{SM}$ and in C ；with ${ }^{\text {ya－}} \mathrm{ya}$ in $\mathrm{M}-\mathrm{J}$ ；and with $* \theta a-$ in C as well） $\mathrm{M}-\mathrm{SM}$ tî－háni，M－J（se？e）yani grandson；C（dāiyā）dén ${ }^{\text {g granddaughter，}}$ （dāīyā）hínó grandson．166，with ${ }^{7}$ ya－in M, C ；with both＊ya－and ＊日a－in T．）M－SM yāū；C hîivà ；T－Ch du ${ }^{3} \mathrm{we}^{3-4} / \mathrm{w} \cdot \mathrm{e}^{3-4-3}$ ；T．．Co
 M－J ku＂va＇brother of a woman，sister of a man；C kā？va brother．
 Ca ${ }^{3}$ tortillas．（ 107 ，with＊ya－in M－SM，SE；with＊ta－in C，T） M－SM，SE yātà back；C trátá tile；T ži ${ }^{3}$ ča $^{2-1}$ back of，roof of．（167， with＊ya－in C and with＊ta－in T）C yāāā net－work bag；Tn．$a^{3} h$ net－work bag，$z_{i}{ }^{3} n_{z}{ }^{2} \mathrm{~h}$ crop（of a bird）．（170，with no penultimate syllable in M，C；with＊ta－in T）M－SM ñūù；C yąą ； $\mathrm{T}_{\mathrm{i}}{ }^{3}{ }^{3}{ }^{2}{ }^{2}$ village． 4．3．1．3．$P M x * s$ gives varying reflexes in penultimate syllables in the three languages．The most common reflex in M, C is u ．How－ ever，in $M, * J>i$ before $C i$（except that $\mathrm{ffi}_{\mathrm{i}}(\mathrm{t} i)$ occurs in both M－SM， and SE）；${ }^{2} \gg 0$ before Co；there is loss of ${ }^{*} \mathrm{c}$ following ${ }^{*} \mathrm{k}^{\boldsymbol{w}}>\mathrm{ku}$ ； and $*_{J}>_{i}$ following $*_{k}, *_{w}$ ，and $*^{*}>k^{*}$ ．In $C, *_{J}>$ a following $* \mathbf{k}$ ，and in the situation $\mathrm{C} \mathrm{kw} . . . \mathrm{ku}$ ．In T ，the most usual reflex is a；but du－occurs as reflex of $* \theta$ preceding a T labial；and yu－oc－ curs in T－Co as reflex of＊ys preceding w－when the latter is，in
 in C，and＊日v－in T）M－SM y $\bar{u} x_{i}^{t}$ something powdered，nîtí sand；C （yลุ̨？̨̨）ndūùtè ？sand；T ču ${ }^{3-4-3}$ powder，da ${ }^{3} \mathrm{cu}^{4-5}$（čy ${ }^{3}$ ）sawdust． （76，with＊yد－in M，C，with＊日コ－in T）M－SM yīki，M－M ${ }^{7}$ ikij；C
 ${ }^{*}$ ts - in T）M－SM yōk̀̀：T ža $^{3} \mathrm{ko}^{3}$ honey－bee，honey－comb．（48，
 be able；C kūūvē to complete，ndūuvē（？vīikū）to bless；T ga ${ }^{3}$ wiz ${ }^{3}$ to be，to become．（This set would be ambiguous as to ${ }^{*} \mathrm{k}^{\mathbf{w}} \mathrm{O}$－in M, C ， T vs．＊kwa in M，C，with＊ka－in T，were it not for the definitive oc－ currence of C nduu－reflex of $\left.*_{\text {nd }}-\right)$ ．（ 208 ，with $* k^{w} \rho-$ and $*_{x}$－in
 sting（of scorpion，wasp，bee）．（217，with＊ko－in M－SM，SE；with
$*_{k}{ }^{W} \rho-$ in $M-J$ and in C; with ${ }^{*} \theta 0-$ in T) M-SM kiku, M-J kwiku to sew; C (ka? mą̨) kwāākū to swear, to testify; T da ${ }^{3}$? nga? a^{4-3} scar, proof.
 joined; $T d^{3}{ }^{3} \mathrm{gi}^{3-4}$? together with, companion, neighbor, relative. (94, with ${ }^{*} \mathrm{y} 3-\mathrm{in} \mathrm{M}$ and T) M-SM fà -yivi ; T-Ch gwi^{3-5-4}, T-Co yuwi, T-I ngwi people.
4.3.1.4. $P M x *_{u}$ gives $M, C, T u$ in most phonological situations. In $M,{ }^{*} \mathbf{u}>i$ and o respectively before a following syllable containing either of these vowels. Except for the above situation, M, $t i$ and $?_{i}$ occur as reflexes of PMx *tu and ${ }^{*} y u$ before $M X, n, s, o r y$. In C, $*_{u}>i$ before labials (including $C-k o$ and $-k u$), while ${ }^{* n} d u>$ niín ($n q$) but to nự (nę) - with the nasalization presumably a C development. In $T *_{u}>_{i}$ before $\underset{x}{ }$ and ($?$) n. The C reflex i before labials is definitive for ψ_{u} in sets where it occurs; for, while $*$ a and ${ }^{*}$ s are little affected by a following labial- except that *ya(we) $>\mathrm{C}$ hiim, and while $*_{i}>C$ u before labials, only $*_{u}$ regularly gives $C i$ in this situation. (234, with *yu- in M, C, and with *tu- in T) M-SM yūtù; Ci-? yúuitù tump-line; T $\mathrm{zi}^{3} \mathrm{c}_{\mathrm{o}}{ }^{\text {? }} \mathrm{o}^{4-3}$ the little straw-mat on the tump-line. (209, with *yu- in M, C and with *tu-in T) M-SM ${ }^{7}$ isu deer; C ${ }^{?}$ yúudu? horse; T žu ${ }^{3}$ ta 3 h deer. (73 , with *yu-in M and C) M-SM yíkí; C ? yūuci? cubit (measure). (200, with *yu- in M, C,

 M-J ti ? vi to suck, to suck blood, to practice witchcraft; C tij? vi to suck; T zdu ${ }^{3}$? waha ${ }^{4-3}$ witchcraft. (16 , with ${ }^{*}$ tu- in M, and $*^{n}$ du- in C) M-SM tìci; C nपृष̄nę avocado. (37, with *n du- in M, C, T) M-SM

 ? wehe ${ }^{3}$, T-Co yu? wih thread. (77, with *yu- in M, C; with *tu-also in C) M-SM yūku mountain; C hī̀ku hill, tiiko a little hill; ?tifkù top, summit.
4.3.2. Nasalized reflexes.
4.3.2.1. Occasion has already arisen in the preceding section (4.
3.1.4.) to take account of the nasalized reflexes of penultimate ${ }^{*} u$ in the C of a few sets. Thus, in sets 16,17 , and 37 - the only sets involving reflexes of $P M x{ }^{* n}$ du before C n- nasalized reflexes nỵu (nę) and nif (ng) were cited with the remark that the nasalization was presumably a C development'. This remark was based on the observation that, although our data are admittedly very limited, all the penultimate reflexes of $P M x{ }^{* n}$ du- before $C n$ are thus nasalized. This statement must remain, however, a presumption in that it may be that only cognates involving $P M x *^{n}$ dom (See 3.2.2.5.) happen to have survived in C.
4.3.2.2. There are a few sets in which the M and/or T penultimate
syllable vowel reflex could be most easily rationalized by assuming the presence of PMx syllable-final *-m. Set 157 is especially cru-
 ${ }^{7} 0^{5-3}$ gummy deposit made by smoke from a wood fire. The M, C, T cognates of this set do not have nasalization in the ultimate syllable; nevertheless the C penultimate syllable is nasalized and requires that we reconstruct vowel quality *a. By assuming PMx * $\tilde{n} /$ yam- in M, C, and T, both the M fiu- and the T yo- $\left({ }^{\prime} f /\right.$ yam- $>$ yu- $>$ yo($\%$) are easily explained and the set may be shown to have the same penultimate syllable (with $* \tilde{n} / * y$ alternation) in the three languages. A similar case, in 159 is not as conclusive in that the nasalization in the penultimate may be ressiltant on nasalization in
 other sets, no systematic way can be found to account for M u vs. C a except on the assumption that $* a m / *$ a was present in the PMx penultimate syllable, and that $*$ yam- $>\mathrm{M}$ yu-: (50) M-SM (kסd) yúčí alligator; C "yáte lizard. (85) M-SM yūhą̨; C yāàcè dough. Thus the hypothesis that at least some PMx vowels occurred with *-m in penultimate syllables is attractive in that it makes it possible for us to identify as essentially the same- except for presence or absence of $*-m$-the otherwise disparate penultimate elements of a few more sets. It should be remembered, however, that there undoubtedly are a few sets reflecting disparate penultimate syllables.

Note that the hypothesis outlined in 2.1.4.3. concerning the origin of $P M x{ }^{* n} d,{ }^{* n} g,{ }^{* n} g^{m}$, and ${ }^{* n}$ requires the assumption that from pre-PMx to PMx all $*_{\mathrm{m}} / *_{n}$ plus consonant sequences (in prePMx *CVm-CV units fusing to PMx *CVCV) were reduced by loss of preceding nasal except those clusters surviving as the above complex phonemes. This hypothesis can be retained, in spite of the reconstruction of PMx penultimate post-vocalic *m in a limited number of forms, if we assume that these penultimate *CVm elements here in question were fused to following $* C V$ forms within the PMx period itself, rather than in the transition from pre-PMx to PMx. In view of the fact that fusions of CV-CVV to CVCV are still taking place in the M dialects (see 163, 204, 255), such a development within PMx is be no means unlikely.
4.3.2.3. In the C of a few sets there occur etymological doublets in which the 'same' penultimate syllable occurs both nasalized and non-nasalized: (59) C kų̣ina to take ab bath vs. kā- गkúúna to give (someone) a bath. It seems likely that the nasalization is a C development in such sets.

NOTE

1. See note 1, p. 53.

5. PMx glottal-stop

5.0. Preliminary considerations.
5.0.1. There has been considerable historical interplay between *? and tones- especially in T. The development of the $\mathrm{T}-\mathrm{Ch}$ tone system of five levels is directly consequent on the disappearance of final ${ }^{*}$? from forms bearing $P M x$ and $P T$ tone ${ }^{*} 1$. In turn the T split of $* ?$ into zero, $?$ and h is conditioned to a large degree by the tones (s) of the preceding vowel. Again, T metathesis of $*$? from old $* ?$ C medial clusters to final position in the form is conditioned by the reconstructed tone(s) of the form in which the $*^{?} \mathrm{C}$ cluster occurred. While the interplay of $* 7$ and tones is not so evident in M and C, in C, at least, one tone pattern (mid-mid low) is found chiefly on words of certain tone classes reconstructing with final ψ_{-}? It is necessary, then, to anticipate in this section the tone reconstructions presented in section 6 ,
5. 0. 2. PMx *? characteristically occurred in two positions: preceding the consonant of the ultimate syllable and/or final in the ultimate syllable. A third position of occurrence- not explicitly mentioned heretofore-was that of an intrusive element inter rupting the vowel of the ultima. In that the latter may seem to imply a somewhat novel analysis, I present here somewhat at length my reasons for adopting it ${ }^{1}$: (a) the consonant of reconstructed $* \mathrm{CV} 7 \mathrm{~V}$ sequences reconstructs like the consonant of any ultimate syllable - except for certain developments in T (where, upon becoming disyllabic by regular development, $C V ? V$ units are subject to the restriction that a fortis consonant or affricate does not occur in the C position since the new CV-syllable is now penultimate and these consonants are restricted to ultimate syllables). In the array of cognates in 7., I group together $* C V ? V$ and $* C V$ reconstructed forms under the same *CV rubric. This arrangement, first adapted as a practical scheme for filing the comparative data, was evolved before I realized that the analytic implications of my procedure lay in the direction of considering these $* C V ? V$ sequences to be monosyllabic. (b) The *CV?V unit seems to have had a phonetic timing approximately the same as that of $* \mathrm{CV}(\pm$?). Evidence
for this is seen in the M and C CVV reflexes of $P M x * C V$ forms. In M and C, such CVV forms ($<* C V$) have approximately the same phonetic timing as CV?V forms ($<* C V ? V$). Both CVV and CV ? V now pattern as disyllabic in M (because of their structural parallelism to M CVCV), while CVV patterns as monosyllabic in C and $\mathrm{CV} ? \mathrm{~V}$ as disyllabic in that language; nevertheless the similarity of timing between CVV and CV?V forms is preserved in both languages. In $T, C V ? V$ disyllabic forms ($<* C V P V$) are phonetically [CV?V•] and $\mathrm{CV}(<* \mathrm{CV})$ forms are phonetically [CV•] so that these two sequences do not have the same timing. In actcounting for these phonetic differences in T as to the phonetic timing, I assume the following: (1) PMx *CV and *CV?V had approximately the same timing; both were monosyllabic and approximately two phonetic moras in length. PMx *CVCV was phonetically $*[C V C V \cdot]$ with the final syllable two moras in length, except that $* \mathrm{CVCV}$? was phonetically $*[C V C V ?]$ - without this length on the ultima. (2) In $M, P M x *[C V C V ?]>[C V C V]$ so that CVCV forms with short ultimate now existed. Other *[CVCV*] forms from PMx *CVCV were now analogically shortened on the ultima.
(3) The result was that M [CV•], [CV?V] and [CVCV] became markedly structurally parallel and the former two were now interpreted as disyllabic. Thus originated the typically disyllabic structure of M . (4) In $\mathrm{C} *[\mathrm{CVCV}(?)]>[\mathrm{CV} \cdot \mathrm{CV}(?)]$ with length shifted to the first syllable pursuant to the fixation of the phonetic stress to that position; in this way the typical C CVVCV structure evolved (the length became phonemic in that due to certain obscure factors CVCV forms were also developed). The result was that [CV•] > CVV in C but the unit was still interpreted as monosyllabic while CV?V (parallel to CVCV) was interpreted as disyllabic. (5) In T the old timing of [CVCV•] was preserved and extended to *CV?V which now became [CV?V•]. Length did not become phonemic but was now an automatic feature again- as in PMx. I have sketched the above argument rather fully in order to demonstrate that, in spite of the fact that reflexes of $\mathrm{PMx} * \mathrm{CV}$? V are invariably' disyllabic in M, C, T, nevertheless the theory that most conveniently accounts for this development is one assuming an original monosyllabic *CV?V structure in PMx. (c) The above arguments only lead us, however, to interpret PMx *CV?V as monosyllabic; they do not of themselves establish my statement that such syllables consist of one phonemic vowel interrupted by ${ }^{*}=$? -. In supporting this further statement, I point simply to the fact that the two phonetic vowel moras were always of the same quality, that we elsewhere do not have vowel clusters-geminate or otherwise-in PMx,
and that these considerations lead one to interpret the two vowel moras as comprising but one vowel phoneme. 5.0.3. It is possible that PMx *? occurred in two further positions in addition to the three already mentioned. I discuss and illustrate these two further positions here and will henceforth refer to them no more in this section. In regard to both of these two further positions, the data are sufficiently scanty that they may be exhaustively presented: (a) *? may have occurred before the consonant of the penultimate syllable. There is but one set to substantiate this, and this one set may simply involve parallel C, T innovations in respect to this feature: (10) C ndouni to awaken (oneself) n ? dừ $x_{\overline{1}}$ to awaken (someone); $\mathrm{T} \mathrm{na}{ }^{3} \mathrm{r}_{\mathrm{i}}{ }^{3}$ to awaken (oneself), $\mathrm{hna}^{3} \mathrm{r}_{\mathrm{i}}{ }^{3}$ to awaken (someone). The h- element in T-here regarded as a possible reflex of PMx *?- in initial position-patterns as an allomorph of du^{3} - causative. In that the h - allomorph is very rare (only being recorded here and on one other n - initial verb), it may be an archaism rather than an innovation. The C ?-prefix (with regular metathesis of $?-+n d->_{n}$? d) is, however, a very common C morpheme labelled non-reflexivizer by Davis and Walker, and very parallel in function to the $T\left\{d^{3}-\right\}$ causative with its rare, hallomorph. (b) *? possibly occurred as the sole consonant initiating an ultimate syllable, i.e. in ${ }^{* ? V}$ as well as in ${ }^{?} ? \mathrm{CV}$ syllables. To substantiate this there is but one set (which involves alternation
 ${ }^{?} \mathbf{y}, \mathrm{~T}-\mathrm{I} \mathrm{n}^{\prime} \mathrm{I}$ nine.
5.0.4. In the following paragraphs, 1 discuss in order (1) recon. struction of PT *? by internal reconstruction in T-Ch. (2) M, C, T reflexes of PMx final *- ?. (3) M, C, T reflexes of *? in PMx * ${ }^{\circ} \mathrm{C}$ clusters initiating ultimate syllables. (4) $\mathrm{M}, \mathrm{C}, \mathrm{T}$ reflexes of $* ?$ interrupting the vowel of the ultima. (5) $\mathrm{M}, \mathrm{C}, \mathrm{T}$ reflexes ambiguous as to (3) vs. (4). (6) A small residue of four sets in which C presence of *? irs irreconcilable with T lack of witness to *?.
5.1. Internal reconstruction of PT*?.
5.1.1. There are many words in T which, in phrase-final position, have a ? or h inter rupting the vowel of the ultimate syllable. These words vary to ?- final and h - final respectively in phrase-medial. Such alternations, therefore, as the following occur: yaha ${ }^{3}$ flower, but ya ${ }^{3} \mathrm{~h}_{\mathrm{z}}{ }^{3}{ }^{3}{ }^{3}{ }^{3}{ }^{2}$ nasturtiums; yo? ${ }^{3}$ year, but $\mathrm{yo}^{3}{ }^{3} \mathrm{gaa}_{\mathrm{x}_{\mathrm{i}}}{ }^{2-3}$ the past year; na ${ }^{3}$ kuhy y^{4-3} atole, but na ${ }^{3} \mathrm{kt}^{4} \mathrm{~h}$ ru ${ }^{4} \mathrm{ne}^{4-3}$ bean-atole;
 This variation of $9 / h$ - interrupted syllable to $7 / \mathrm{h}$ - final syllable parallels a similar alternation of tone on T words; e.g., na ${ }^{3} \operatorname{kth}_{\varepsilon}^{4} \underbrace{4-3}$
$\sim n a^{3}{ }^{3}$ tr $^{4} h$ parallels $r u^{3} n^{4-3} \sim r^{3}{ }^{3} e^{4}$ in the following: $r u^{3} n e^{4-3}$ beans, but ru ${ }^{3}{ }^{n}{ }^{4} a^{2}$ wa ${ }^{3}$ haba-beans. A further parallel is the variation of tones $1-2$ to $\overline{2-1}$ in such expressions as kul ${ }^{1-2}$ bone but $\mathrm{ku}^{2-1} \mathrm{a}^{3} \mathrm{wi}^{3}$ skull. Notice also te ${ }^{2}$? loho ${ }^{5-4}$ rooster but te ${ }^{2}{ }^{2}{ }^{1}{ }^{5} \mathrm{~h}$ $1 \cdot i^{3} \mathrm{~h}$ a little rooster; $\mathrm{gwi}^{3}{ }^{3} \mathrm{za}^{5-3}$ the eleventh day (gwi day), but zaq $^{5} \mathrm{~g} \mathrm{wi}^{3}$ eleven days; yą ${ }^{3-4-3}$ salt, but yą ${ }^{3-4} \tau_{\mathrm{u}}{ }^{1-2}$ coarse salt: gwi ${ }^{3-5-4}$ people, but $g w i^{3-5}$ za $^{7} a^{5-3}$ nice people. In brief, all these alternations may be summarized as follows: Phrase-final variants are characterized by a 'strike' of the tones in the direction of tone 3, and by an extra mora of vowel beyond the otherwise final $7 / \mathrm{h}$; these features do not characterize phrase-medial variants.

To account for the above I offer the fóllowing hypothesis: (a) There existed in PT some sort of V^{3} enclitic particle which marked the end of the noun phrase. (b) This particle once had a characteristic vowel quality which is now completely lost in T-Ch by assimilation of the particle to the vowel quality of the preceding stem vowel. (c) In T-Ch, this particle fused with the preceding stem vowel as follows: (1) An extra mora of vowel length was added to $9 / \mathrm{h}$ final forms-thus constituting anew for T interrupted vowels like those that had formerly existed in PMx. (2) No extra length was added to vowel-final forms, but (3) some indication of the tone 3 of the original particle was retained in that stems bearing 5 or 4 in the ultimate syllable received an up-glide to tone 3 or 4 (giving 5-4, 5-3, and 4-3 glides) while stems in 2-1 received some sort of downglide and became 1-2. Comparative data for the T-Co dialect offers some corroboration of this internal reconstruction in $\mathrm{T}-\mathrm{Ch}$, in that T-Co has such parallels as the following in elicited isolated forms: T-Co nakuh-a; T-Ch na ${ }^{3}$ kith $_{2}^{4-3}$ atole; T-Co yu? -a, T-Ch yo? ${ }^{3}$ year. I have not written tone on the T-Co forms-in that I have not made an analysis of T-Co tone in its own right; nevertheless my rough field notes indicate that the tones of the T-Co forms parallel somewhat closely those of T-Ch. My notes indicate that T-Co does not have the up-glide towards 3 on words corresponding to T - Ch phrase-final ru ${ }^{3} \mathrm{ne}^{4-3}$ beans, but that particle - a^{3} is present instead. However, there exist in both T dialects some (VhV^{3}) phrase-final forms such as koho ${ }^{3}$ herb, and ₹ehe ${ }^{3}$ path. It appears, then, that the $\mathrm{T}-\mathrm{Ch}$ data present an advanced stage in the fusion of some such particle as -a ${ }^{3}$ marker of phrase-final, while in the T -Co data this fusion is only incipient.

The preceding internal reconstruction in T -Ch reinforced by some comparis on of T -Co forms enables us to consider the phrasemedial forms as historically basic. I do not, then, consider forms with ultima interrupted by $? / \mathrm{h}$ as historically relevant but treat
these for comparative purposes as $? / \mathrm{h}$ final forms. Furthermore, T tone glides 5-4, 5-3, 4-3, 1-2, 3-4-3, and 3-5-4 I likewise regard as historically irrelevant and treat them for comparative purposes as 5, 4, 2-1, 3-4, and 3-5 respectively. This simplifies considerably, on the T side the task of tone reconstruction. 5.1.2. By internal reconstruction in $T-C h$ it is also possible to demonstrate that T ?, h and tones $2-1$ are all reflexes of $P T * ?$. We thereby conside rably simplify the task of reconstructing the $P M x * ?$ in that we show that PT, like M and C has but one glottal phoneme. (M and $C h$ is historically a velar spirant). Therefore although the argument for reconstructing $T-C h ?, h$ and $2-1$ as PT $* ?$ is somewhat lengthy and involved, it cannot well be bypassed here.
T is characterized by comprehensive form classes that override the grammatical classification into noun, verb, adjective, numeral, and certain minor classes. These comprehensive form classes are pertinent to the distribution of the fused and semifused pronouns- enclitics added indifferently to nouns, verbs, and adjectives (and to a lesser degree to the numerals and certain particles). In describing the distribution of these enclitics one must take into account not only the tones of the words of a given comprehensive form-class but presence or absence of final $?$ or h in the phrase-medial forms of that class. It is therefore convenient to refer to these classes not simply as 'tone-classes' but as tone $-7 / h$ classes by such identifying tags as the following: 2-1, 3h, 3-4, and 3-5?. A listing of these comprehensive tone $-? / \mathrm{h}$ classes (omitting a few irregular stems which do not fit into the classifica: tion well) shows a slight tendency for $?$ and h to be in complementary distribution; in the following list I omit all vowel-final classes except $2-1$ in that they are irrelevant to the mutual distribution of $?$ and $h: 2-1 / 5 h, 2 h / 4 h, 3 h, 3 ?, 3-4 h, 3-4 ?, 4 h, 4$? 3-5?/5?, 4-5?, 5h, 5? $=$ Notice that in the above listing 2 h occurs but not 2?, 3-5? occurs but not 3-5h. Furthermore, the large classes $3-4 \mathrm{~h}$ vs. 3-5? (with 3-4? being a relatively small class) show the same tendency to complementation. Nevertheless, as the above list stands $?$ and h are in clear contrast in respect to 3 h vs. 3 ?, $3-4 \mathrm{~h}$ vs. $3-4$?, $4 \mathrm{~h} v \mathrm{vs} .4$? and $5 \mathrm{~h} v \mathrm{vs} .5$?. In the following paragraphs I purpose to show that these contrasts are not historically basic.
(1) The 3 h vs. 3 ? contrast is largely resultant on development of $\mathrm{Vh}(\mathrm{V})^{3}$ nouns from 3-4h stems, and of $V ?(V)^{3}$ nouns from 3-5? stems. Notice, e.g., that the unpossessed ?weh(e) ${ }^{3}$ thread has a possessed form du ${ }^{3}$? $\mathrm{we}^{3-4} \mathrm{~h}$ - which I here assume to be the
historically more basic form in that the T penultimate du ${ }^{3}$ - reconstructs in its set (180) along with the M and C penultimates as a PMx penultimate, while the unpossessed form is typical of many T unpossessed forms which seem regularly to have been formed from possessed forms by dropping the $P M x$ penultimate. I assume, therefore, that in the creation of such T unpossessed forms-along with the fusion of the V^{3} - particle described above- T smoothed out tones 3-4 to 3. Similarly, the unpossessed form ci? (i) ${ }^{3}$ cactus-beer (81) has a possessed form di ${ }^{3} \mathrm{ci}^{3-5}$? which again-on grounds identical with those presented for du ${ }^{3}$? $\mathrm{we}^{3-4} \mathrm{~h}$ above-reconstructs as the historically more basic form, thus leaving ci? (i) ${ }^{3}$ as a more recent creation. This accounts for almost all the 3 h vs. 3 ? overlap in our data. There is to be sure, a large class of 3 h forms not reflecting the above development, but the instances of contrasting $3 ?$ forms apart from the above development are almost negligible (two stems, one of which appears in set 148). While the origin of the latter residue is obscure, it seems safe to conjecture that the 3 h vs. 3 ? contrast is a comparatively recent development. It is not surprising-once the contrast was devel-oped-that it should be extended in various obscure ways to other forms.
(2) The 4 h vs. 4 ? contrast largely reflects a development parallel to that sketched above in that many of the 4 forms are T formations involving some preposed $T C V$ - element and a $C V h(V)^{3}$ form ($<\mathrm{CV}^{3-4} \mathrm{~h}$) with lowering of the tone of the latter to $4(-3)$, while many of the T ? forms are similar T formations involving preposed T CV - element and a CV ${ }^{(V)^{3}}$ form ($<C V^{3-5 \%}$) with a similar lowering of the tone of the latter to $4(-3)$. Notice, e.g., T na ${ }^{3} \mathrm{kf}^{4} \mathrm{~h} / \mathrm{na}^{3} \mathrm{kTh}^{4}{ }^{4-3}$ atole which probably is a fusion involving PT *na water (144) and kihiz ${ }^{3}$ dough (85, cf. possessed form da ${ }^{3}$ $\left.\mathrm{k}_{\mathrm{z}}{ }^{3-4} \mathrm{~h}\right)$. Similarly, $\mathrm{T} \mathrm{re}^{3} \mathrm{ka} \mathrm{A}^{4} \mathrm{\rho} / \mathrm{re}^{3} \mathrm{ka} \mathrm{a}^{4-3}$ stick is a fusion involving ${ }_{c}^{c}{ }_{4}^{3}$ wood (110) and ka? (a) ${ }^{3}$ ($121, \mathrm{cf}$. ka? a ${ }^{3}$ pine wood, torch, candle, possessed form $\mathrm{zi}^{3}-\mathrm{ka}^{3-5}$? , and cognate verb na ${ }^{3}$ k^{3-59} to sweep, originally sweep with a bundle of twigs). Other T 3-4h(3) and 3-4?(3) forms reconstruct with PMx penultimate syllable and thus do not appear to be T formations. Nevertheless, in that these inherited forms belong to the same tone $-7 / h$ classes as do the similar forms which are clearly T formations, I regard them as likewise harking back to $T 3-4 h$ and $3-5$? , respectively. The above development accounts for the majority of forms with $4 h$ vs. 4^{7} contrast. There is also contrast in the 4 h vs. $4^{?}$ adjective and numerals, but so many words in these grammatical classes
bear tone 4 or 5 that it seems safe to assume that historically such words represent forms belonging to various PT tone $-? / h$ classes with subsequent grammatical leveling to their present tones. If ? and h were in complementary distribution with each other before the tones of the forms were leveled, then it is the leveling itself which has introduced the contrast here. There also exist some verb stems in 2 h with potentials in 4 h , but there are no 4 ? verb forms to contrast with them.
(3) Instances of $5 \mathrm{~h} v \mathrm{vs}$. 5 ? seem clearly to be resultant on the T grammatical development mentioned above in which adjectives and numerals derived from forms of originally different PT tone $-? / h$ classes were lowered to 5 with retention of final -? or -h of the earlier form. This assumption is even more secure than that made above in reference to 4 h vs. 4 ? in that there is no evidence that PMx or PT $\% 44$ tone pattern existed (which would presumably give T 55); therefore T words 55 h and $55^{?}$ must have developed from words formerly bearing other tone patterns. Such a development is clear in the case of verbs with potential in 5 h or 5 ? in that the former have 2-1 (PT $* 1$?, phonetically [$\% 1 \mathrm{~h}$]) in their basic form and the latter have 3-5? in their basic form: ga ${ }^{3} \mathrm{c}_{2}{ }_{2}^{2-1}$ asked but ga ${ }^{5} x_{i}{ }^{5} h$ will ask; ga ${ }^{3} c_{i}{ }^{3-5}$? buried, but ga ${ }^{5} c_{i}{ }^{5}$? will bury.
(4) Finally, the contrast of 34 h and 34 ? must be considered. Here the historical development is not as simple as in the data considered in the above paragraphs. Nevertheless, an inspection of the $34 h$ and 34 ? forms reveals fairly consistent complementation in terms of the preceding consonant (and possibly the vowel as well). The $3-4 h$ class is much larger than the $3-4$? class and the latter is almost entirely restricted to forms with ultimate syllable consonant(s) r, gy, and gw-which, in turn, do not usually occur within 34 forms (except for developed $-g$ - between earlier T *u...w as in set 38). There is, however, some overlap in that one verb occurs with ultimate syl\}able $-\mathrm{wi}^{3-4} \mathrm{~h}_{\mathrm{h}} \mathrm{vs}$. another verb with ultimate syllable wi ${ }^{3-47}$, and one verb with ultimate syllable na ${ }^{3-4} h^{3}$ vs. another verb with ultimate syllable ną ${ }^{3-4}$?. Nevertheless, in spite of this residue, it seems plausible that at a previous period in $T, ?$ and h were in complementary distribution here- as, indeed everywhere else.
5.1.3. It remains to show that $\mathrm{T} 2-1$ is a reflex of PT *? . T has a large class of 2-1 stems (varying to $1-2$ in phrase-final). Not only do $2-1$ verbs $>5 \mathrm{~h}$ in the potential but disyllabic nouns in $32-1$ $>55 \mathrm{~h}$ in their possessed forms as well. There is then, a general morphophonemic connection between 2-1 and 5 h. Presumably this connection points to a time when these stems were ' h ' final (either
the spirant allophone of $* ?$, or h phoneme already split off from *?) everywhere. Furthermore, 2-1 stems behave in many respects like -h final stems, e.g., in regard to their selection of the alloforms of the fused first and third person pronouns. Finally, the assumption that PT ${ }^{*} 1$? (phonetically $\left.*[1 h]\right)>$ modern T $2-1$ is the theory on which I account for the development of the modern T -Ch five tone system. Without such an assumption it would be difficult to compare the T tones with the M, C tones and to reconstruct the PMx tones of our cognates. With such an assumption both the reconstruction of the $P \mathbf{M x} * ?$ and of the tones are facilitated. The above arguments from internal reconstruction of T -Ch in regard to $2-1$ stems are chinched, however, by the comparative data; for there are sets in which M and/or C give clear evidence of ${ }^{*}$? in forms cognate with $T 2-1$ stems (23, 24, $76,77,83,110,134,159$).

PT had* then, but one glottal phoneme, but the phoneme had a spirant allophone in certain situations and a stop allophone in other situations. To anticipate somewhat the tone reconstruction of the next main section, we may say that in reference to the PT four-level system, T at an earlier stage than the present had spirant allophone of $* ?$ after proto tones $* 1$ and $* 2$, a stop allophone after proto tone $* 4$, and stop or spirant allophone after proto tone $* 3$ depending on the preceding consonant and vowel of the syllable in which the $* ?$ occurred.
5.2. M, C, T reflexes of $P M x$ final *- ? . The essential developments of PMx final $*_{-}$? have already been sketched in 2.1.3. I here recapitulate with amplification and illustrative data: (1) M loses final ${ }^{*} ?$ everywhere and without trace, except for the situation described under (4). (2) C preserves final ${ }^{*}$.? in some forms and loses it in others. Etymological doublets occur-so that one C form of a given word may have - ? , while another form of the same word-often the form occurring non-phrase-final-does not have - ? . This situation possibly indicates a PC sandhi pattern in which certain? (space) consonant clusters were reduced by loss of the first member. Sets in which T preserves final *-? while C does not probably contain PC sandhi variants without the final *-? C tone pattern mid-mid low, whether or not followed by final - ? , usually indicates $* 22$? or $* 33$?. (3) PT regularly has preserved final ${ }^{*}-$? but splits it into $-?,=h$ and $2-1$ in modern T (see 5.1.2. and 5.1.3.) (4) in M, C and T there occur forms in which PMx * CV? has been expanded by rearticulating the vowel so as to produce disyllabic $C V ? V$; in such forms the originally final ${ }^{*}=$? is preserved in any language where the expansion occurs.

Hlustrative sets follow: (5) M-SM vīßì sweet, ${ }^{\mathrm{n}} \mathrm{du} \mathrm{sin}_{\mathrm{i}}$ honey; C nā-dī $\overline{1}$ honey (with rearticulation of root vowel); $T z_{i}{ }^{3} \bar{c} \overline{?_{i}} 4-3$
 squash; yúúkù squash (in names of several varieties), yūūkì squash (in name of another variety), yúúkù squash (in name of still another variety); T da $^{3}{ }^{k}{ }^{2}{ }^{2-1} /$ ką 3 squash. Notice the C sandhi variants with and without -? , and the occurrence of C mid-mid low tone pattern indicative of PMx *22? in this set. Notice also the T 2-1, indicating PT ${ }^{1} ?$. T ką ${ }^{3}$ either has lost $*_{-}$? by analogy to the possessed form or is witness to a PMx variant without *-?. If the latter be true, then the PC sandhi variants with and without final *? reflect a situation current in PMx itself. (89) M-SM ${ }^{n}$ difi in every place, completely, ${ }^{n} d \overline{1}{ }^{\eta} \overline{1}$ all, finished; C ndūu all; T nif ${ }^{5}$? all. (Notice regular loss of final $*_{-}$? on one M form, but preservation of PMx * ? by rearticulating the root vowel in the second M form. C loses the $*_{-}$?. T retains $*_{-}$? and lowers the tones of this word (grammatically a numeral) to tone 5 from some undetermined previous tone pattern). (98) M-SM fiñīi; C yưqú; T tą? a^{3} ear of corn (with M, C loss of final *-?). (127) M-SM
 mucus, ($\mathrm{zi}^{3} \mathrm{u}^{3-4}$) da ${ }^{3} \mathrm{kwe}^{2} \mathrm{~h}$ vulva. (155) M-SM k
 ngwą ${ }^{4}$? ${ }^{3}{ }^{3} \mathrm{~h}$ four more. (Notice again the evidence of PC sandhi variants with and without final $*_{-}$? . T has rearticulated the vowel in most forms of the numeral; addition of T-h after the rearticulated vowel is obscure). (167) M-SM ñoñ; C yāānà; $T n^{-} z^{3} h$ net-work bag, T zì ${ }^{3}{ }_{n}{ }^{2}{ }^{2} h$ crop (of a bird). (Notice that the C form has no final -? but bears tones mid-mid low, which along with the M , T witnesses, reconstructs as $\mathrm{PMx} * 229$). (199) M-SM, SE ${ }^{n}$ dikìi; $T{ }_{n i}{ }^{5}{ }^{k}{ }^{5}$? short (final *? here was the factor conditioning PMx ${ }^{*}$ > $>$ M ; cf. 3.2.1.5.).
5.3. M, C, T reflexes of *? in PMx *? C clusters initiating ultimate syllables.
5.3.1. Reflexes of PMx clusters composed of *? followed by nasal or semi-vowel. Clusters composed of PMx *? followed by lateral, nasal, or semi-vowel were discussed and illustrated in 3.1.4. PMx *? 1 occurs, however, but in one set (19) and is not further considered here. In section 3.1.4., *? m, *? ${ }^{n}$ and ${ }^{*} ?^{w}$ were of some interest in view of the fact that under varying conditions in M, C, T the consonant following the $* ?$ was lost. In this section our interest focuses on the *? itself rather than on the consonant following it. We trace developments in which the *? of such *? C clusters is (a) retained in original position, (b) lost, or
(c) metathesized to another position so that the original *? C cluster is eliminated but with preservation of the *? elsewhere in the same form.
5.3.1.1. M clusters ? m, ?n, ? n , ? v , and ? y are, wherever they occur, reflexes of PMx *? m, *?n, *? $\mathrm{n}, * ? \mathrm{w}$, and $* ? \mathrm{y}$ respectively. However, M reflex $\boldsymbol{* ?}_{n}$ of $\mathrm{PMx} * ?_{\mathrm{n}}$ is a rather rare reflex found only in three sets $(32,168,275)$ under obscure conditions. More frequently the M reflex of this cluster is simply n. 5.3.1.2. C retains glottal stop in original position in these clusters except that (1) the ${ }^{*}$? of ${ }^{*} ?_{n}$ is regularly metathesized to initial position in the penultimate syllable of disyllabic words (with ? - $+n d>_{n}$? d), and (2) the $* ?$ of $* ? w$ is aliso thus metathesized in a few sets under obscure conditions. Under conditions almost as obscure the ${ }^{*} ?$ thus metathesized is lost from some forms. However, the loss of metathesized *? , both here and elsewhere in C, may be explained, at least in reference to some verb stems, as an analogical leveling of ?-from intransitive or reflexive verb stems in view of the fact that prefixial ?- occurs as a transitive or non-reflexive morpheme in many verbs (see illustration in 5.0.3.).
5.3.1.3. T sometimes retains *-? in original position in these clusters, and sometimes metathesizes it to the final position in the word-where it becomes h, ?, or $2-1$ and may receive the phrase-final increment discussed in 5.1.1. Thus, the T metathesis of final *? was early enough so that the shifted *? shared in all the developments sketched for final $*_{-}$? in 5.1.2. and 5.1.3. In thus metathesizing the *? of $\mathrm{PMx} * ? \mathrm{C}$ to the rear of the word, T reflects an opposite tendency to that found in C where the *? of such clusters is metathesized to the fore of the word. Since these metatheses are even more typical of the PMx clusters described under 5.3.2., the following C, T correspondence is of considerable importance for establishing $\mathrm{PMx} * ? \mathrm{C}$ cluster initiating an ultimate syllable: C ${ }^{2} \mathrm{CVVCV} \sim \mathrm{T}$ CVCV? $/ \mathrm{h} / \mathrm{z}_{-1}<\mathrm{PMx} * \mathrm{CV}$? CV.

The conditions under which T retained $* ?$ in original position in clusters composed of *? followed by nasal or semi-vowel and the conditions under which T metathesized the $*$? of such clusters to final position are as follows: (1) PMx *? of such clusters was never metathesized when there was also a final PMx *-? present. (2) PMx *? $\mathrm{C}>\mathrm{T}$? C in forms with PMx tones *(2) 2, *(3) 3, *43, *42 and PT tones *12 (merger of several PMx tone-sandhi variants), except that (3) $\mathrm{PMx} * \boldsymbol{?}_{\mathrm{n}}>\mathrm{T} \mathrm{n}$ (with loss of $*$?) in forms with the above reconstructed tone patterns (but possibly remains T ? n in forms with PMx *43). (4) PMx*?C>PT *CV? (with subsequent
split of PT *? $>?, \mathrm{~h}$ and 2-1) in forms with $\mathrm{PMx} * 23, * 32, * 24$, *34 and PT *2l (PMx *21 tone-sandhi variant). (5) PMx*? m is treated in accordance with the above statements but the reflexes are complicated by the following course of development (mentioned in 3.1.4.2.): (a) Early PMx *? $\mathrm{mV} \pm \mathrm{m}(?)$ syllables seem to have given rise to late PMx alternants: *? Vm (?) in which the first $*_{m}$ was lost on addition of the second $*-\mathrm{m}$; and $* ? \mathrm{mV}(?)$ in which the first *m was retained in that a post-posed $* m$ was not thus present on the form. (b) The former variant $>\mathrm{M}$?V; C ? $\mathrm{P}(7)$; T ? $\mathrm{Y}(\mathrm{h})$. (c) The latter variant $>\mathrm{M} \quad ? \mathrm{mV}, \mathrm{C} ? \mathrm{mV}(?)$ and $P T * ? \mathrm{mV}(?)$. (d) PT *? mV was probably metathesized to ${ }^{*} \mathrm{mV}^{7}$ when subject to the conditions stated under (4) above. (e) However, PT *?mV? was simplified by loss of first ${ }^{*} ?$ so that ${ }^{2} \mathrm{mV}$? also resulted. The above posited course of development requires us to assume that any $T \mathrm{my}$? forms occurring in our sets reflect a T nasalization, not $P M x$ final ${ }^{*}-m$. Set 157 contains a T form yo ${ }^{3}{ }^{2}{ }^{5}{ }^{5-3}$ which apparently < PMx *? mV with tones $* 24$, and is, therefore, impossible to rationalize in terms of the above scheme in that the $?$ has not been metathesized according to statement (4). However -70 is a somewhat bizarre reflex of $P M x * ? m$ and the factors conditioning it are rather obscure.

The following sets, while generally illustrative of M, C, T reflexes of PMx *? C clusters with nasal or semi-vowel, are chosen especially to illustrate statement (1) in the above paragraph. In the following, the PMx ultimate syllable had $\#$? CV? structure and T, retaining the final $*_{-}$? , did not metathesize the first $*$? : (274) M-SM kả? nù to break, to cut; $T \mathrm{ga}^{3}{ }^{\text {? }} \mathrm{ni}^{3-5}$? to cut, to chop. (275) M-SM kwa?nu to grow, ka?nu large, ña?nu greăt, aged;

 (with preservation of final $\% ?$ and rearticulation of ultimate vowel in the second C verb); $T \bar{z}^{3}$? wi ${ }^{3-5 ?}$ to be afraid. (278) M-SM $t^{\text {E }}{ }^{2} \mathrm{yu}$; $T \mathrm{ri}^{3}$? $\mathrm{yu}^{3} \mathrm{~h}$ to spoil, to rot.

The following illustrative sets are chosen especially to illustrate (2) above; the PMx ultimate syllable had *? CV structure and T retains $*$ ir in original position in forms with the indicated reconstructed tone patterns. (21, tones *22) M-SM kā?mū, M-J ka? mi
 C non-reflexive morpheme); T (g) a^{3} ? mą ${ }^{3}$ to be warm. (158, tones *33) MmSM hà-ni-ca? mà flattened; C dī̌ -sīi?má to flatten; $T \quad\left(\mathrm{gi}^{3}\right) \mathrm{na}^{3}$? mą ${ }^{3}$ to cave in. (44, tones $\left.* 33\right) \mathrm{M}-\mathrm{SM}$ tā̀ to owe < PMx variant without *-7-; see 5.6.$),{ }^{n}$ dá? ${ }^{\prime}$ to be poor; T
 T da $^{3}{ }^{2} \mathrm{mą}^{5}$ leg. (46 , tones ${ }^{*} 42$) M să ($<$ PMx variant without *- ?-; see 5.6.); Tzdu ${ }^{3}$? wi ${ }^{5-3}$ Indian, non-Spanish-speaking.

The following sets are chosen especially to illustrate statement (3) relative to *?n: (165, tones *33) M-SM ?Ina dog; C ${ }^{?}$ yáánà dog, ${ }^{?}$ yúứnà fox; T zu ${ }^{3}{ }^{n}{ }^{3}$ fox. (36 , tones $* 12$ in PT) M-SM kāni; C ?kęãñ̄; T ga ${ }^{3} \mathrm{ni}^{2-3}$ to set up. (29, tones *43) M-SM ? $\overline{\text { n̄ }}$ afternoon, Kini supper; C vilind afternoon; T zdi ${ }^{3}$?nif ${ }^{5-3}$ supper.

The following sets are chosen especially to illustrate statement (4); these exemplify the conditions under which T metathesized *? of PMx ${ }^{* ?}$ C cluster to final position: (38 , tone $* 23$) M-
 of a woman (T developed -g-between *u. . . wi). (182, tones *32) M-SM $k^{\mathrm{w}} \mathrm{a}$? $\overline{\mathrm{a}}, \mathrm{M}-\mathrm{J}$ ku? va brother of a woman, sister of a man; C $\mathrm{k} \overline{\mathrm{a}}{ }^{?}{ }^{2} \mathrm{v} \overline{\mathrm{a}}$ brother; T žu ${ }^{3} \mathrm{gwe} \mathrm{e}^{3-4} \mathrm{hbrother}$ of a woman, sister of a man (T developed $-g$ - in *u... we). (28 , tones $* 24$, *33) M-SM kūnit to see $\left(<* 24\right.$), kūni (sठ $\left.{ }^{7} \bar{o}\right)$ to hear $(<* 33)$; C kwíino to look at; T ($n \cdot \mathrm{e}^{3-4}$) $\mathrm{gu}^{3} \mathrm{nt}^{2} \mathrm{q}^{4-3}$ mirror $(<* 24)$, $\mathrm{gu}^{3} \mathrm{~m}^{3}$ to hear $(<* 33)$. (26, tones *34) M-SM kīni disgust; C (kūūve k̄̄a) ? vī̄nō to be disgusted; T ni ${ }^{3}$ nihis ${ }^{4-3}$ disgusting. (24 , tones PT *21) M-SM fiāni brother of a man; C ${ }^{2}$ díin 6 brother; T di $^{3} \mathrm{nit}^{2-1}$ brother of a man.

The following sets are chosen especially to illustrate the developments sketched under (5): (22, tones *32) M-SM tų? word

 $>P T-m V^{2}$ by loss of first $* ?$ and with subsequent passage of $*_{m}$ to w and development of $-g-$ after u; the vowel nasalization is presumably a T development). (32, tones *32, *34) M-SM Kų ? money, bit (<PMx m $^{* ?} \mathrm{Vm}^{\text {? }}$) ; T zą $^{3}{ }^{3}$ ąhą ${ }^{4-3}$ money, (< PMx

 tones uncertain) M-SM the? ${ }^{?}$ a, comrade, of the same class ($<\mathrm{PM}$. **? Vm); C n $*$ - 7 Vm), $\mathrm{a}^{4} \mathrm{~m}^{3}{ }^{3-47}$ a couple of ($<\mathrm{PMx}=\boldsymbol{*}^{7 \mathrm{mV}}$ with T metathesis; the vowel nasalization is presumed a T development), nu ${ }^{5} \mathrm{gwa}^{5}$? together with (as preceding, except for passage of $*_{m}>\mathrm{w}$ and development of -g- after u). For further examples- especially those involving reflex ${ }^{?} \mathrm{~m}$ in $\mathrm{M}, \mathrm{C}, \mathrm{T} \rightarrow$ see 3.1.4.2.).
5.3.2. Reflexes of $P M x$ clusters composed of $* ?$ followed by stop or spirant.
5.3.2.1. Clusters of PMx $* ?$ followed by spirant or stop are
uniformly reduced in M by loss of $* ?$. In C, the $* ?$ of such clusters is regularly metathesized to the penultimate syllable in disyllabic forms; in monosyllabic ?CVV(?) forms it is most often retained. Exceptions to both the above statements relative to C occur in that the C of some sets preserves no trace of $\mathrm{PMx} *$? the absence of *? in these C forms may be at least partially explained as an analogical leveling of $* ?$ from intransitive or nonreflexive verbs-as suggested in 5.3.1.2.
5.3.2.2. T sometimes loses the $* ?$ from such clusters, but more often metathesizes it to final position. The conditions governing these two different reflexes-mero and metathesized reflex-are similar to those stated for T in relation to the metathesis of *? in in 5.3.1.3., but the conditions here are somewhat simpler: (1) PMx *? was dropped from such clusters when there was a final * 7 present on the same form. (2) $P M x$ *? was also dropped from such clusters in forms with PMx tones $*(2) 2, *(3) 3$, and *43. (3) $\mathrm{PMx} * 7 \mathrm{C}>\mathrm{PT} * \mathrm{CV}$? (with subsequent split of $\mathrm{PT} * ?>$? h, and 21) in forms with PMx tones $* 23, * 32, * 24, * 34, * 42$ and PT *21 (merger of several PMx tone-sandhi variants). Notice that $¥^{?} \mathrm{C}$ clusters with stop or spirant as second member give a metathesized T reflex, i.e., CV? in forms with PMx tones ${ }^{*} 42$; while *? C clusters with nasal or semi-vowel as second member give unmetathesized reflex, i.e., ? CV in forms with PMx * ${ }^{*}$. Otherwise, the conditions just posited and those posited under statements (2) and (4) of 5.3.1.3. differ only in that the conditions here posited do not embrace the same variety of PMx tone patterns as those under 5.3.1.3., nor do these conditions have the special complication in regard to loss of consonant ($* \mathrm{~m}$) that characterized those under 5.3.1.3. and which made necessary statement (5) in that section.
5.3.2.3. In terms of C, T correspondences, note again that where both C and T preserve metathesized ${ }^{*} ?$ of such clusters, the correspondence C ? CVVCV ${ }^{3} \mathrm{~T}$ CVCV $/ \mathrm{h} / 21$ enables us to reconstruct *CV?CV with some assurance. Otherwise, however, the *? C cluster is reconstructed on the basis of simply the C or the T witness. In view of the fact that C seems to have added initial $* ?$ in some instances (notably in 157) there is probably a certain mar= gin of error in the reconstruction of $\# ? \mathrm{C}$ based on the C witness alone, in that some such sets may involve addition of the initial?. in C rather than a metathesized $* ?$ from original PMx *? C cluster. In that there is no clear evidence, on the other hand, that T has ever added final *.? to originally vowel-final forms, the T witness ... even in the absence of ? in the C form-is somewhat more
valuable.
5.3.2.4. The following set illustrates statement (1) relative to T in the set of conditions stated above. In this set there are reflexes of PMx ultimate syllable $*$? CV ? with $* \theta$ - as the consonant of that syllable. This is the only set in the array of cognates that unequivocably illustrates $*$? CV? with stop or spirant as the consonant of the syllable. This is not particularly strange in view of the consideration that while in order to reconstruct such a syllable we must have C ?CVVCV? or 'CVV? \sim T (CV)CV?, yet the PC final *-? is only sporadically preserved. We may assume, therefore, that PMx syllables of this sort may have been more frequent than the $\mathrm{C} \sim \mathrm{T}$ correspondences indicate. (209) MiSM Pisù deer; C ?yúúdù? horse; T žu ${ }^{3} \mathrm{ta}^{3} \mathrm{~h}$ deer (For the semantic shift involved cf. A kaso mule, kaso hndai deer). The initial ?- of this form is probably not a C innovation resulting from the fusion of some C ? yu- element; on the contrary the penultimate syllables in $\mathrm{M}, \mathrm{C}, \mathrm{T}$ reconstruct quite regularly as $P M x * y u-$ in M, C, and *tu- in T.

The following sets are especially chosen to illustrate statement (2) above; they illustrate conditions under which T dropped PMx *? from * ${ }^{2} \mathrm{C}$ cluster with stop or spirant as second member: (77, tones *22) M-SM yūkū mountain; C ?dáḱ a pile, nā-hāāko slope; T da ${ }^{3} \mathrm{kq}^{3}$ slope (another T form with $\mathrm{PT} * 21$ has metathesized *?: da ${ }^{3} \mathrm{k}_{2}^{2-1}$ hill of corn, the nose (105 , tones $* 22$) M-SM kātā; C kāāta (with loss of penultimate metathesized $* ?$ in this intransitive verb); $T \mathrm{ga}^{4} \mathrm{c}_{\mathrm{a}}{ }^{4}$ will sing (new T potential from $* 22$ lowered to $* 33$, i.e., modern T 44; the other form of this verb, $\mathrm{ga}^{3} \mathrm{ca}^{2-1}$ sang is from PT *21 with metathesized * 2). (200, tones *22/*33) $\bar{M}-\mathrm{SM}$ tī-y6k6 ant; C ${ }^{\text {Tīkō }}$ louse; ${ }^{7}$ yāakō fly; T žu ${ }^{3}$ kwa ${ }^{3}$ ant. (112, tones *43) C (kúúvé) ${ }^{\text {º }}$ yāàà to slobber; $\mathrm{T} \mathrm{ga}^{3} \mathrm{ka}^{5}$ to leak.

The following sets are especially chosen to illustrate statement (3); they illustrate conditions under which T metathesized the *? of PMx *? C clusters with stop or spirant as second member: (135, tones *34) M-SM tit -sāà; C ?yáádá; T záa taha ${ }^{4-3}$ bird. (142, tones *23) M-SM yákwá; C ${ }^{2} \mathrm{kwes}$ crooked; $\mathrm{T} \mathrm{du}{ }^{3} \mathrm{gwa}^{3}-4$? to turn or twist downwards. (118, tones *23) M-SM takà; C
 to take away; C kā- $? k$ káká to operate (something), ndāàkà to get, to find (with penultimate, metathesized ${ }^{* ?}$ lost here in this verb); $\mathrm{T} \mathrm{ni}^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to have, $\mathrm{na}^{3} \mathrm{ka}^{3-4}$ h to gather up, $\mathrm{za}^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to get.
 fry (with loss of metathesized ${ }^{* 2}$ in first verb); T ga $^{3} \boldsymbol{c}_{i}{ }^{?}{ }_{i}{ }^{4-3} \underline{f e v e r}$.
 to bury. (123, tones *22, PT *21) M-SM kākā to walk; C káaká to walk, k $\bar{u}-$ ciikà to take a walk (with loss of metathesized *? in these intransitive forms); $T g^{3} \mathrm{ce}^{2-1}(<\mathrm{PT} * 21)$, ga ${ }^{4} \mathrm{re}^{4}(<\mathrm{PMx}$ *22 lowered to $* 33$, i.e., modern $T 44$, in creation of new potential) to walk.
5.3.3. Reflexes of PMx clusters composed of $* ?$ followed by prenasalized stop. The sets that unambiguously contain reflexes of these clusters are few enough that the data may be exhaustively listed.

PMx * ${ }^{\mathbf{n}} \mathrm{d}$ occurs in two sets. M retains ${ }^{*}$? in original position; C metathesizes the $\#$? with loss in one set; T retains the *? in *? CV? syllable and loses it in *? CV syllable (which in this case bears reflex of PMx tone *33): (146) M-SM kā ? Yy to cut;

 loss of metathesized ${ }^{*} ?$); T ga $^{3} \mathrm{ni}^{3}$ to explode.
$*^{n}{ }^{n}$ g occurs in four sets. The $* ?$ is lost in M; and metathesized in the C of one of the two sets for which there is C witness but presumably metathesized and lost in the other set. T retains ${ }^{*}{ }^{n}{ }^{n} g$ undisturbed in all four sets-three of which reflect PMx *? CV? ultimas and one of which reflects PMx *? CV ultima: (214)
 ga^{3} ? nga ${ }^{3-4}$ to be born. (217) M-SM kiku to sew; C (kā? mę̨) kwāku to swear; T da ${ }^{3}$? nga? a^{4-3} scar, proof, sign. (218) C $?$ kajkù ($n \overline{\text { çaç }}$) to prepare little by little; T na ${ }^{3}{ }^{2} n g a^{2} h$ to whittle; $\mathrm{ga}^{3}{ }^{7} \mathrm{nga}{ }^{2} \mathrm{~h}$ to scrape.
5.4. M, C, T reflexes of $* ?$ inter r upting the vowel of the ultimate syllable.
5.4.1. I reconstruct PMx ultimate syllable of $* \mathrm{CV}$? V pattern whenever there is unanimous witness in a set to *CV?V. Whenever, however, even one language of a set witnesses to *CV? rather than to $\% \mathrm{CV}$? V, I assume that the other language (or languages) has expanded to $C V$? V by rearticulating the vowel. Notice, e.g., set 172: M-SM ñį̣? $y a^{3} ?{\underset{z}{ }}^{4-3}$ fire, light, $g^{3} n^{3}{ }^{3}$ yąhą ${ }^{4-3}$ daylight. In evaluating this set the witness of the last T form is crucial, in that, while it is perhaps conceivable that this T form should be some sort of a backformation from *?ya? am, it is more plausible to consider it as deriving from *? yam? . Furthermore there is enough sporadic expansion of *(?)CV? to (?) CV?V in M, C, T to justify the assumption that we here have an unusual instance of parallel expansion in the three languages. It is, or course, possible that this expansion
took place in late PMx. Nevertheless, in the face of such data as that given to us in the last T form of the above set. I do not feel that we can reconstruct PMx *CV?V for this set with any assurance. This of course raises the possibility that some of the sets for which I reconstruct *CV? V reflect such parallel M, C, T expansion rather than a PMx inter rupted syllable. The comparative method can give us no criterion for discerning between such parallel developments in related languages and a common inherited feature. Nevertheless, it seems somewhat probable that, since expansion of a *CV? root by rearticulating the stem vowel is a rather sporadic phenomenon, the bulk of our sets with unbroken M, C, T witness to *CV?V reflect a PMx interritpted syllable. The same line of reasoning would be used to refute the suggestion that possibly all the sets with CV?V in any or all the languages are, after all, simply expansions of $\mathrm{PMx} * \mathrm{CV}$? . Here it could be argued that the existence of at least some PMx *CV?V syllables would be necessary to provide the model for the expansion of *CV? in the various languages. To summarize: it seems highly probable that interrupted *CV?V syllables occurred in PMx, and highly probable that sets with undissenting $\mathrm{M}, \mathrm{C}, \mathrm{T}$ witness to *CV 7 V hark back to syllables of such structure; nevertheless doubts may perhaps be entertained as to the provenience of the $\mathrm{M}, \mathrm{C}, \mathrm{T}$ forms of any given set in view of the M, C, T tendency to expand sporadically *CV? $>\mathrm{CV}$?V.

Hlustrative sets follow: (141) M-SM ha? à, M-SE he 7 a , M-J

 ($\mathrm{T} \mathrm{ko}^{4-7} \mathrm{q}^{5}$? twenty-five presumably. contains an abbreviation of ${ }^{?} \Psi^{5}{ }^{5} \Psi^{5}$ but this shortened form could indicate PMx *CV? rather than *CV 7 V.).
5.4.2. There are some sets, similar to those just illustrated, where the T forms have CV? Vh structure. The T final -h witnesses to a second *? somewhere in the PMx form. The position of this second $* ?$ was either (a) final in *CV?V? syllables so that a vowel could be both interpreted and closed by *?; or (b) initial in *?CV?V syllables with metathesis of the initial $* ?$ to final position in T. There is something to be said in favor of either alternative. In favor of (a) note set 159 in which C witnesses to a final *7 in what appears to be a PMx inter rupted syllable: (159) M-SM
 151 in which C initial *?- may be parallel to the T-h; this set points in the direction of alternative (b): (151) C dà-n? de ? $\overline{\mathrm{e}}$ to
chew, to dance; $T r^{2}{ }^{2} a^{5} h$ to dance. It is well to remember, however, that while initial C ? . is sometimes suspect of being an addition, C final $-?$ is probably not so suspect. We may there.. fore weigh the C witness in favor of (a) more heavily than the witness in favor of (b).

Nevertheless, somewhat in favor of (b) again is the following T development which is perhaps parallel: Some PMx*クCV'syllables apparently rearticulate the vowel in T with metathesis of the first PMx *? to final position in the newly created syllable. Notice set (193) M-SM ${ }^{9} I^{?}$ yà saint, god; T gi 3 ? yachą ${ }^{4-3}$ holy day, fiesta $\left(<\mathrm{gwi}^{3}\right.$ day + ? yą ${ }^{3-47}$ holy), yą ${ }^{3}$? ąhą ${ }^{4-3}$ god, saint
 a development as this may lead us to raise the question as to whether or not T might not have metathesized initial *? of PMx *? CV?V syllables to final position in the T disyllabic reflex-as per alternative (b) -if, in *? CV?V created from PMx *? CV?, such a metathesis also took place.

Without attempting to decide decisively between the above alternatives, I pass on to the next section. Enough data has been presented to show that T-h on forms harking back to PMx interrupted syllables, is not a T innovation but is a reflex of a second *? present somewhere in the PMx form. This second *? undoubtedly had a characteristic position even if we can not localize it with certainty. For further examples of sets involving PMx interrupted syllable with presence of second *? somewhere in the form see $133,156,177$, and 252.
5.5. Sets ambiguous as to PMx final *.? vs. PMx *? in * ${ }^{\text {? }} \mathrm{C}$ ultimate syllable cluster.
5.5.1. The following sets are ambiguous as to PMx final *? vs. PMx *? C ultimate syllable cluster; the ambiguity is resultant on lack of a decisive C witness as to the position of $* ?$ in the PMx form: 13, 15, 25, 74, $108,117,128,132,152,204,205,208$, $210,265,269,270.273$. Nevertheless, in reference to those of the above sets for which PMx tones have been reconstructed, it is possible to raise the question as to whether or not the reconstructed tone pattern is one which would characterize a PT form shifting ${ }^{*}$? $\mathrm{C}>\mathrm{CV}{ }^{?}$. If the answer to this question is negative, we then reconstruct final *? rather than ultimate $* ? \mathrm{C}$ cluster. In examining the above seventeen sets-and for most of them it has been posm sible to reconstruct PMx tones-there is but one set (25) for which we need to posit final ${ }^{*}$? according to the above criterion: M-SM kāni to pound, to hit; $T \mathrm{gu}^{3} \mathrm{nH}^{3-5}$? to quarrel, to fight. Here, M mid-mid $\sim T 35$ indicates PMx tones $* 43$. But, according to
statements (2) and (3) under 5.3.1,3. PMx $\mathrm{F}_{\mathrm{f}}^{\mathrm{n}}>\boldsymbol{>}>\mathrm{P}_{\mathrm{n}}$ for, at least, simply $>n$) on forms with $P M x * 43$. Therefore, set 25 does not point to a PMx form with ${ }^{*} ? n$ but to one with final ${ }^{*}=$? . Surprisingly enough, however, in every other set with reconstructed tones of those listed above as ambiguous as to position of PMx *? , the reconstructed tones are such that the PMx form could have contained a*? C ultimate syllable cluster. 5.6. Residues. I list here data from four sets in which the C witness to ${ }^{*}$? cannot be reconciled with absence of $T ? / h / 21$ on any of the ground presented above: (185) C ${ }^{9}$ yáává; T ža ${ }^{3} \mathrm{wi}^{5-3}$ butterfly; (258) C yū̄̄? ; T tụ ${ }^{3}$ blood. (264) C (ȳ̨̄?

Some of the above sets may simply be spurious. On the other hand, these sets may preserve evidence that in PMx there were a few roots for which variants existed-one variant with \neq ? present in the form and one variant without it. That such a situation existed, at least in regard to ${ }^{*}$? w vs. ${ }^{*}$ w scems quite possible from the following data: (44) M-SM tāu to owe, "dá? da ${ }^{3}$? wi ${ }^{3}$ to owe, (Note the etymological doublet witnessing to ${ }^{*} ?_{\mathrm{w}}$ and ${ }^{*} \mathrm{w}$ in $\mathrm{M}-\mathrm{SM}$ with only the former surviving in T.) (45) M-SM saù rain; T sà? \bar{u} to submerge; C dāā \bar{e} thunder; $T=C h ~ d u{ }^{3}{ }^{2}$ wi 3 thunder, T-Co yuwi rain. (Note the etymological doublet in M, with only ${ }^{*}$ w surviving in C-unless the ${ }^{*} ?$ of ${ }^{*} ?$ w was metathesized and lost, and with ${ }^{*} ? \mathrm{w}$ in $\mathrm{T}-\mathrm{Ch}$ but ${ }^{*} \mathrm{w}$ in $\left.\mathrm{T}-\mathrm{Co}.\right)$ Such data as the preceding probably point to the presence of some sort of *- ? - derivative or inflectional infix in PMx.

NOTE

1. For similar arguments supporting a similar analysis in present day Trique, cf. FPPT p. 75, fn. 2 and Longacre, 'Rejoinder to Hamp's Componential Restatement of Syllable Structure in Trique,' IJAL 16 (April, 1955) p. 191, fn. 4,

6. PMx tones

6. 0 . The reconstruction of $P M x$ tones is based on a comparison of four tone systems, those of M-SM, M-SE, C, and T-Ch. The reconstruction of the tones is not based, therefore, on so broad a base as are the reconstructions presented in the preceding sections, in that $\mathrm{M}-\mathrm{J}, \mathrm{M}-\mathrm{M}$ and $\mathrm{T}-\mathrm{Co}$ are nowhere taken into account.
6.1. Present-day tone systerns.
6.1.1. The tone system of M-SM.
6.1.1,0. M-SM exhibits a system of three phonemic pitch levels. In this dialect, where couplets of structure (C)CVV, (C)CV?V, (C) CVC(C)V, and (C) CV 'CVV occur, one tone occurs to the sylm lable. The segmental disyllabic sequence is thus paired with a suprasegmental sequence which is termed the tone couplet by Pike and Mak. The tone couplet is basic to the description of the distribution of the tones in basic patterns and in sandhi variants. The following brief sketch of the M-SM tone system is a summary of certain portions of Pike's description of M-SM tone (TL, p. 77-81). 6.1.1.1. The following tone couplets occur as basic in M-SM: high-high sána turkey; high-mid, fil ${ }^{\text {i }}$ steam bath; high-low, va? ù
 snake, kütù nose; low-high, suci child; lowminid, minī puddle. There occur, therefore, all theoretically possible sequences of two tones in a three level system except the sequence low-low. 6.1.1.2. The last four of the tone couplets listed and illustrated above have tone sandhi variants as follows: Mid-mid ~high-mid,
 sandhi variation only in (C) $C \bar{V} V$ couplets with identical vowels and in (C) CV̄? (C) V couplets); mid-low \sim mid-high, kūtù \sim kūtú nose (this sandhi variation in $C \bar{V} \bar{V}$ couplets with differing vowels and in (C) CVC (C) V couplets); low-high ~high-high, sư̌í \sim sťí
 the above sandhi variants are characterized by a high tone in the first or second syllable of a couplet that has mid or low tone in that position in its basic pattern. However, (C) $C \bar{V} \bar{V}$ couplets with identical vowels vary either to (C) $C \bar{V} \bar{V}$ or to (C) $C \bar{V} \bar{V}$ - thus involving as one of the freely varying tone sandhi variants a unique sort
of variant in which both syllables of the couplet have high where the basic pattern has other than high on both these syllables. 6.1.1.3. The sandhi variants involving the high tone (s) occur as variants of tone couplets mid-mid, mid-low, low-high, or lown mid (i.e. the tone couplets characterized by such sandhi variation) whenever one of these couplets is preceded by tone couplet high-high, high-mid, mid-mid, mid-low, or low-high, provided (a) that the form bearing one of the latter couplets belongs to an arbitrary class the members of which condition sandhi variation; (b) that the high-high is not itself a sandhi variant but a basic pattern; and (c) that no pause intervenes between the couplets involved. Thus, in the following phrase ?isd rabbit with basic mid-low couplet varies to ? Is 6 with mid-high couplet after kō snake and kē will eat- which are mid-low and mid-mid respectively and belong to the arbitrary class of couplets the members of which condition sandhi variation: hā̈ ${ }^{n}$ datī kṑ ? $\overline{1} \boldsymbol{s} \boldsymbol{6}$ that the snake might await the rabbit; kee ?ish the rabbit will eat. But in other contexts, ${ }^{?} \overline{1} s \bar{\phi}$ does not have this sandhi variation but occurs with the same tone couplet that is characteristic of it as an isolated form: yaù ?isd the cave of the rabbit; kee ?ish the rabbit will go away. Notice that yāu cave has tone couplet mid-low but does not belong to the arbitrary class of forms conditioning sandhi variation. Similarly keè will go away is homophonous with kee will eat, but the former does not condition sandhi variation while the latter does. Data of the sort just cited emphasizes the arbitrary and mechanical nature of M tone sandhi variation. 6.1.1.4. One further type of tonal variation in $M-S M$ may be analyzed synchronically as a morpheme of tone substitution (replacive high-high) with meaning adjective modifier. Notice, for example, the interesting contrasting phrases marshalled by Pike:

 we traded blows. Also fīani sừit the brother of that child vs. fiani suči+G that younger brother. In the above phrases tą̨ ${ }^{2} \bar{\epsilon}$ comrade + replacive high-high $>$ tą? $\underset{\varepsilon}{\underline{q}}$ together, and sư̌i child + replacive high-high $>$ súci child-like.
6.1.1.5. The above sketch presents in broad outline the tone system of M-SM along with the tone sandhi that is characteristic of that dialect. It does not attempt to present exhaustively the latter but omits many details-especially the tone sandhi involving abbreviated couplets acting as pronominal enclitics, and the striking parallelism of tone variation in verb aspects to tone sandhi variation. I note in passing that Pike analyzes tone
variation in the verb aspects as tone-sandhi variation conditioned by a preceding zero form. ($T \mathrm{~L}, 82$).
6.1.2. The tone system of M-SE.
6.1.2.1. M-SE exhibits a system of four phonemic pitch levels numbered 1, 2, 3, 4 from high to low (Mak, CTMTS). The basic tone couplets of $\mathrm{M}-\mathrm{SE}$ are $11,21,41,12,22,42,13,42 / 43,14$, 24. Thus, of the sixteen theoretically possible sequences of tones in a four-level system, only ten occur-but two more than the number of basic tone couplets occurring in M-SM with its simpler three-level system. Note again that there is no basic 44 tone couplet, just as there is no basic low-low tone couplet in M-SM. Finally, it is important to observe that tone 3 occurs in basic tone couplets only in 13 and in $42 / 43$. The former class, in which alone 3 occurs as basic without varying freely to 2 , is so restricted that Mak records only nine items displaying this basic tone pattern. None of these nine items enter into our cognate sets, where the occurrence of $\mathrm{M}-\mathrm{SE}$ tone 3 is so rare that I am able to transcribe M-SE tone 1 as high ($\%$), tone 2 as mid ($)$), and tone 4 as low (') in order to better compare the tones of M-SM and M-SE forms.
6.1.2.2. The tone sandhi variation characteristic of M-SE is much too involved to present in any detail here. However, Mak summarizes the following significant ways in which M-SE tone.sandhi differs from that occurring in M-SM: (1) Sandhi variation to lower tone patterns (e.g. $11 \sim 31,21 \sim 31,22 \sim 32 / 33,24 \sim$ 34) is more extensive than variation to high-which occurs only after certain forms with final tone 1 (e.g. 24 varies to 14 after a class of forms bearing 11). (2) Some M-SE tone sandhi variants are complex tone couplets with one or both members of the couplet consisting of a sequence of two tones on a vowel no longer than one bearing but one tone in M-SM: e.g. $41 \sim 13-1,42 \sim 13-2$ and $41 \sim 2-13-1$ (the latter is a sort of sandhi variant occurring only in certain restricted syntactic situations; see next statement). (3) Some tone couplets have special sandhi variants in restricted syntactic situations (termed 'special syntactic sequences' by Mak). The special sandhi variants occur most frequently after an arbitrary class of forms bearing tone couplets 22 and 24; the following tone couplet is varied to a higher tone pattern, but the sandhi variant with the higher tone pattern is formally distinct from the sort of sandhi variant to high subsumed under statement (1). (4) Tone couplets with tone 1 as first member condition sandhi variation in preceding couplets as follows: certain forms with tone 1 as the second member of their tone couplet vary that tone 1 to tone 2 ;
while, conversely, certain other forms with tone 2 as the second member of their tone couplet vary that tone 2 to tone 1 . 6.1.2.3. To illustrate the varieties of tone sandhi listed above, I reproduce here Mak's series of illustratory data involving ${ }^{n} \mathrm{~d}^{2}$ vi^{4} egg. In the phrase $\mathrm{TH}_{2}^{2} \frac{1}{2}^{2}{ }^{n} \mathrm{dr}^{2} \mathrm{vi}^{4}$ one egg, this form occurs with a 24 couplet which is taken as descriptively basic. In the phrase ta ${ }^{4} \mathrm{ka}^{2}{ }^{n} \mathrm{di}^{2} \mathrm{lvi}^{4}$ each egg the re occurs a tone sandhi variant 14 conditioned by a preceding form with basic tone couplet 41. The occurrence of sandhi variant ${ }^{n} \mathrm{di}_{\mathrm{Vif}}{ }^{4}$ rather than of the basic form ${ }^{n} \mathrm{dF}^{2} \mathrm{vi}^{4}$ illustrates sandhi variation to higher tones as mentioned in statement (1). In turn, the occurrence of sandhi variant ta ${ }^{4} \mathrm{ka}^{2}$ rather than of the basic form ta ${ }^{4}$ ka 1 illustrates statement (4). In the phrase $\mathrm{Pi}^{2 n} \mathrm{ga}^{2}{ }^{n} \mathrm{di}^{3} \mathrm{vi}^{4}$ another egg, variation of ${ }^{n} \mathrm{di}^{2}$ $\mathfrak{v i}^{4}$ to tone couplet 34 illustrates sandhi variation to lower tones as mentioned in statement (1). The phrase $n u^{2} u^{4}{ }^{4} \mathrm{di}^{3}{ }^{3} \mathrm{vi}^{1}$ to the egg (e.g. in such phrases as add some chile to the egg) illustrates the special sandhi variation mentioned in (3). I add another of Mak's illustrations, one involving $\mathrm{ni}_{2}{ }^{4} \boldsymbol{q}_{\dot{2}}{ }^{2}$ strong, to illustrate statement (2); the following phrase also involves special sandhi variation of the sort just illustrated: $\operatorname{ta}^{2} \varepsilon_{i}{ }^{4} \operatorname{miz}^{2-17} \dot{i}^{3-2}$ strong wind.
6.1.2.4. There is some M-SE tone variation to higher tone patterns on lines somewhat parallel to that involving the replacive high-high adjective modifier morpheme in M-SM. But Mak interprets this variation- which is neither consistently a variation to any one given tone pattern nor a phenomenon as widespread as in M-SM-as simply a type of special sandhi variation in restricted syntactic sequences. Thus, while yu ${ }^{2} \mathrm{ku}^{2} \mathrm{n}_{\mathrm{dr}}{ }^{1} \mathrm{vi}^{1}$ egg mountain (i.e. 'where we go to get eggs') involves a variation of ${ }^{[} \mathrm{dr}^{2} \mathrm{vi}^{4}$ egg to tone couplet 11 in a fashion reminescent of $M-S M$, the variation of $1 a^{2 a y i}{ }^{2}$ sheep to $2-12$ in the phrase $\mathrm{yu}^{2} \mathrm{ku}^{2} 1 \mathrm{a}^{2-1 \mathrm{aryi}^{2}}$ is not formally so parallel to the M-SM replacive high-high adjective modifier morpheme.
6.1.2.5. Of some relevance to the diachronic evaluation of the M-SE system of four phonemic pitch levels is the following obser. vation by Pike: "The gap between 1 and 2 [in the M-SE tone system] is relatively very large; that between the lower tones is relatively very slight." (NACTT, 101). There will be occasion to comment on this phonetic datum later (6.2.1.).
6.1.3. The tone system of C.
6.1.3.0. C has three phonemic pitch levels. There has been published no complete distributional statement relative to C tones nor an analysis of C tone sandhi (cf. brief sketch in CMM, p. 50).

The following statements are based, therefore, on my own examination of the C word lists prepared for me by Davis and Walker. I examine first isolated nouns in the lists, and state the tone patterns found on such items. Secondly, I list certain tone patterns never found in isolated nouns in these materials but only in noun phrases occurring there. Finally, I attempt to correlate with the above similar data in the verbs of the data available to me. 6.1.3.1. For the isolated nouns in the C word-lists I take account of items with the following canonical shapes (C symbolizes consonant or permitted cluster in the following formulae; any canonical form is to be understood as occurring with or without final - ?: CVVCV, CVV, CV?V, CV?VV, CVCVV, CVVCVV, and CVVV/ CVV?. The following tone patterns occur with forms bearing the canonical shapes just listed: (a) general pattern high-high, in CVVCG, CV́V, and CVó. (b) general pattern high-low, in
 mid, in $C \bar{V} \bar{V} C \bar{V}, C \bar{V} \bar{V}, C \bar{V} ? \bar{V}, C \bar{V} ? \bar{V} \bar{V}$, and $C \bar{V} \bar{V} C \bar{V} \bar{V}$. (d) general pattern mid-low in $C \bar{V} \bar{V} C V, C \bar{V} \bar{V} C V, C \bar{V} V, C \bar{V} ? V, C \bar{V} ? \bar{V} V$, $C \bar{V} C \bar{V} V$, and $C \bar{V} \bar{V} C V V$. (e) general pattern high-mid-low (statistically rare) in $C \bar{V} C \bar{V}, C V C \bar{V} V$, and $C V \bar{V} C V V$. (f) The following statistically rare miscellaneous patterns also occur on the following canonical forms: $C \bar{V} \bar{V} C \bar{V}, C \bar{V} \bar{V}, C V ? \bar{V} \bar{V}, C \bar{V} C V \bar{V}$, $C \bar{V} \bar{V} C \bar{V}$ (the latter occurs in but one isolated noun in my list of 800 items; it occurs most typically as a sandhi variant of other patterns in phrases). (g) Canonical form CVVV/CVV? occurs with the following tone patterns on isolated forms: $C \bar{V} \bar{V} / C V_{V}$? and $C \bar{V} \bar{V} \bar{V} / C \bar{V} \dot{V}$? This, rather rare canonical form overlaps with the statistically rare $C \bar{V} \bar{V}$ form listed under (f) in that the two such latter forms in our lists are both $C \bar{V} \bar{V} ?$, and appear therefore to be like CVVV/CVV? forms except for the lack of the first variant.
6.1.3.2. The following, tone patterns are found only on C nouns in phrases in our lists; they are, presumably tone sandhi variants of isolated forms: (1) general pattern mid-high in $C \bar{V} \forall$ and $C \bar{V} ? V^{\prime}$ (along with $C \bar{V} \bar{V} C V$ which occurs several times on nouns in phrases in our lists, but only once on an isolated noun). (2) mid-low-mid in $C \bar{V} V C \bar{V}$. (3) gene ral pattern high-mid in $C V V^{\prime} C \bar{V}$.
6.1.3.3. In relating these tone patterns which are restricted to sandhi variants to the tone patterns of nouns in isolation, I note briefly that (a) mid-high occurs as tone sandhi variant of forms that are mid-mid or mid-low in isolated CVVCV or CVV forms and high-high or high-low in isolated CV? V forms: nduute egg, fruit (266) vs. ndūute kif? y仑̂? thorn-apple and ndūuté ?nęę
black-berries (but without this sandhi variation in ndūute ?vi ?i pear, and ndūute há? ér nuts). yàatà leaf, plant, vs. yāatá hī̀và herb (but without the sandhi variation in yàtà m?bá milky juice exuding from certain herbs; and with a further mid-mid variant in the phrase yāāta kwāa 'cow's-tongue,' name of an herb). kūu bell, iron, metal (124), vs. kūư kāi sword (but without this sandhi variation in the phrase kuù kwryo lance, and with a further midmid variant in the phrase kūū t䧶 ax) y
 sand (but without this sandhi variation in the phrase yą? the coast). (b) Mid-low-mid occurs as tone sandhi variant of forms bearing mid-low in isolation: nduuku chiremoya (a tropical fruit) (239), but ndūuk mē ${ }^{?}$ ę anona (another tropical fruit). Note also the tonal variation in the first form in the following phrases: trind mą̧̧ underwear, but tīinō yūudठ blanket (222). (c) high-mid occurs as tone sandhi variant of forms bearing high-low or midlow in isolation: n ? dááto? tomato but n ? dáatu vàku pod-tomatoes. ? II? yo rope (231) but ? ${ }^{\text {T }}$? yo kū chain. ydùku? summer squash (76), but yứkū yüùnù? and yúúkū ndū̀uká names of two species of squash (but also other variants in the following phrases: yūukù yदृद̨ and yưukù há? ál names of two other species of squash). 6.1.3.4. Besides the above sandhi variants, which (except for $C \bar{V} \bar{V} C \bar{V})$ are not found in isolated nouns in my C word-lists, there are the following sandhi variants involving tone patterns occurring also in isolated forms: (1) high-high varying to mid-mid: nifing corn (37) but nirnç ndúçà hominy eaten as a vegetable. (2) midmid varying to high-high: n ?dāka orchids, but n ? dááká nपृừe name of a species of large orchids. (3) mid-mid varying to midlow: ndūūkū twig, switch, but ndīūku dǔȳ little twig. 6.1.3.5. The potential aspect has aptly been taken by Davis and Walker as the form of the C verb that is descriptively basic. Tone patterns of the potential aspect of various verbs fit with some mod. ification into the scheme outlined above for the tones of isolated forms of nouns; but the correlation is somewhat difficult in that 'isolated' forms of verbs do not occur-in view of the circumstance that verbs are accompanied regularly by a following subject expression which is often an enclitic pronoun, and enter very typically into phrase formation (stress-group) with preceding particles and (often abbreviated) auxiliary verbs. In an attempt to correlate the basic tone patterns of verbs with the tone patterns occurring in isolated nouns, I select for comparison with nouns the potentials of verbs that occur in that aspect without a preceding particle or auxiliary verb. The following four tone patterns,
occurring in the potentials of such verbs, occur also in the isolated forms of nouns: (a) high-high in CV́v́CV́, CV́V́, CV̛?V́ and CV́?V́V́; (b) high-low in CVV́CVे and CV́̀̇; (c) mid-mid in CV̄V̄CV, CVV, and $C \bar{V} ? \bar{\nabla}$; (d) mid-low in $C \bar{V} \overline{C V}, C \bar{V} c V, c \bar{V}, c \bar{V} ? \bar{V}, c \bar{V} ? \bar{V}$ and CVV?VV. There also occur in potentials of such verbs the following tone patterns, which occur only in non-isolated nouns in my word-lists: CV̄VCV (which occurs, however, in one isolated

 above as sandhi variant of noun but is grouped here with Cúv́c \bar{V} as a further variation of general high-mid pattern). Other tone patterns occur in the potentials of verbs with preceding particles or auxiliary verbs in that aspect, e.g. low-mid in CVVCV̄ nā-dàkừku to adorn (271) and low-low in C户VेCly kā-ndì? và to frighten (62).
6.1.3.6. Of the four aspects of the C verb the prior past most often has a tone divergent from that characterizing the other aspects. Thus, many verbs have high-high or mid-high in that aspect regardless of the tones of the other aspects (sets $43,63,126$, 134, 271). Of the other three aspects, it may be noted that (a) some verbs have a common tone pattern in the potential, present, and past-and in the prior past as well for some of these verbs, (sets 3, 8, 21, 43, 119); (b) other verbs have one tone pattern in the potential and present vs. another tone pattern in the past, (sets 28, 59, 91, 101, 102, 103); (c) other verbs have one tone pattern in the potential vs. another tone pattern in the present and past, (sets 62, 84, 90, 133, 146); (d) other verbs have one tone pattern in the potential and past vs, another tone pattern in the present (34, second C verb in 62 , second C verb in 63 , second C verb in 116); and (e) a few verbs have separate tone patterns for these three aspects (set 113). In reference to the C verbs included in our array of cognates, there is decreasing statistical frequency from (a) to (e).
6.1.3.7. In reference to the same limited sample of C verbs, viz, those that occur in our array of cognates, it is interesting to note the formally contrasting tone patterns in (b), (c), and (d)- each of which involves one tone pattern common to two aspects vs. another tone pattern found in the other (not the prior past) aspect. The formally contrasting tone patterns are: (1) high-high vs. mid-
 (sets $59,60,91,116,123,241,220$); (2) high-high vs. low-low, i.e. CV́VCV vs. CVVCV̀ (very rare, set 28); (3) high-low vs. midlow, i.e. C V́́́CV̀ vs. $C \overline{V V}$ (set 154); (4) mid-mid vs. mid-low,
i.e. $C \bar{V} \overline{\mathrm{~V}} C \overline{\mathrm{~V}}$ vs, $C \overline{\mathrm{~V}} \mathrm{~V} C \overline{\mathrm{~V}}, \mathrm{C} \overline{\mathrm{V}} \overline{\mathrm{V}}$ vs. $C \overline{\mathrm{~V}} \mathrm{~V}$, and $C \bar{V} \supset \overline{\mathrm{~V}}$ vs. $C \overline{\mathrm{~V}} \supset \mathrm{~V}$ (sets 10, 11, 36, 48, 54, 63, 90, 133, 134); (5) mid-mid vs. low-low, i.e. $C \bar{V} \bar{V} v s . C \bar{V}$ (set 145); and (6) mid-low vs. low-
 116). In these intra-paradigmatic contrasts, (1), (3), (4), and (6) involve mid-low vs. some other tone pattern common to two aspects; in almost all these contrasts involving mid-low (except, in fact, for two cases involving the tone of the potential vs. the tones of the present-past), the mid-low tone pattern occurs in the past- whether that tone pattern be restricted to the past vs. po-tential-present, or whether it be common to present-past vs. potential or to potential-past vs. present. The occurrence of lowlow in (2) and (5) above affords some contrast of C verb structure with noun structure in that lownlow does not occur in the nouns of my word-lists, whether isolated or in phrases.

The above observations by no means constitute either a complete distributional statement of C tones nor an analysis of the C tone sandhi system. Nevertheless, they suffice, I trust, to outline for us the characteristic tone sequences of C along with the typical range and type of tonal variation both in C tone sandhi and within the C verb paradigm.
6.1.4. The tone system of T.
6.1.4.1. T -Ch is characterized by a system of five phonemic pitch levels (Longacre FPPT). Nevertheless, only a few of the theoretically possible sequences of tones occur either in succes. sive syllables or in the same syllable. On disyllabic words with one tone to each syllable the following sequences occur: 23,25 , $32,33,34,35,42,43,44,53,45,55$ (of the preceding 45 is extremely rare). The following monosyllabic sequences of tone occur in T ultimate syllables-the only position in the word where such monosyllabic sequences or 'glides' occur: l-2, 2-1, l-3 (only one such example), 2-3, 3-2 (only one such example), 3-4, 3-5, 4-5, 4-3, 5-1 (only one such example), 5-2 (only one such example), 5-3, 5-4, 3-4-3, 3-5-4. Notice, that of these fifteen monosyllabic sequences there are four of unique occurrence in my present data. Furthermore, of the eleven remaining monosyllabic sequences, $1-2,4-3,5-3,5-4,3-4-3$ and $3-5-4$ were shown in section 5.1. to be phrase-final variants of $2-1,4,5$, 3-4 and 3-5-variants historically consequent on fusion of some enclitic - V^{3} particle marking the end of the noun phrase. For historical purposes, then, I consider pertinent neither these six monosyllabic sequences of recent origin in T nor the four monosyllabic sequences of unique occurrence (since the forms in which
the latter occur do not appear to have cognates in M or C). Only the following five monosyllabic tone sequences are of historical pertinence: 2-1, 2-3, 3-4, 3-5, and 4-5. Furthermore, as also shown in 5.1.3., the $2-1$ monosyllabic sequence is a development in T itself consequent on loss of PT ψ_{-}? . Ultimately, therefore, only the latter four of these five monosyllabic tone sequences are of interest in comparing M, C, T tone systems.
6.1.4.2. As stated in 5.1.2., I consider that T monosyllabic 3 h (3) forms and disyllabic $34 h(3)$ forms are developments of T roots with tones $3-4 \mathrm{~h}$, while T monosyllabic 3 ? (3) and disyllabic 34 ? (3) I consider to be developments of Toots with 3-5?. Therefore, in marshalling the sets of tone correspondences in 6.3.3., I regard $T 3 \mathrm{~h}(3), 3 \mathrm{~h}(3)$, and $3-4 \mathrm{~h}$ as historically equivalent, and T 3 ? (3), 3 ? (3) and $3-5$? as likewise equivalent. 6.1.4.3. There is a morphotonemic relationship between monosyllabic and disyllabic tone sequences involving tones 23 or 34 : e.g. ru $2 \mathrm{ne}^{3}$ avocado (unpossessed) but $\mathrm{zi}^{3}-\mathrm{ru}^{3} n \mathrm{e}^{2-3}$ avocado (possessed); rameq ${ }^{3}(-3)$ things (unpossessed) but ra ${ }^{3} q^{3-4}$ things (possessed). Also words with disyllabic 35 sequence such as da ${ }^{3}$? mą $5(-3)$ leg act, in respect to distribution with T fused enclitics, very much like words with monosyllabic 35 sequence, e.g. $\mathrm{du}^{3} \mathrm{gy} \mathrm{y}^{3-5}$ to shine, and ma ${ }^{4} \mathrm{u}^{3-5(-4)}$ black. Therefore, for comparative purposes, I consider disyllabic and monosyllabic sequences of tones 23,34 , and 35 to be equivalent. Finally, there is a class of verbs in 2 h some members of which vary freely or idiolectally to $25 h$, e.g. $\mathrm{gu}^{3} \mathrm{du}^{3}$? $\mathrm{we}^{2} \mathrm{~h} / \mathrm{gu}^{3} \mathrm{du}^{2}$? $\mathrm{we}^{5} \mathrm{~h}$ to sell, $\mathrm{gi}^{3} \mathrm{zi}^{3}{ }^{7} \mathrm{ya}^{2} \mathrm{~h} / \mathrm{gi}^{3} \mathrm{zi}^{2}{ }^{2} \mathrm{ya}^{5} \mathrm{~h}$ to bark (of a dog). I assume that the forms with tone 2 on the penultimate syllable are historically the more basic, and that the variants with $2 h$ (and many $2 h$ forms no longer varying with 25 h) came about by a shifting of the tone 2 (PT and PMx*1) to the ultimate syllable in a development parallelling that of the $23>3,2-3$ and 34 to 3 3-4. T exhibits, then, a certain tendency to shift contrastive tone towards the end of the word.
6.2. The tone system of PM (comparison of M-SM and M-SE tone systems).
6.2.1. The M-SE tone system of four phonemic levels is, as mentioned in 6.1.2, peculiar in two ways; (a) Tone 3- the next to the lowest tone-is almost entirely restricted to tone sandhi variants ($6,1,2,1$.); and (b) there is a disproportionate gap between tones l and 2 , which are separated by a relatively wide interval, and tones 2,3 , and 4 , which are separated by relatively narrow intervals (6.1,2.5.). These considerations make it very
plausible that tone 3 in M-SE is a development in the tone sandhi of that dialect whereby an allotone of one of the contiguous tones became phonemic. The precise details of this development are obscure and should someday be investigated. Nevertheless, the conclusion that the four-level tone system of $\mathrm{M}-\mathrm{SE}$ is a historical development from an earlier three-level system seems inescapable. This is further supported by the fact that unpublished tone analyses in three other M dialects ($\mathrm{M}-\mathrm{J}, \mathrm{M}-\mathrm{M}$, and M of Santo Tomás Ocotepec) seem to indicate three-level systems there as well. I posit, therefore, a three-level system for PM. M-SE stands, then, at the end of an interesting course of historical development: (1) The four-level system of PMx (see 6.3.) was reduced to three levels in PM. (2) The three-level system of PM was expanded again to a four-level system in M-SE. There are, however, significant differences between the old PMx four-level system and the modern M-SE four-level system; to mention one of the most outstanding of these differences, PMx employed tones 2,3 , and 4 in basic patterns and tone 1 perhaps exclusively in tone patterns that were sandhi variants, while M-SE employs tones 1,2 , and 4 in basic patterns and tone 3 almost-but not ex-clusively-in sandhi variants.
6.2.2. In comparing the basic tone patterns of M-SM with M-SE, the following generalizations may be made: (1) M-SM high tone corresponds to $M-S E$ tone 1 ; while (2) M-SM mid tone corresponds to M-SE tone 2; and (3) M-SM low tone corresponds to M-SE tone 4. It is out of a desire to bring into relief these correspondences that in the array of cognates, I transcribe M-SE tones 1,2 , and 4 with the same diacritical marks used to mark M-SM high, mid and low respectively. Aside from tonal differences occasioned between these two dialects by the sporadic presence of high tone in one dialect where it is not found in the other-a phenomenon basically stemming from tone sandhi variants in PMx itself- the only statistically prominent exception to the above M-SM, M-SE tone correspondences is as follows: while MmSM tone pattern midlow corresponds in some sets to M-SE 24, there are other sets in which M-SM mid-low corresponds to M-SE 22. Thus, while M-SM kō 7δ corresponds to $\mathrm{M}-\mathrm{SE} \mathrm{ko}^{2} \mathrm{Po}^{4}$ bowl (242), and M-SM sà̀ corresponds to $M-S E$ sa ${ }^{2}{ }^{4}$ rain (45), it is also true that $M-S M$?Ina corresponds to $M-S E ? i^{2} \mathrm{na}^{2}$ dog (165), and $\mathrm{M}-\mathrm{SM}$ kū corresponds to $\mathrm{M}-\mathrm{SE} \mathrm{ku}^{2} \mathrm{u}^{2}$ to die (43). However, internal reconstruction in M-SE affords some evidence that at least some of the present 22 couplets corresponding to M-SM mid-low couplets were once 24 or at least mid-low before the further tone level developed in

M-SE; e.g. M-SE ku ${ }^{2}{ }^{2}$ to die has a special 2-1 4 sandhi variant in a few restricted phrases such as ma ${ }^{2} a^{4}-\mathrm{ku}^{2-1} \mathrm{u}^{4}+\mathrm{de}{ }^{3}$ he won't die. Furthermore, many 22 couplets in M-SE belong to a class that condition sandhi variation to lower in certain following couplets; e.g. $22+21>2231$. Finally, in some idiolects, these 22 couplets vary to 22-4. From a detailed study of such data as these, Mak, prior to my own research and independently of me, stated the hypothesis that couplets such as the 22 couplets just illustrated 'are those which historically perhaps ended on a tone 4, whatever their present form, and that this low-toneme now usually transfers itself to the following morpheme' (CTMTS, 92, fn, 11). Mak adds that many 22 couplets which belong to the class that condition sandhi variation to lower correspond to mid-low couplets in M-SM. This hypothesis of Mak's would account not only for the M-SE 22 couplets corresponding to M-SM mid-low, but would also account for the fact that M-SE, in opposition to M-SM, is characterized by a great deal of sandhi variation to lower tone patterns-inasmuch as the latter came about according to Mak's hypothesis by transfer of low tone from preceding couplet to following couplet. I assume, therefore, that M-SM mid-low corresponding to M-SE 22 or 24 reconstructs as $P M$ mid-low.
6.3. The tone system of PMx.
6.3.1. The argument for four reconstructed register tones. Four phonemic pitch levels are reconstructed for PMx. The argument for four reconstructed levels is as follows: (1) There appear to be fourteen tone correspondences indicating fourteen contrasting tone patterns in PMx. Eight of these patterns reconstruct with considerable regularity and appear to have been basic in PMx forms (see 6.3.2., 6.3.4.); the other six tone patterns are reconstructed from the sporadic appearance of high tones in the M, C, or T cognates of the sets, and appear to have occurred exclusively in sandhi variants (see 6.3.4.) (2) PMx forms, whether monosyllabic or disyllabic; seem to reconstruct with no more than two tones on a given form. This may be maintained with some assurance inasmuch as: (a) This seems to have been the situation in PM (inasmuch as complex tone couplets of the sort found in MSE seem to be recent dialectal developments (cf. 6.1.2.2.). (b) Similarly, C tone may be subsumed under general tone patterns involving two tones to a form, while tone sequences involving three differing tones on the same form (e.g. high-mid-low) seem to be developments in C itself. (c) PT had one or at the most two tones to a form; present-day T, aside from complexities of recent origin (e.g. 3-5-4, and 3-4-3), has one or at the most two
tones on the last syllable of words- which is the characteristic position of occurrence for contrastive pitch. (3) It appears, therefore, that the fourteen contrasting tone patterns reconstructed for PMx were composed of one or at the most two tones to each pattern. Monosyllabic forms bore one tone or a sequence of two differing tones. Disyllabic forms bore a sequence of two tones whether identical or non-identical. Disyllabic forms appear to have been statistically more frequent than monosyllabic forms. (4) The question may now be formulated: how many tone levels need to be posited to accommodate fourteen differing tone patterns each consisting of a sequence of two tones whether identical or non-identical? (5) Inasmuch as the number of theoretically possible sequences of two identical or non-identical tones in a regis-ter-tone system is the square of the number of phonemic levels, it is immediately evident that neither two nor three tones will be sufficient to accommodate our fourteen tone patterns. On the other hand, a four-level system, with sixteen theoretically possible sequences of two tones, is adequate enough. (6) I posit, therefore, a four-level system. All theoretically possible sequences of two tones occurred except two.
6.3.2. The process of reconstructing the basic PMx tone patterns. 6.3.2.1. The eight tone patterns that appear to have been basic in PMx forms do not seem to have included the highest level of the PMx four-level system. Sets of tone correspondences involving M and C mid and low tones along with T tones 3 , 4 , and 5 (and $T 2 h$ in one set) reconstruct with considerable regularity, On the other hand the occurrence of M and C high tones, and of T tones 2-1 and $2(<P T * 1)$ is a rather random and unpredictable phenomenon (see 6.3.4.). The reconstruction of our eight basic patterns becomes, then, essentially a matter of equating the sets of tone correspondences with eight of the nine theoretically possible sequences of the three lower tones.
6.3.2.2. To begin with, we may state with some confidence that the non-occurring but theoretically possible tone sequence involvm ing the lower tones was $* 44$. This conclusion is drawn from the following considerations: (1) Low-low does not occur in M-SM, nor 44 in M-SE; presumably PM did not have a *low-low tone pattern. (2) C low-low appears to be a development in that language itself. (3) T 55 is also a post-PMx development coming about in T as a grammatical device for marking potential in the verbs, and attributive status in adjectives and numerals.
6.3.2.3. In reconstructing our eight basic tone patterns of PMx we must, therefore, equate our eight sets of correspondences with
the following eight PMx sequences involving tones $* 2, * 3$, and $* 4$: $*(2) 2, *(3) 3, * 23, * 32, * 34, * 43, * 24$, and $* 42$. Here we can only be guided by considerations of phonetic plausibility and probable parallelism of development in similar sets of tone correspondences. To begin with, in the eight sets of tone correspondences there are but the following reflexes in the particular languages: M mid-mid, mid-low, and low-mid; C mid-mid and midlow; T (3) $3,34,45$, and 35 . However, in that the latter language, T, reflects a recent development of a five-level system from an earlier four-level system by split of old high tone into two phonemic pitch levels, I immediately posit PT *(2)2, *23, *34, and *24 as historically basic in T to the above patterns (by eliminating the top level of the present five-tone system and re-numbering the four remaining levels from high to low). It is reasonable to assume that PT— which alone preserved the four-levels of PMxmight afford a better clue to the reconstruction of PMx tone patterns than either M or C both of which have reduced the old fourlevel system to three levels. Comparing, then, the M tone patterns with the T tone patterns, we note that M mid-low corresponds both the PT *23 and *24, while M low-mid also corresponds to both of these PT tone sequences. It seems plausible that M mid-low vs. low-mid witnesses to PMx falling tone sequence vs. PMx rising tone sequence, while T has merged into falling tone sequences both sorts of PMx tone sequences. T is suspect of having done this in that all PT tone sequences ($* 23$, and $* 24$, and $* 34$) are falling sequences. Therefore, from M mid-low $\sim P T * 23$, I reconstruct PMx *23, but from M low-mid ~ PT *23, I reconstruçt PMx *32. Similarly, from M mid-low $\sim P T * 24$ I reconstruct $P M x * 24$, but from M low-mid $\sim P T * 24$ I reconstruct $P M x * 42$. There are two further sets of correspondences in which M mid-mid corresponds to T *34 and *24 respectively. From these two sets of correspondences I reconstruct the only other possible sequences of two dissimilar PMx tones, viz., *34 and *43. These reconstructions imply that M has merged these two $P M x$ tone sequences into M mid-mid-thus eliminating at this spot one PMx tone level, while PT converts the distinction between the PMx falling and the PMx rising tone sequence into a T distinction between two falling sequences. Finally, M mid-mid corresponding to PT *(2) 2 is considered to reflect $P M x *(2) 2$, while M mid-low corresponding to PT *(2) 2 is considered to reflect PMx *(3) 3 .
6.3.2.4. In all the above C has not been taken into account. Indeed, with but two contrasting tone patterns as C reflexes of eight original PMx tone patterns, C can be of little direct help-although
the C reflexes can be fitted into the above frameword worked out in reference to M and T. It may be stated, then, that C general pattern mid-low (mid-low low in CVVCV forms) is a reflex of PMx *34 and $\% 43$, while C mid-mid represents a merger of PMx *23, *32, *24, *42, *22, and *33.
6.3.2.5. The C reflexes do not seem to be, however, on first inspection as uniform as the above statement might indicate. Interference with the regularity of the C reflexes results from three factors: (a) present day C tone sandhi, (b) earlier C tone sandhi, here roughly labeled 'PC sandhi.'; and (c) PMx sandhi variation to higher tone patterns. The third factor is common to M, C, and T; nevertheless it is especially troublesome in C in that it is necessary to distinguish this third factor from the other two, if we are to account for the apparent aberrancy of the tone reflexes in C. 6.3.2.6. We may consider the following tonal variations to be present day C tone sandhi (6.1.3.) or sandhi of a very recent period: (a) mid-high as variant of mid-mid or mid-low in CVVCV or CVV forms; (b) mid-high as variant of high-high or high-low in CV?V forms; (c) mid-low-mid as sandhi variant of mid-low; (d) high-mid as sandhi variant of high-low and midolow; (e) highhigh as sandhi variant of mid-mid, and mid-mid as sandhi variant of high-high. Therefore, whenever we encounter tonal variation in the same C form in a given set, we will ignore those variations if they conform to the above scheme.
6.3.2.7. There are in the C cognates of our sets sporadic occurrences of general pattern mid-mid where we would expect mid-low, and of mid-low where we would expect mid-mid. To account for these divergencies I posit an earlier sort of C sandhi there roughly termed PC) in which these two tone patterns were in frequent alternation; after this alternation ceased to be a living part of C grammar some forms once having this alternation survived with one alternate and some such forms with the other. There are also sporadic occurrences of C low-low mid (in CVेVC \bar{V}) and of lowlow (in CVV) which occur after preposed particles in the potentials of verbs. These I likewise attribute to PC sandhi along with other tone patterns occurring in 'frozen' phrases (coalesced stressgroups). Here probably fits also the frequent occurrence of general pattern mid-low in the past of C verbs and of high-high in the prior.past, but the tones of the verb paradigms have probably been subject to a variety of analogical influences. 6.3.2.8. Finally there occur in the C cognates of our sets isolated forms with basic high-high and high-low. These tonal variations neither represent present-day C tone sandhi (in that they are
basic to isolated forms and not simply tonally variant forms restricted to phrases) nor PC sandhi, for they correlate in a systematic way with the sporadic occurrence of high tone in M and of tones $2-1$ and 2 in T (i.e. PT*1). The C high-high and high-low forms are crucial to the reconstruction of the six tone patterns restricted to sandhi variants. In the sets of cognates cited below to illustrate the eight basic tone patterns reconstructed for PMx there occur a sizeable number of sets in which the C forms have tones that are reflexes of one of the PMx tone pattexns occurring as sandhi variants. The conclusion should not be drawn that re. flexes of PMx sandhi variants occur with special frequency in C as opposed to M and T; I have simply selected sets in which the crucial M and T toral reflexes of the eight basic patterns are unobscured by PMx sandhi variation, but have not exercised the same care in excluding sets in which the tones of the C cognates bear witness to such variation.
6.3.3. Basic PMx tone patterns.
6.3.3.1. $P M x *(2) 2>M$ mid-mid, C mid-mid, and $T *(3) 3$
 $\mathrm{di}^{3} \mathrm{ci}^{3}$ breast, (g) $\mathrm{u}^{3} \mathrm{ci}^{3}$ to nurse. (48) $\mathrm{M}-\mathrm{SM}$, SE kū to exist, to be able; C kuave, hII, غ̌rì, ndif to complete, nā-nduūvī (?vitku) to bless animals, ndūūvē (? vīikū) to bless; T (ga ${ }^{3}$ w it 3 to be, to become, (ga3)na ${ }^{3} i_{2}^{3}$ to heal, na ${ }^{3}$ wi $^{3}\left(n y^{2}\right)$ to be blessed, (ga ${ }^{3}$ na $a^{3} \mathrm{wi}^{3}$ to be finished, to come to an end. (79) M-SM, SE Tikū; C ?īiko (PC sandhi); T gu ${ }^{3} \mathrm{kt}^{3}$ yesterday. (113) M-SM, SE sakā to divide

 (236) M-SM, SE yū? $\overline{\text { mouth; } C}$ dū̄̄vi mouthful; T du ${ }^{3} ?^{\text {wa }}{ }^{3}$ mouth. PMx *(2) 2" $>\mathrm{M}$ mid-mid, C mid-mid with retention of $*_{-}$? and mid-low (mid-mid low in CVVCVे) with loss of final *-?; and $\mathrm{T} 2 \mathrm{~h}(<\mathrm{PT} * 2$) . In that T has recently lowered most noun forms previously $2 h$ to $3 h$, the former survives only in a few nouns. (167) M-SM, SE fianū; C yatà̀; Tn• z̨ ${ }^{3} h$ net-work bag, T $x_{i} 3_{n a ̨}{ }^{2} h$ crop (of a bird). (190) M-SM, SE ya3? ${ }^{3}$; C I-?yab?; T ya ${ }^{3}{ }^{3} a^{3} h$ chile-pepper. (222) M-SM, SE kunu to run, to weave; C kánù to run (PMx sandhi); T (g) $u^{3} n a^{2} h$ to run, (g) a ${ }^{3} n a \varepsilon^{2} h$ to weave.
 from the nose, $k w e^{3} h$ pus, ($\mathrm{zi}^{3} \mathrm{u}^{3-4}$) da ${ }^{3} \mathrm{kwe}^{2} \mathrm{~h}$ vulva. (218) C
 $\mathrm{na}^{3}{ }^{2}$ nga ${ }^{2}$ h to whittle.
6.3.3.2. $\overline{\mathrm{PMx} *(3) 3}>\mathrm{M}$ mid-low, C mid-mid, and T (3) 3 (<PT
 (240) M-SM, SE yokd; T ža ${ }^{3}{ }^{k o}{ }^{3}$ honey-bee, honeycomb. (145)

M-SM kū-"Yā̀, M-SE kō-n dëē to be seated; C ?kwīndi (po) (this C form is from fusion of PC *kwit-ndāa), vāā (pr) to be seated, ? kwindi (po, PC sandhi) to sit down; kঠ-nę̧ (po, PC sandhi), T$n \bar{c} \bar{\varepsilon}$ ($p r$), ke-nęē (pt) to stay; $T\left(g a^{3}\right) n \cdot e^{3}$ to sit. (93) M-SM, $S E$ kivi day; C hūūve the day; T gwi ${ }^{3}$ day, sun. (45) M-SM, SE sā̀ rain; C dāāe thunder; $T d^{3}{ }^{3} \mathrm{wi}^{3}$ thunder. (158) $\mathrm{M}-\mathrm{SM}$ ča?mà flattened; C dytits sif?má to flatten (C sandhi); T na ${ }^{3}{ }^{2}$ mą ${ }^{3}$ to cave in. (165) M-SM Pinà, M-SE PInā dog (cf. 6.2.2.); C Pyáánà dog, ${ }^{7} y \underline{u}$ úna fox (PMx sandhi); T zu ${ }^{3}$ ne 3 fox.

PMx * (3) $3 ?>\mathrm{M}$ mid-low, C mid-low (mid-mid low in CVVCV), and T 3 h (<PT *3?), (83) M-SM, SE kū-sTi (?Tnf) to be content;

 (with numeral's tone dropped to tone 5 and subsequent addition of further syllable beyond the old final *- ?). (191) M-SM, SE yāa; C i-yëryè (with the tone development complicated by reduplication and prefixation); T ya $^{3} h$ ashes. (209) M-SM Pisù deer; M-SE Pisū deer (cf. 6.2.2.); C ?yứdù? horse (PMx sandhi); T žu $^{3} \mathrm{ta}^{3} \mathrm{~h}$ deer. (278) M-SM, SE te? yù; T $\mathrm{ri}^{3}{ }^{3} \mathrm{yu}^{3} \mathrm{~h}$ to rot.
6.3.3.3. $\dot{\mathrm{P}} \mathrm{Mx} * 23>\mathrm{M}$ mid-low; C mid-mid; and T 34 (< PT *23). (38) M-SM, SE ku? H ; C kúá? ve (PM Mx sandhi); T žu ${ }^{3} \mathrm{gwi}^{3-4} \mathrm{~h}_{\mathrm{h}}$ sister of a wornan. (67) M-SM, SE yāu; C hriva hole; T du ${ }^{3}$ $\mathrm{we}^{3-4} \mathrm{~h} / \mathrm{w}$ ehe ${ }^{3}$ cave, cliff. (99) M-SM niil, M-SE fiil; T yą ${ }^{3-4(-3)}$ salt. (119) M-SM kākà, M-SE kāk quicklime (cf. 6.2.2.); C kāakā quicklime, kūulkù to burn (PC sandhi); T ga ${ }^{3} \mathrm{ka}^{3-4}$ to get burned, (128) M-SM, SE yưkù bush, shrub, plant; C kū (dīyর́á?nपृष ?) water-algae; $T \mathrm{zi}^{3}$-kwe ${ }^{3}-4 \mathrm{~h} / \mathrm{kwehe}{ }^{3}$ herbs. (150)
 nę ${ }^{?}$ E to like; T (gi 3) rą ${ }^{3-4 \text { ? }}$ to fare (well or ill), (g$) \mathrm{a}^{3} \mathrm{raz}^{3-4}$? (ru ${ }^{3} \mathrm{wa}^{2-3}$) to like, to be pleased with. (116) $\mathrm{M}-\mathrm{SM}$ nūu face of,
 front of. (Also sets $172,176,180,193,227,249,250,262$, and 267.)
6.3.3.4. PMx *32>M low-mid, C mid-mid, and T 34 (< PT *23). (4) $\mathrm{M}-\mathrm{SM}$, SE vist, $\mathrm{T} \mathrm{gu}^{3} \mathrm{ci}^{4(-3)}$ grey hairs. (54) M-SM, SE kàht; C ndāavä; T na $^{3} \mathrm{gwi}^{3-4}$ to choose. (182) M-SM, SE k 文? a brother of a woman, sister of a man; C kā? va brother: T žu ${ }^{3} \mathrm{gwe}^{3-4} \mathrm{~h}_{\mathrm{h}}$ brother of a woman, sister of a man. (221) M-SM
 M-SM, SE sokō hunger, famine; C kwiko hunger; T zi3ko ${ }^{3-4} \mathrm{~h}^{2}$ stomach.
6.3.3.5. PMx *34>Mmid-mid, C mid-low (mid-low low on $C \bar{V} \bar{V} C \hat{V}$), and T 45 (PT *34). T has shifted many forms formerly 45 to 34- so that the former has survived only in a few 'fossilized'
 T $r u^{3} n e^{4(-3)}$ beans, $r u^{3} n^{4-5}$ ($\mathrm{ga}^{3}{ }^{2} \mathrm{n}^{4} \mathrm{Pq}^{4-3}$) large black beans, $\mathrm{ru}^{3} \mathrm{ne}^{4-5}$ (gi ${ }^{4} \mathrm{ci}^{4-3}$) small varicolored beans. (239) M-SM, SE ${ }^{n}$ dokō zapote (a tropical fruit); C nduùkù chiremoya (a similar tropical fruit), nduiku (mę ${ }^{\circ}$ ę) anona (another tropical fruit) (C sandhi); $\mathrm{T}_{1} \mathrm{re}^{3} \mathrm{ko}^{4(-3)}$ anona, $\mathrm{re}^{3} \mathrm{ko}^{4-5}$ (Eg^{5-3}) the black zapote.
 sandhi); T he ${ }^{3-4}$? direction towards; (63) M-SM, SE nūi to come down; C ndūùvà to arrive from above, kūùva to arrive descending; T (g) $\mathrm{a}^{3} \mathrm{wi}^{3-4}$ to go out, (66) M-SM, SE yā̄̄; C hīìvà; T du ${ }^{3}$ we ${ }^{3-4} /$ $w^{\cdot} \mathrm{e}^{3-4(-3)}$ century-plant. (85) M-SM yüh̨̄̄, M-SE fruhē; C yāàè; T da ${ }^{3} \mathrm{kt}^{3}{ }^{3} \mathrm{~h}$ h/kithit ${ }^{3}$ dough. (149) M-SM, SE ndā ${ }^{\text {Pa }}$ hand; C kūtā? seize, ta? ${ }^{\text {a }}$ hand (PC sandhi); T gi ${ }^{3} \mathrm{da}^{3}{ }^{3} \mathrm{a}^{3-4}$ to seize. (264)
 der, da ${ }^{3}$ ču $^{4-5}\left(\right.$ Cut $\left.^{3}\right)$ saw-dust. (277) M-SM tīñi, M-SE Nínín (PMx
 6.3.3.6. $\mathrm{PMx} * 43>\mathrm{M}$ mid-mid; C mid-low (mid-low low in CVV̀CVे), and T 35 (<PT *24). (8) M-SM ${ }^{n}$ diri, M-SE ${ }^{n}$ dīhī to
 SE $\mathrm{Tiñ}_{\mathrm{in}}$ aftexnoon, early evening; C vínd afternoon, early evening (PMx sandhi); $T \mathrm{ni}^{3-5(-4)}$ afternoon, early evening, $\mathrm{gi}^{3} \mathrm{ni}^{3}{ }^{3} 5$ to grow late, zdi ${ }^{3} ?_{\mathrm{ni1}}{ }^{5(-3)}$ supper. (98) M-SM, SE ñiñi; C y yưq (PMx
 to pound, to hit; T (g) $\mathrm{u}^{3} \mathrm{ni}^{3}-5$? to quarrel. (61) $\mathrm{M}-\mathrm{SM} \mathrm{k} \overline{\mathrm{p}} \overline{\mathrm{u}} ; \mathrm{T}$ $\check{z}^{3}{ }^{3}$? wi ${ }^{3}-5$? to rub (clothes on the rocks). (195) M-SM, SE tō; Tnga ${ }^{3}{ }^{2}{ }^{5}$ (-3) a span (measure). 6.3.3.7. $\mathrm{PMx} * 24>\mathrm{M}$ mid-low, C mid-mid; T 35 ($<\mathrm{PT} * 24$). (For the treating of T 34 (3) and 3 ? (3) as equivalent to 3-5?, see 6.1.4.2.) (43) M-SM kūù; M-SE kūū (cf. 6.2.2.); C 9 kūùvè (PC sandhi); $T(g) a^{3}$ wi $^{3-5}$? to die. (58) M-SM, SE tācí; C ? y (PMx sandhi); T na ${ }^{3} \mathrm{ne}^{5(-3)}$ wind. (71) M-SM hīti, M-SE yiití
 M-SE ${ }^{\text {n }}$ dīgi (cf. 6.2.2.); C nā-di? 1 , (possibly C sandhi); T di ${ }^{3}$ ci^{3-5} ? $/ \mathrm{ci}^{7} \mathrm{i}^{3}$ cactus-beer. (146) M-SM kā? ${ }^{\text {Mya }}$ to cut; C kwésę? to break (PMx sandhi); T (g) $a^{3}{ }^{2} n^{3-5}$? to cut. (157) M-SM, SE

 ice, frost. (234) M-SM SE yưtù; C ì-? yúútù (probably PMx sandhi) tump-line; T ži 3 とo? o^{4-3} little straw mat on tump line. (There are also the following M, T sets reconstructing unambiguously as
*24: 32, 55, 86, 174, 199, 214, 274).
6.3.3.8. PMx $* 42>\mathrm{M}$ low-mid, C mid-mid, T 35 (< PT *24)
(For the treating of T $34^{\text {? (3) }}$ (3) as equivalent to $3-5$?, see 6.1.4.2.).
(9) M-SM, SE kìhi fever; C dà-kàă̌i to boil (PC sandhi variant),
 bury; C ? kū̃̄̌i to plant, to sow; T (g) a ${ }^{3} \varepsilon_{i}^{3-5}$? to bury. (96)
 SE kikū to sew; C (kā? mà) kwāaku to swear, to testify; T da ${ }^{3}$
 $\varepsilon_{u} ?_{u} 4^{-3}$ potatoes.
6.3.4. PMx tone patterns occurring only in tone sandhi variants. 6.3.4.0. The six PMx tone patterns restricted to sandhi variants are described in this section. In spite of the sporadic and unpredictable occurrence of reflexes of the sandhi variants in our sets, it is nevertheless possible to reconstruct these six additional patterns with some certainty. This reconstruction is possible because the eight basic PMx tone patterns each had a characteristic tone sandhi variant differing according to the basic tone-classexcept that $* 22$ and $* 24$ had the same sandhi variant, as did also *33 and *23. The M, C, T reflexes of a given sandhi variant are regular and consistent-even though the occurrence of those reflexes is rather infrequent and random.

The six tone patterns restricted to sandhi variants have the common feature of being characterized by PMx tone *1 either as the first member of a sequence of two tones, or as the second member of such a sequence, or as the only tone or tones of the sequence. The tone $* 1$ may be considered to be a replacive element replacing one or both of the tones of each of the eight basic patterns. Tone *l was restricted therefore to tone sandhi variants in PMx. Nevertheless, in view of the fact that some members of each tone-class were characterized by sandhi variation while others were not (there is evidence of such variation in not more than one-third of the sets), all four tones contrasted in sorne contexts, and there can be no doubt of the phonemic status of the highest level.

The correlation of the tone sandhi variants with the basic tone patterns is as follows: *22 and *24 had sandhi variant *21; *33 and *23 had variant *11; *34 had variant *14; *43 had variant *13; *42 had variant *41; and *32 may possibly have had two variants even in PMx times: *31 (in what later became M) and *12 (in what later became C and T). In positing a PMx isogloss thus separating the area in which the $* 31$ variant was current from the area in
which the $\% 12$ variant was current, I do not mean to imply a common C , T pedigree as opposed to M but am simply delineating one isogloss in a network of intersecting- and very probably ill-corre-lating-isoglosses.
6.3.4.1. PMx tone sandhi variant *21>M high-mid (M-SE high low under obscure conditions in some sets); C high-high in CV́V́CV́ and CV́?V́, but high-low in CV́v́CV?? and CV́?V? (and in a few such forms that have recently lost*-?); T 2-1 (<PT *1?) and $2(<\mathrm{PT}$ *1). The following sets contain M witness to $P M x * 21$ sandhi variant: 179,272 . The following sets contain a C witness to *21: 19 , 21, 37, 39, 76, 78, 81, 107, 110, 123, 159, 222, 229. The following sets contain a T witness to *21: 24, 37, 47, 68, 74, 76, 105 , 111, 123, 134, 159, 222, 225. Notice that sets 37, 76, 123 and 159 contain both a C and a T witness to $* 21$.
6.3.4.2. PMx tone sandhi variant *ll $>\mathrm{Mh}$ high-high (M-SE midhigh under obscure conditions in some sets); C high-low (CV́V́under obscure conditions in a few sets); $T 25 / 2 \mathrm{~h}(<\mathrm{PT} * 12$? $>$ later $\mathrm{T} * 23$? $>25 \mathrm{~h}$, or 32 h by shifting of contrastive tone to last syllable, see 6.1.4.3.); and $23(<\mathrm{PT} * 12)$; the disyllabic 23 forms have become 3-3 in some situations by shifting of contrastive tone to last syllable (see 6.1.4.3.). The following sets contain a M witness to ${ }^{1} 11$ sandhi variant: $10,97,136,142,177,194,273$. The following sets contain a C witness to $* 11: 20,38,114,118,142$, $165,170,172,176,180,209,220,249$. The following sets contain a T witness to $\% 11: 12,143,176,220$. Notice that both M and C have witness to $* 11$ variant in set 142 , and both C and T in sets 176 and 220.
6.3.4.3. PMx tone sandhi variant $* 14>\mathrm{M}$ high-mid (high-low in M-SE under obscure conditions in some sets); C high-high; T 25h/ $2 h$ or 23 (see above paragraph). The following sets contain a M witness to *l4 sandhi variant: 3, 59 (but the M form may here be a PM sandhi variant resultant on addition of fused element represented by s-causative), 189 (with M-SE anomalous reflex CV́V). The following sets contain a C witness to $* 14$: $18,59,116,135$, 169 (high-high may here be a C sandhi variant after ndūūtē egg, fruit; 171, 223, 241. Only set 3 contains an unambiguous T witness to *14. Notice that both M and C witness to $* 14$ variant in set 59 , and both M and T in set 3 .
6.3.4.4. PMx tone sandhi variant *13>Mhigh-mid; C high-low in CV́V́CV̀, but high-high in CV́V́; and T (presumably) $25 \mathrm{~h} / 2 \mathrm{~h}$ or 23. Only set 29 contains a M witness to *13. The following sets contain a C witness to $\# 13: 29,98$, 154. The following sets contain an ambiguous T witness to $* 14 / * 13$ (< basic $* 34 / * 43)$; the T
reflex is 23 (PT *12): 35, 36, 56. Only set 154 contains an unambiguous T witness to $* 13$ in that the potential ambiguity of $* 14 / * 13$ is resolved by the C witness to $* 13$ in that set.
6.3.4.5. PMx tone sandhi variant $* 41>$ M low-high; C high-low in CV́́́C̀̀, but high-high in CV́v́; and T 2-1 (<PT*1?) or 2 $(<\mathrm{PT} * 1)$. The following sets contain a M witness to *41:46, 62, 70 (but the M cognate in the latter is highly suspect in that it has preposed $\mathrm{t} \overline{\mathrm{T}}$-, which seems to have conditioned some PM tone sandhi variation). Only set 178 contains an unambiguous C witness to $* 41$. The following sets contain a T witness to $* 41: 130,184,232$. Set 213 contains but a M-SM form and a T form, both of which hark back to $* 41$. In that the cognates here come from just one M dialect and T, it is probably too weighty a conclusion to see in this set evidence for basic pattern $* 41$ in PMx forms. More likely, we have here a fragmentary set with all the surviving forms harking back to a $P M x * 41$ sandhi variant.
6.3.4.6. PMx tone sandhi variants of $* 32$ give the following reflexes: (a) variant $* 31>\mathrm{M}$ low-high; (b) variant $* 12>\mathrm{C}$ highhigh; T 2 h or 23 (see 6.3.4.2.). The following sets contain a M witness to *31 sandhi variant: 23, 53 (only M-SE), 247. The following sets contain a C witness to $* 12$ sandhi variant: 60,221 , 247. The following sets contain a T witness to $* 12$: $16,22,60$, 208, 212. Notice that both M and C bear witness to sandhi variant of basic *32 in set 247 and both C and T in set 60 . Set 1 seems to preserve only sandhi variants of $* 32$ in all three languages. This set and 213 mentioned above under 6.3.4.5. may possibly bear witness to the occurrence of basic tone patterns involving tone 1 , but the evidence is too slight at present to establish this conclusion. It is clear, however, that even if tone patterns involving tone 1 were basic in some PMx forms, the number of forms occurring with such basic tone patterns was extremely limited (cf. M-SE where there are but nine couplets with basic tone patterns involving M-SE tone 3; see 6.1.2.1.).

7. Array of M, C, T cognates

7.0.1. The sets are grouped here according to the consonant and vowel of the reconstructed ultima of the PMx forms. This coincides with the M, C, T ultima except that (1) *CV?V syllables regularly become disyllabic in M, C, T (cf. 5.0.2.). (2) Some *CV? forms have been sporadically expanded in M, C, or T by rearticulation of the vowel after the glottal stop; a form thus treated becomes disyllabic (cf, 5.4.1.). (3) Some *CV forms come down as M CVV, which patterns as disyllabic. Presumably PMx *CV was phonetically lengthened; this length still exists in C and T ; but C CVV units are monosyllabic and T word-final CV is phonetically but subphonemically lengthened (cf. 2.2.2.2., 2.2.2.3., and 5.0.2.).

It is advantageous to group the forms according to the *CV of the reconstructed ultima in that (a) the ultima is the place of greatest phonological variety in PMx - since several consonants and three of the vowels do not occur in penultimate syllables; (b) the modicum of consonantal alternation in the ultima gives these syllables a stability not found in penultimate syllables; (c) in so grouping the sets similar roots are brought together in the same section; and (d) some sets have penultimate syllables and some do not, but the consonants and vowels of the ultimas of reconstructed disyllabic forms receive the same phonological treatment in M, C, T cognates as do the consonants and vowels of reconstructed monosyllabic forms. Itherefore consider that all PMx forms consist of an ultima plus or minus a penultimate and-much more rarely-a prior syllable. In grouping the sets according to the ultima we bring together the data so as to exhibit the most varied, basic, and comprehensive points of similarity.

Each entry in the array of cognates consists of three parts. (1) In parentheses immediately following the form, the reconstructed PMx tones are given. (2) Immediately follows the citation of M , C, T cognates. (3) At the close of each entry appears a brief gloss of (a) the consonantal alternations-if any-that characterize the ultima, and of (b) the reconstructed PMx penultimate along with any penultimate $\mathrm{M}, \mathrm{C}, \mathrm{T}$ developments.
7.0.2. The reconstructed basic tone pattern is given for each set in which such reconstruction has been possible. Where one or more alternative tone reconstructions are possible, these alternative possibilities are given with intervening slash (/): Where some forms of a given set reconstruct with one basic tone pattern while other forms of the same set reconstruct with another basic tone pattern, these two reconstructed tone patterns are given with intervening comma. After a semicolon there is indication of any sandhi variations to tone patterns involving a replacive $* l$ on either or both members of the reconstructed tone pattern assumed to be basic; the language or languages bearing witness to this sandhi variation are indicated. Therefore, the formula (*22/*23; T *1i) may be read as follows: "Either proto tone couplet *22 or *23 may be reconstructed; a sandhi variation to proto tone couplet $\% 11$ is indicated by the T cognate (s)." Similarly, the formula ($* 34, * 23$; M *14) may be read, "Both proto tone couplet *34 and *23 need to be reconstructed to account for all the forms of this set; a sandhi variation to ${ }^{1} 14$ is indicated by the M cognate(s)." Also note in regard to the tone reconstruction that (a) Post-PMx sandhi variations to high in either M or C are ignored in the formulae; e.g. M-SM high attributive tone (6.1.1.4.), and early M sandhi variations to high conditioned in some forms by such elements as preceding tīanimal thing or s- causative; and certain C tone sandhi variants described in 6.1.3. and 6.3.1.0.3. (b) Ambiguity in regard to the reconstructed basic tone pattern in a given set is resolved in a number of instances by taking account of the reflex of a PMx sandhi variant in that set. For example, in a set where the occurrence of M mid-mid indicates that PMx *22/*34/*43 is to be reconstructed, the occurrence of a T 21 or 2 reflex of a PMx sandhi variant in that set resolves the ambiguity in favor of $* 22$, since *34 and *43 did not have PMx sandhi variants that give T reflex with 21 or 2 , but rather with 2 h or 23 .
7.0.3. Mixtec verbs are cited in both the potential and continuative (e.g. ka ? mu , há? mu); a further form, the completitive, consists in M-SM of a preposed nì followed by verb with the segmental phonemes of the continuative but with the tone couplet of the
 preposed with sandhi variation of the tones of the following verb provided that the verb belongs to a tone class characterized by such variation. The ni/ni forms are not cited here in that they seem to have little diachronic pertinence. (4.1.)
7.0.4. In Cuicatec verbs the following forms are cited in the order here given: po (potential), pr (present), pt (past), pp (prior
past). Deviations from this order are made whenever it is possible to cite together two homophonous aspects of the same verb; such deviations from the order here established are indicated by the use of the abbreviations just given.
7.0.5. Trique nouns are cited with the possessed form first if it is distinct from that of the non-possessed), then the non-possessed: e.g. da ${ }^{3}$ ką $^{2-1} / \mathrm{ką}^{3}$ squash. Trique verb forms are cited with the aspectual prefix in parentheses: (g) $a^{3}{ }_{2}{ }^{2-1}$ sing. The synchronic analysis represented by the parenthesis must not be allowed to obscure the fact that diachronically the entire penultimate syllable is a unit, e.g. ga-<*ka in the verb just cited. Such a prefix may be added before a fortis nasal, lateral, or semi-vowel only with a compulsory alternation of the fortis consonant to the corresponding lenis: e.g. $\left(\mathrm{ga}^{3}\right)_{\mathrm{n}} \cdot \mathrm{e}^{3}$ sit indicates two forms, $\mathrm{n}^{\cdot} \mathrm{e}^{3}$ sitting and $\mathrm{ga}^{3} \mathrm{ne}^{3}$ sit, sat. With a tone substitution in the latter form, a further form ga ${ }^{4} n^{3}$ will sit occurs. The development of the latter sort of forms is peculiarly T; such forms are not indicated in the array of cognates except where they may have possible diachronic pertinence.
7.0.6. Amuzgo forms are cited when known and presumably cognate. They are taken account of in no systematic way.
7.0.7. In the brief gloss concluding each entry, the following abbreviations and symbols are used: ult syll (ultimate syllable), plte syll (penultimate syllable), slash (/) for alternative reconstruction of penultimate syllables, and \{ \} to indicate a plausible reconstruction (in terms of 4.1.) but nevertheless a reconstruction with alternative possibilities. In regard to the latter it is especially instructive to note that merger of five PMx *CV elements into T ga- requires us to thus label certain T penultimate reconstructions as simply plausible with especial frequency. The penultimate reconstructions are as stated and discussed in detail in section 4 ,
7.0.8. In general M, C, T penultimate elements are considered to be continuations of PMx penultimate, (a) if the phonological developments conform to those described in 4.2. - 4.3., and (b) if the reconstructed elements together form a plausible pattern in terms of paradigms A and B as described in 4.1. While the latter criterion must admittedly be applied with caution, it seems plausible that if there are, e.g. M, C *yu penultimate elements and a T *tu penultimate (' t ' declension) alongside a C penultimate element which would reconstruct as *ya, then the latter may simply mirror a C development (set 165). In respect to the first criterion, fusions of the sort described in 4.4.-4.7. are consistently considered
to be post－PMx，i．e．M，C，or T developments．Judgments of this sort are expressed by the following device：asterisked forms not followed by hyphen are PMx unless labelled PM，PC，or PT； penultimate elements considered to be M, C ，or T developments are cited without asterisk and followed by hyphen．For example， note the entry in 182：＇plte syll：$M, C{ }^{*} \mathrm{k}^{\mathrm{F}} \mathrm{a}$ ； T adds žu ${ }^{3}$－animal ${ }^{\prime}$ －in which the latter element is assumed to be a T development， while the penultimate M, C elements are considered to hark back to $\mathrm{PMx}^{*} \mathrm{k}^{\text {wia }}$ ．

The difficulty of such judgments as these relating to the status of a given element as PMx or post－PMx underscores one of the reasons behind my marshalling the M, C, T cognates here in this section in such detail．It is my hope that this marshalling of the data basic to the study will be sufficiently detailed and comprehen－ sive that the reader so inclined will be able to inspect the data in his own right and to challenge，if necessary，some of my conclu－ sions．In such discussion further insights may be gained into the phonological and grammatical structure of PMx．
＊ki
1．（＊32；M＊31，＊12；C，T＊12）M－SM táhi，M－SE tàhí，M－J
 Plte syll：M，C＊ta；Tri－＜fused EV －element．
 syll．M－J has fused ti＜ti animal，thing；T has ri－$<\mathrm{Xu}^{3} \mathrm{~h}$ oval shaped．The fused M, T elements may hark back to $P M x * t u$ ？ oval shaped，but the fusions are presumably post－PMx．
${ }^{*}{ }^{\mathbf{k}}{ }^{\text {i }}$

 とa aku，ndaakù；$T n^{3}{ }^{3} \mathrm{kwi}^{2-3}$ to wind up，to coil up．Plte syll： M ${ }^{*} \theta$ ； ；has fused auxiliary verb harking back to $P M x{ }^{*}{ }^{*}$ a，${ }^{*}$ xa， ＊ka，${ }^{\mathbf{Z} \boldsymbol{Z}}$ da－with＊ka leveled to c_{a} in late analogical development； $T{ }^{* \boldsymbol{n}} \mathrm{~d}$ 。
＊${ }^{1}$
4．（＊32）M－SM，SE，J vi肖ì；$T \mathrm{gu}^{3} \mathrm{ci}^{4-3}$ grey hairs．Plte syll：

5．（＊24，＊42）M－SM vīisi，M－SE vīgì／vist, $\mathrm{M}-\mathrm{J}$ visi sweet
 ci ${ }^{2}{ }^{4-3}$ candy，ga3 ${ }^{3}{ }^{2}{ }^{4}{ }^{4-3}$ honey；A tsi sweet．Plte syll：$M * w o$ ，
＊n d ；C has some fused と yaa－element；T has fused $z i^{3}$－that which， and $* k j / * k^{*} \rho$ 。

6．（＊32／＊42）M－SM 九iī；T ci ${ }^{5}$ tough．
 to nurse；C datit drop；T di ${ }^{3} \mathrm{ci}^{3}$ breast，（g） $\mathrm{u}^{3} \mathrm{ci}^{3}$ to nurse， $\mathrm{ci}^{3}{ }^{3}, \mathrm{ri}{ }^{3}$ cie ${ }^{3}$ a drop，small quantity of：A tsęi？．Ult syll：$M, T * \theta_{-}$；C ${ }^{*} y-$ ．
 shaped．
＊xi

 come；T（g） $\mathrm{u}^{3} \mathrm{ci}^{3}-5$ to arrive．The medial consonant has been reduced in M－SM under obscure conditions．Plte syll：$M{ }^{\boldsymbol{a}} \mathrm{di}$ ， ＊ki and wa－； $\mathrm{T}^{*} \mathrm{k}^{\boldsymbol{W}} \mathrm{i}$ ．

 ＊k ${ }^{\text {To }}$ 。

10．（＊33， $\mathrm{M}, \mathrm{T} * 1 \mathrm{I}$ ） $\mathrm{M}-\mathrm{SM}^{\text {n }}$ dáhi to untie，＂dîhì wing，M－SE

 wing，arm；$T n^{3} \varepsilon_{i}^{3}$ to untie，to loosen，na ${ }^{3} \varepsilon_{i}{ }^{2-3}$ rough，splintery， na $^{3} \mathrm{c}^{3}{ }^{3}$ to awaken，hna ${ }^{3} \mathrm{ci}^{3}$ to awaken（someone），du ${ }^{3} \mathrm{gwa}^{4} \mathrm{ri}^{3}$ or zi^{3} $-\mathrm{gwa}{ }^{4} \varepsilon^{3}{ }^{3}$ wing；A tski，ntski wing．Pite syll：$M{ }^{* n} \mathrm{da},{ }^{* n} \mathrm{di} ; C{ }^{* t i}$ ，
 involve mixture of forms from several PMx nouns traceable to the same root but with varying plte syll．

 $\overline{X i}_{i}^{3-5}$ ？to bury．Plte syll：$M^{*=} d \rho$ ，with ku－as an analogical de－

 year；T（g）$a^{3} \mathrm{c}_{i}^{2-3}$ to pass， yo^{3} ？ $\mathrm{ga}^{3} \mathrm{c}_{\frac{1}{2}}{ }^{2-3}$ the past year．Pite

13. (*23; C *11) M-SM sāhį̀, M-SE sāhį̄, M-J saと̌i nephew; C húácè niece; T du ${ }^{3} \mathrm{gwa}^{3} \mathrm{C}_{\mathrm{i}}{ }^{3-4 \text { ? }}$ niece. (Similarly, M niece'~
 *ga- $>$ gwa after preceding du-).
*x ${ }^{\text {win }}$
14. (*23; C*11) C (kūūve) ndúúkù to be joined; T du $^{3} \mathrm{gwi}^{3-4}$? together with, companion, neighbor, relative. Plte syll: C $*^{n} \mathrm{~d}$; T * $\boldsymbol{\theta}$ 。
 káhi to talk clearly; T gwi ${ }^{5}$? quickly, ($\mathrm{ga}^{3} \mathrm{ta}^{3-4} \mathrm{~h}$) gwi ${ }^{5}$? to say
 biguous without a C witness).
${ }^{*}{ }^{\mathbf{n}}{ }^{\text {di }}$
16. (*32; M-SE *31, T *12) M-SM titiz, M-SE ti $\mathrm{K}_{\mathrm{I}}, \mathrm{M}-\mathrm{J}$ titi;
 T ru- $<\mathrm{cu}^{3}{ }^{3} \mathrm{~h}$ oval shaped, fruit. These various $\mathrm{M}, \mathrm{C}, \mathrm{T}$ elements probably all hark back to PMx *tu? fruit, oval shaped, but the T cognate has analogically reshaped the old PMx plte in accordance with the recent fusion of $\mathrm{Cu}^{3} \mathrm{~h}$ in that language.
 ne ${ }^{4-3}$ beans, kidneys; ru ${ }^{3} n^{4-5}$ (ga ${ }^{4}{ }^{n} \mathrm{nl}^{2 q}{ }^{4-3}$) large black beans, $r u^{3} \mathrm{ne}^{4-5}\left(\mathrm{gi}^{4} \mathrm{ci}^{3}\right)$ small, vari-colored beans; A ntre beans, ntæ? kidneys (cf. T $\mathrm{zi}^{3}-\mathrm{ru}^{4} \mathrm{ne}^{4}$ kidneys.) Plte syll: $\mathrm{M}, \mathrm{C} *^{\mathrm{a}} \mathrm{du}, \mathrm{T}$ ru$<$ cul $^{3} \mathrm{~h}$ oval shaped. The T cognate probably reflects late analogical reshaping as suggested in 16.
 towards; C yígne road; T ne ${ }^{3-47}$ direction towards. Plte syll: M, C *yu. T possibly had an original *yu element that was lost without strengthening PT $n>{ }^{n} \cdot$, since the T cognate usually occurred in positions of relatively lessened stress.

*1i

 sorts of reduplications in the M dialects. T 1 - may indicate that the PT root was also reduplicated and that a plte syllable has been lost. In this case the reduplication may be a PMx development. *mi
20. (*23; C *11) M-SM п̄à ? mù, M-SE п̄ā? mū, M-J ya? mi;
 root，soap， $\mathrm{du}^{3} \mathrm{mi}^{3-4} / \mathrm{m}^{\prime} \cdot \mathrm{i}^{3-4-3}$ sweet potato，tubular root．The soap－root is a tubular root resembling the sweet potato．The ab－ sence of the glottal stop in the second T word is obscure（cf．5．6．） Plte syll：M＊ña，＊ya；T＊＊a．

21．（＊22；C＊21）M－SM kā？mū，há？mū，M－SE ka ？mū, $\mathrm{h} \boldsymbol{\epsilon}^{?}$ mū，
 ${ }^{2} n_{i} ? \xi$ to set fire to；T（g）a ${ }^{3}$ ？máa ${ }^{3}$ to be warm，ną ${ }^{3}$ ？z^{3} to smart， to be irritated．ną ${ }^{3}$ ？ąhą ${ }^{4-3}$ quicklime．$(\mathrm{g}) \mathrm{a}^{3}{ }^{2} \mathrm{maq}^{3} \mathrm{ru}^{3} \mathrm{wa}^{2-3}$ to be angry；A hmąi ？hot，angry．Plte syll：M＊ka，＊xa；C＊k＂a， ＊xa，＊ka， $\boldsymbol{*}^{\boldsymbol{A}}$ da（with vowel palatalization in the last three tenses）； T \｛＊ka\}, *na.

 $z_{\text {zną }}{ }^{3}$ ？ąhą $4-3$ conversation，ną ${ }^{2} ?$ ąhz̨ ${ }^{5}-4$ incantations，chants，nu ${ }^{3}$ gwą？a^{4-3} word， na $^{3} h / z_{n a}{ }^{3} h$ language（classificatory noun with re－ cent denasalization in proclitic position）；A n ？am word，narn？to send word．Plte syll：$M, T *_{\text {tna }} / *_{\operatorname{tno}} ; T *_{n a} / *_{n} 0$ ．
 centavos），M－SM，SE M 豸ş？ money，ząhą ${ }^{3}$ bit，$z^{3}{ }^{3}-\mathrm{mi}^{2}-1\left(\mathrm{cu}^{3} \mathrm{~h}\right)$ yolk（of an egg）；mil${ }^{2}$ copper－ colored，yellow．Plte syll： $\mathrm{M}, \mathrm{T} * \theta \mathrm{i}$ ．
＊ni
24．（＊24；C，T＊21）M－SM，SE ñāni，M－J yani brother of a man；C ？difn brother；T di $^{3}{ }^{3-1}{ }^{2-1}$ brother of a man．Plte syll： M＊fa，＊ya；C，T＊＊a．

25．（＊43）M－SM，SE J kānī，kánī to pound，to hit；T（g） u^{3}

26．（＊34）M－SM，SĒ，J kīnī disgusting，repulsive，M－SM hā－ kinī，M－SE（hēe）kini to be disgusted，M－J sa－kini to disgust；C tū－vīinu，i－tū－viinu，tū－viinnu，nī－tū－vīinu to disgust，to offend， （kūuve kāà）？vīinō to be disgusted；$T \mathrm{ni}^{3} \mathrm{n}_{\mathrm{n}} \mathrm{h}^{7} 4-3$ dirty，disgusting． Plte syll：M＊ki；C＊wi；T＊ni．

27．（Possibly＊43 in view of T retention of＊？ n ； C tones by C sandhi rather than PMx sandhi）M－SM $\overline{\mathrm{I}}$－háni， $\mathrm{M}-\mathrm{SE}$（sè ${ }^{\text {T }} \overline{\mathrm{e}}$ ） とán！，M－J（se？e）yani grandson；C（dā̄̄yā）dénర granddaughter， （dāiyā）hifno grandson；T（da ${ }^{3}{ }^{7}{ }_{n i}{ }^{2-1}$ ）$z i^{5}{ }^{5} ?_{n i}{ }^{5}$ grandchild．Plte syll：M＊xa，＊ya；C＊日a，＊xa；T has fused $z^{3}{ }^{3}$ that which or $z i^{2-1}$ he that．

28．（＊33／＊22，＊24；C＊21）M－SM kūnì，hīní，M－SE künī hiní

 at；$T(g) u^{3} n^{3}$ to hear，（ $n^{\cdot} \mathrm{e}^{3-4}$ ） $\mathrm{gu}^{3} \mathrm{ni}^{7} \mathrm{i}^{4-3}$ mirror．C ${ }^{7} \mathrm{k} \overline{\bar{u}} \overline{\mathrm{u}} \mathrm{n} \overline{1}$ and T（gi ${ }^{3}$ ） $\mathrm{ni}^{3} \mathrm{P}_{\mathrm{i}}{ }^{3}$ to see may be borrowings from M．Plte syll：
 placed＊y of old＇y＇conjugation with x ．

29．（＊43；$M, C * 13$ ）$M-S M, S E$ Pīnī afternoon，early evening， kū－گint to eat supper，M－SM，SE sinī supper，M－J そeni afternoon， early evening；C vifin afternoon，early evening，（（દ尢 ？ ））vínd to eat supper；$T \mathrm{ni}^{3-5-4}$ afternoon，early evening，gi ${ }_{\mathrm{ni}}{ }^{3-5}$ night fall（verb），zdi ${ }^{3}$ ？ nf^{5-3} supper．The first two T words involve again a reflex i where we would expect 1；maybe i reflex here and in the previous set involves（a）borrowing from M ，or（b） special conditioned sound change in T after prefixal i when there is no intervening？or（c）separate dialect developments in T with subsequent dialect borrowing．Plte syll： M ＊yi，＊ $\mathrm{\theta i}_{\mathrm{i}}$ ； $\mathrm{C} *_{\text {wi }} ; \mathrm{T} * \mathrm{ki}$ ， PT＊zdi．The loss of the first syllable in T ni ${ }^{3-5-4}$ without strengthening of $n>n$ ．raises a phonological problem．

30．（＊33／＊23／＊24）M－SM Pinì insides，non－physical，meta－ phorical（latter meanings when constituent of a verb phrase），M－ SE Pīnī insides，$^{n} \overline{1}$ metaphorical，non－physical（in verb phrase）， M－J ？ini（only in verb phrase）C hì̀nō insides，non－physical （only in verb phrase）；T ？ $\mathrm{nl}^{5} \mathrm{~h}$ inside of（verbal attributive）．Plte syll：M＊yi；C＊xi．
 M here may have analogically leveled the tones of this numeral to mid－low from some former pattern；it is no doubt significant that all M numerals from＇ 2 ＇to＇ 10 ＇have mid－low tones）．Plte syll： M，C，T＊wa．

 kū－${ }^{n}$ n喥

 dish or pan）．Plte syll：C＊ a ； $\mathrm{T} *$ na．

35．（＊34／＊43；T＊14／＊13）M－SM kānī（Pīnì），M－SE kānī－ni
 (pp) to think, to doubt; $T(g) a^{3} \mathrm{n}^{2-3}\left(\mathrm{za}^{5}{ }^{2} \mathrm{ru}^{3} \mathrm{wa}^{2-3}\right)$ to have a generous impulse, $n^{3} \mathrm{ny}^{2-3}\left(\mathrm{ru}^{3} \mathrm{wa}^{2 \sim 3}\right)$ to think, to be sad. Plte syll: M^{*} ka; $\mathrm{T}\{* \mathrm{ka}\}$, $\boldsymbol{*}_{\text {na }}$.
36. (cf. 35) M-SM kānī, hánī, M-SE kānī, hénī to put in place,
 to stand up, to erect. This is probably the same root as the preceding set. Plte syll: $\mathrm{M}^{* k a}$ *xa; C *ka, *xa, *ka, ${ }^{\text {n }}$ da (with vowel palatalization in the last three tenses.)
37. (*24; C, T *21) M-SM, J nūnì; M-SE nünī corn; C nísin
 $\mathrm{M}, \mathrm{C}, \mathrm{T}{ }^{*{ }^{\mathrm{n}} \mathrm{du}}$.
*wi
38. (*23; C *11) M-SM, SE k̄̄? u sister of woman; C kưu${ }^{7}$ vè sister; T žu ${ }^{3}$ gwi $^{3-4}$ h sister of a woman. Plte syll: M, C *k(") V~; T *tV-.
39. (*22; C *21) C ndud? ${ }^{\text {ve }}$ eruption of the skin, pimple; T ya ${ }^{3}{ }^{7}$ wi 3 boil, carbuncle. Plte syll: $C *^{n}$ do; T *yo.
40. (*23/*32/*34) C tāāvē a pile; T na ${ }^{3} \mathrm{wi}^{3-4}$ to pile up. Plte syll: C *ta; T *na.
41. (*22/*33) C yưüvè toe-nail; T-Ch a ${ }^{3} \mathrm{wi}^{3}$, T-Co yawi head. For the semantic shift involved, cf, M-SM expression 豸ini ${ }^{\mathbf{n}} \mathrm{d}{ }^{2} \overline{\mathrm{a}},{ }^{\text {, head }}$ of the hand,'i.e. finger. Plte syll: C, T *ys.
42. M-SM, SE ?ūù, M-J, M ${ }^{*}$? uvi two; C ${ }^{?} \bar{u} u ̀ v e ̀ ~ t w o, ~ d i ̄-~$? $\bar{u} \bar{u} v \bar{v}$ twins, nā-? $\bar{u} u ̄ v \bar{e}$ some, a few; $T \mathrm{w} \cdot{ }_{i}{ }^{5} \mathrm{~h}$ two (cf. T žu $5_{\text {wi }}{ }^{5} \mathrm{~h}$ twelve); A we two. M may have analogically leveled to mid-low from some other tone pattern, cf. 31. Plte syll: some sort of PMx reduplication; possibly *wi-wi. T lost plte syll and strengthened $w>w^{\cdot}$.

 creates new final syllable after old ultima by rearticulating vowel after *- ? . Plte syll: M, C, T *k"o.
44. (*33; M-SE *11) M-SM tàu, tāa, to owe, M-SM, SE
 owe. Plte syll: $M *$ ta, $*^{\boldsymbol{B}}$ da; $T *^{\boldsymbol{E}}$ da.

45．（＊33）M－SM，SE sāù，M－J savi rain，M－SM SE sà ？$\overline{\mathrm{u}}$ to submerge；C（dāī－）nkūúvè rain drops，dā̄vē thunder，（kwęę－）kúvè to rain；T－Ch du^{3} ？wi ${ }^{3}$ ， $\mathrm{T}-\mathrm{SD} \mathrm{do}^{3}{ }^{2} \mathrm{o}^{3}$ thunder，rain－diety，T－Co yuwi rain；A lui？to blink，to flash lightning，nda sua？，nda lua？ rain－water，tsue（ sg ）ntue（ pl ）lightning．It may be necessary to reconstruct two forms here－one with and the other without＊？ cf．44．Plte syll：$M * \theta a ; C$＊日a，and ku－（possibly $<*{ }^{*}{ }^{*}$ a）；$T * \theta a$ ， ＊ya．

46．（＊42；M＊41）M－SM，SE sàú，M－J savi；T zdu ${ }^{3}$ ？wi ${ }^{5-3}$ Indian，non－spanish－speaking；A katsue（sg），kalue（pl）Mixtec Indian．It may be recessary to reconstruct two forms here－one with and the other without＊？cf．44，45．Plte syll：M＊日a；PT ＊žda．

47．（＊22；$T * 21$ ） $\mathrm{M}-\mathrm{SM}$ tā̄ to roast，to toast； $\mathrm{T} \mathrm{ru}^{3} \mathrm{wi}^{2}$ to roast over hot coals．Plte syll：M＊ta；T has ru－$<\mathrm{CV}$－fused element．

48．（＊22）M－SM，SE，J kūu to exist，to be，to be able，${ }^{n}$ dūu
 phrases）；also note as constituent of the following：nā－ndūūvi ${ }^{7}$ vīīkū（ $p o$ and $p t$ ） $\bar{i}-n a ̄-n d \bar{u} \bar{v} i \bar{i} ?$ vīikū（ $p r$ ），níndúúví ？vīikū（pp） to bless animals，ndūūvē ？vīikū，in－ndūūvè ？vīīkū，ndū̀uve ？vī̄kū， nī－ndúúve，${ }^{?}$ vīiku to bless；T（ga ${ }^{3}$ ）$w^{\cdot} \cdot{ }^{3}$ to be，to become，（ga ${ }^{3}$ ） $\mathrm{na}^{3} \mathrm{wi}^{3}$ to get well，to heal，$\left(\mathrm{ga}^{3}\right) \mathrm{na}^{3} \mathrm{wi}^{3}$ to be finished，to come to
 palatalization in the last three tense forms）．Plte syll：$M *{ }^{*}{ }^{*} \rho$ ，
 ＊yi
 T＊ta．

＊te

50．M－SM kठ̄ yưç，M－SE kṑ yuł̌，M－J ku－yoti alligator； C ？yáte lizard．Plte syll：M＊yam；C＊ya． ＊θ e
 $\mathrm{M}, \mathrm{C} * \theta \mathrm{o}$ ．There was possibly a PMx reduplication＊θ－θ 。 ＊xe

52．（＊32，with obscure M－SE mid－mid）M－SM ${ }^{\text {n }}$ dahī,$~ M-S E$
 *kwa.
53. (*32; M *31) M-SE ${ }^{n}$ dùhi; T zu $^{3}{ }^{3} \mathrm{C}^{4-3}$ hens, domestic fowl. Plte syll: $M{ }^{* n}$ du; T *tu. *x"e
54. (*32) M-SM, SE kăhì, M-J kači; C ndāāvā, i-ndāāā, ndāàvà, níndāāvá; T na ${ }^{3}$ gwi ${ }^{3-4}$ to choose. Plte syll: M *ka; C, T * ${ }^{\text {da }}$.
${ }^{* n}$ de (Sets without C witness are ambiguous in that they could be either $*^{\text {n }}$ de or $*^{\text {n }}$ di.)
55. (*24) M-SM, SE yūxì knife; T-Chn ${ }^{\cdot} e^{3-5}$ (ka ${ }^{3}$) scissors, T-Co n^{*} e knife. Plte syll: M *yam/*yo. T loss of plte syll is indicated by strengthening of $n>n \cdot$.
56. (*34/*43; T *14/*13) M-SM, SE kū̄̌i, hícī, M-J kuti,

57. $\mathrm{M}-\mathrm{SM}$ víxi, $\mathrm{M}-\mathrm{SE}$ viči; $\mathrm{Tn} \cdot \mathrm{e}^{5}$ naked. Ple syll: M *wi/ ${ }^{*}$ wo, T loss of plte syll is indicated by strengthening of $n>n \cdot$.
 ne ${ }^{5-3}$; A hnde wind. Plte syll: M *ta; C has ${ }^{\text {? yyyy }}$ (cf. first syllable of C in 209); T *na.
59. (*34; M, C *14) M-SM, SE kū̄̄̄̄, hičis, M-J kuti, citit take a bath, M-SM skúci, M-SE skúci, to bathe (someone), C kíquina,
 ? kuiuna to bathe (someone). T (g) $a^{3} \mathrm{ne}^{3-4}$ to take a bath, $\mathrm{du}^{3} \mathrm{gwa}^{3}$
 *xi, *ka, *n da (with vowel palatalization in the last two tenses
 ${ }^{*}{ }^{*} \mathrm{~J}$ (with PT ga $>$ gwa after previous du-).
60. (*32; C, T *12) M-SM, SE kùčī, híci, M-J kuti; C kúúna

 palatalization in the last two tenses); $T * \mathrm{ka} / * \mathrm{k}{ }^{\mathbf{w}} \mathrm{J}$ 。

*we

61. (*43) M-SM, J kū q_{u}; $\mathrm{T}_{\mathrm{Za}}{ }^{3}{ }^{2} \mathrm{wi}^{3-5}$? to rub (of washing clothes on the rocks); $A-$? ue to massage. *we vs. *wi is am. biguous here without a C witness. Plte syll: $M * k^{\text {ma }}$; T *ta.
62. (*42; M*41) M-SM, SE yù? ${ }^{\text {a }}$, yú? ${ }^{\text {a }, ~ M-J ~ y u ? ~ v i ~ b e ~}$ afraid; C kā-ndiì?va, i-ndiil?va, cii-ndií?và, níndiì?và, to

 frighten. Plte syll: M *yu; $C *^{n} d u ; T$ *tu.
63. (*34) $\mathrm{M}-\mathrm{SM}, \mathrm{SE}, \mathrm{J}$ nūu to come down; C nduùvà (po and pt), i-ndūuva (pr), nit-ndūūva (pp) to axrive from above, kūù, hī̄y \vec{a}, غ̇īy \bar{a}, ndílyá to arrive descending; $T(g) a^{3} w i^{3-4}$ to go out,
 palatalization of the plte vowel in the last three tenses, and an obscure development in which original intervocalic ${ }^{*}-w$ - was replaced by y in the situation $i, \ldots, a) ; T * k^{*} 5 / * k 5$.
64. (*23/*32/*34) C diindà̀va (po and pt), ī-dīi-dāāva (pr), nī-dīi-dāava (pp) to clean; $T \mathrm{na}^{3} \mathrm{ru}^{3} \mathrm{wi}^{3-4}$ to exase. Plte syll: $C * \theta a ; T$ has ru- $<\overline{X V}$ - fused element.
65. C kūùvà, hīiya, čīiya, ndīyā to be hidden (of the sun); $T w^{*}{ }^{5}$ hidden. This set may be the same as 63. Plte syll: T indicates loss of plte syll by strengthening $w>w^{\bullet}$.
66. (*34) M-SM yāu, M-SE yāu, yāvū, M-J yavi; C hìivà;
 A tsua (sg), lua (pl) cactus. Plte syll: M, C *ya; T * θ a, *ya.
67. (*23) M-SM, SE yāù, M-M yavi hole, M-SM yā̀ (kāvā) cave; C hīiva hole, hīiva (yavá) cave; T du ${ }^{3} w^{3-4} \mathrm{~h} / \mathrm{w}^{*}$ ehe 3 cliff, cave; Atsue? (sg), lue? (pl). Plte syll: M, C*ya; T ${ }^{*} \boldsymbol{\theta}$.
68. (*24; T *21) M-SM, SE yūù, M-M yuvii; C hĩ̄vā; T-Ch $d u^{3} w^{2-1} / w^{*} e^{1-2}$ straw mat, T-Co yuwi; A tsue (sg), lue (pl). Plte syll: M, C *yu; T * θ u, *yu.
69. (*23, *32; C*11, T*11/*12, M*31) M-SM nप्य-ya?
 yà? \bar{u} market place, wages, $M-J$ tya? vi to pay; $M-M$ とa? vi to pay; C ?1ivà market place, xif? va wages, nā-dif? và to pay; T-

 man, catrin, ? we 3-4-3 market place, T-Co yu? wi, T-I yu?we market place; A tiam ?lua pay, will fight. Plte syll: M*ya (with fusion of prior tV- + ya $>$ غa- or tya-); C *ya (with fusion of prior tV- + ya $>\mathrm{c}_{\mathrm{ii}-}$; and with fusion of prior $\mathrm{dV}=+\mathrm{ya}>\mathrm{dii}-$); $\mathrm{T} * \boldsymbol{\theta} \mathrm{a}$, *ya, ru-< $\mathrm{CV}-$ fused element.
70. ($* 22 / * 24 / * 42$ but probably the latter in that M may here
witness to＊4l sandhi variant；M witness suspect because of tī－．）
 eggs．Plte syll：M^{*} ya（with fusion of prior ti + ya $>$ とa－or tya－）； T＊ta．
＊t
 testines．Plte syll：M＊yi，＊xi；C＊xi；T＊ti．
＊KI

73．（＊33；M－SM＊11）M－SM yifí，M－SE fikf；C ？yüǔi？？ ＇medida de codo，＇cubit．Plte syll：M，C＊yu．

74．（＊22？；T＊21？）M－SM yikf，M－SE yThī bone，shell，horn；
 ＇shell－fruit＇（tones $25-4$ by back－formation from 32 h ），kis ${ }^{1-2}$ bark．Plte syll：M＊yi；$T{ }^{*}{ }^{*}$ ．

75．（＊34）$M-S M, S E^{n}$ dik lkę rice．Plte syll：$M *^{n} d V$ ，${ }^{\prime} y V$ ．
 C yufiku squash in the phrases y．（yūund？）calabacita tierna and y．（nduùkú）calabacita chompa，yūukù（yằz̧̆）calabacita chiquita， yuùkù ${ }^{?}$ calabacita yứkù（há？áf）chilacayota；T da $^{3} \mathrm{ką}^{2-1} 1 / \mathrm{ką}^{3}$ squash；A tskę（sg），lkę（pl）squash．Ult syll：＊kim／＊kwi．Plte syll：M，C＊ys；T＊өo．
＊k＂
77．（＊22，＊43；C，T＊21，C，T＊13）M－SM，SE yūkū，M－M yuku mountain；C hïikc̀ hill，nā－hāākō slope，hillside，？dáák à pile，tifkర a little hill，？tíkku top，summit；T kihi ${ }^{3}$ mountain， $\mathrm{da}^{3} \mathrm{ka}^{3}$ slope，hillside， $\mathrm{da}^{3} \mathrm{k}^{2}{ }^{2-1}$ a hill of corn，the nose， da^{2} kuhu ${ }^{5-4}$ sty（of the eye）．da ${ }^{3}$ kuhu ${ }^{4-3}$ ascent．The latter two T forms may be borrowings from M ．Plte syll：M＊yu；C＊yu，＊xa， $* \theta a, * t u ; T * \theta a$ ．There is here a mixture of forms from two PMx nouns：One noun with plte＊yu，＊tu（＇t＇declension），and another noun with plte＊日a，＊xa．（＇θ＇declension）．

78．（＊22；C＊21）C híkú river，hīikō（？1鹪）gully；T kį̣ ${ }^{3}$ riv－ er；Plte syll：C＊yu／＊xi．

No plte syll. M and C have obscure $?_{i}$ and $\boldsymbol{P}_{\text {ii }}$ respectively. T has gu- $<\mathrm{gwi}^{3}$ day.
 C (ndūūtē) ? yāakū; T (kwe ${ }^{3} h$) $\mathrm{k}_{\mathrm{c}}^{3}$ onion. This set involves several phonological problems and is not included in the statements of the preceding sections; it is nevertheless retained here as a residue of peculiar interest in that $\mathrm{M}-\mathrm{J}$ seems to preserve PMx and $P M$ final ${ }^{*}-m$ before added $-i$ element of obscure origin. * 97

 syll: M, T ${ }^{\boldsymbol{*}^{\mathbf{n}} \mathrm{di} \text {. }}$
 A se (sg) si tse (pl) roasting-ear. Plte syll: $\mathrm{M}, \mathrm{T}{ }^{* n} \mathrm{di}$.
 be content; C (kūtuà) ? dī̀ (po and pt), (hilya) ? dī̃ (pr), (ndīyā) ${ }^{7}$ dif to become calm; $T \mathrm{dI}^{3} \mathrm{rI}^{3} \mathrm{~h} / \mathrm{dI}^{2-1} \mathrm{calm}$, unruffled.

 to quiver, $M-J k^{w}$ asi to press, to nail, kisi to tremble, to quiver;
 to touch, to feel. In this, as in the preceding set, vowel in in obscure. In this set it may indicate that the T form is a borrowing
 (with vowel palatalization in the last three tenses); T \{*ka/*xa\}. *xi
85. (*34) M-SM yūh̄̄, M-SE ñühę, M-M yư̌ą; C yāà
 *ya; $T * \theta$ 。
${ }^{*}{ }^{W}{ }^{W}$
 ̌i $^{3} \mathrm{~g}_{\mathrm{t}}{ }^{3-5}$ to dawn. Plte syll: $\mathrm{M} *^{\mathrm{n}} \mathrm{di} ; T$ *ti:
87. ($\ddagger 22 / * 34 / * 43$) M-SM, SE kāh $\underset{4}{ }, \mathrm{M}-\mathrm{J}$ kačin warm, damp; T g^{5} warm. This is possibly a root related to the preceding. Plte syll: M*ka.

has zi^{3} - that which (which ultimately harks back to PMx * ${ }^{\text {oi }}$ but may be a T fusion).
${ }^{\text {n }}$ dr (varying with ${ }^{n i n}$ in some sets)
89. M-SM, SE nfíi all of, complete, "dif in every place, completely, ${ }^{n}$ di ${ }^{P I}$ all finished, $\mathrm{M}-\mathrm{J}$ nini all of, complete, ${ }^{n}$ di P_{i} all, finished; C ndū̄ all; $T n^{5}$? all, ni ${ }^{4}{ }^{14} 4$ segregated, apart from others. (Probably there were two roots, *nit and *ndI?. Notice that forms only with n - in M do not have ?. A third PMx form ${ }^{* n}$ di may have developed by contamination; this form may lie back of the C cognate as well as the $M^{\mathbf{n}}$ difl). Plte syll; reduplication in $\mathrm{M}-\mathrm{J}$ and T .

 in the last two or three tenses).

 syll: $T\{* k a\}$.

${ }^{* \pi} g^{\text {min }}$

93. (*33) M-SM, SE kīidi, M-J kivi day, M-SM ${ }^{n}$ dfú by day,
 M-J ${ }^{n}$ duvi by day, ${ }^{7}$ a- ${ }^{n}$ divi the heavens; C hūūe the day, nāhūuve the heavens; $T \mathrm{gwi}^{3}$ day, sun, ($n \cdot e^{3-4}$) ra3ngwi ${ }^{3}$ (placename) 'agua del sol,' हu ${ }^{3}$ gwi ${ }^{3}$ name of; A sue (sg), nkue (pl) day, light, fiesta, name. Plte syll: $M * k J, *^{n} d o ; C * x \supset ; T * t y$ and ra$<\mathrm{\varepsilon V}$ - element.
 SE fià-yưū people, fīa-yìvi world, M-J nivi people, fu-nivi world; T-Ch gwi ${ }^{3}-5-4-$ people, zu ${ }^{3} \mathrm{mi}^{3}$ gwi $5-3$ world, T-Co yuwi people, T-I ngwi people; A (tsham) nangue world. Plte syll: M, T *yo. *mi

 (p1) or katsęí (sg), kants? ęí (pl) skunk. Plte syll: M *fiu; C *r̃u/ *yu; T *tu.

 leg; A $\xi^{7}{ }^{7}(\mathrm{sg}), \mathrm{nk}{ }^{7} \mathrm{e}(\mathrm{pl})$. Plte syll: $\mathrm{M}, \mathrm{C} * \theta \mathrm{f} ; \mathrm{T}{ }^{* \mathrm{n}}$ da.

* ${ }_{\text {nin }} /$ 日it
 hail. No plte syll. M reduplicates. T adds a- or possibly some PT *ya- element.

98. (*43; C*13) M-SM, SE finiñi, M-J ñiñi, M-M ñii; C yçự; T zi ${ }^{3}$-tą ${ }^{3}-5 \geqslant /$ tą 7 ? ${ }^{3}$; A tsiam (sg), niam (pl) ear of corn. No plte syll. M dialects reduplicate, except M-M.
99. (*23) M-SM, J fiili, M-SE fīì; T dą ${ }^{3-4 / y a ̨ ~}{ }^{3-4-3 ;}$ A tshą salt (a possible C cognate: hì̀mà).
100. (*22; T *21) M-SM, J sà-fini, M-SE sànini; T dą $2 / \mathrm{y}_{\mathrm{Z}}{ }^{2}$ corn cob. The following C form may be cognate but seems difficult to relate: i-nī̀ roasting ear. No plte syll: M adds sa- with passage to CVCV in M-J.
**1
101. (*34) M-SM, SE ti? ${ }^{7}$ to suck, to suck blood, to practice
 T zdu ${ }^{3}$? waha $4-3$ witchcraft. Plte syll: M, C *tu; PT *ždu.
102. M-SM stíví, M-SE stívī, M-J sa-tivi to err, to destroy; C dā-từvī, i-dā-tùùvi, dā-tūùvi, nī-dā-tūūví to destroy. Plte syll: M, C *ti.
103. (*33/*23/*24) M-SM tivi, M-SE tivis, M-J tivi to play a
 Plte syll: M, C *tu. * ${ }^{7}$
 T-I n. T; A nhę nine.
*ta
104. (*22; T *21) M-SM, SE, J kātā, hítā, M-M kata, hita; C kāātā, hīitā, čīìtà, ndīītā; $T(g) a^{3} \mathrm{c}^{2-1}$, ga ${ }^{4} \mathrm{c}^{4}$; A -ta to sing. Plte syll: M *ka; C *ka, *xi, *ka, *n da (with vowel palatalization in the last two tenses); T \{*ka\}.
105. (*24; T *21) M-SM, SE stāà, M-J, M Šita; T da3ca²-1/ $\check{c ̌ a}^{3}$ tortilla (tone 3 of latter form is obscure). Plte syll: $\mathrm{M}, \mathrm{T} * \theta a$.
106. (*24; C, T *21) M-SM, SE yâtà, M-J と̂ate, back; C tááta tile; $T z_{i} 3 z_{a^{2}-1}$ back of, roof of, z. (we? e^{3}) roof of house; $z_{i}{ }^{3}$ $\bar{c}^{4} 4-5$ (ni ${ }^{4} \mathrm{tu}^{4-3}$) hunch-backed (tones 4.5 of latter form are obscure); A kantya? back. The C meaning may be by metonomy from such a phrase as 'roof of house.' Plte syll: M *ya, *xa; C *ta; T $\{*$ ta $\}$.
107. (*42; T *41) M-SM yüçā, M-SE yute fiver; T-Ch と̌al-2

108. M-SM hīcá, M-SE hite wide; C dā- Pkīita (po and pt), 1-
 Plte syll: $M * x i ; C *{ }^{*}{ }^{\text {i }}$; T has ga-.
109. (*22; C, T *21) M-SM yuna tree, $\mathrm{M}-\mathrm{SE}$ y $\overline{\mathrm{u} N u}$ tree, $\mathrm{M}-\mathrm{J}$
 $T z_{i}{ }^{3} \varepsilon_{y}^{2}-1 / x_{y}^{3}$ stick, wood, firewood, tree; A ts?am (sg), n? am (pl) stick, wood. Ult syll; $M *_{n-}, *_{\text {tn-; }} C *_{n-},{ }^{\prime} y-$; $T{ }^{*} t-$. Plte syll: $M * y s, * t s ; T\left\{*_{t}\right\}$.
110. (*24; T *21) M-SM hānù box, hinù oven, M-SE yẽNù box,
 $\delta_{y}{ }^{1-2}$ box, barbecue-pit, gu${ }^{3}$ xy $^{1-2}$ oven, kiln; A ntam? oven. Ult syll: (cf. set 110). Plte syll: M-SM, J *xa, *xi; M-SE *ya, *yi; $\mathrm{T} * \mathrm{xi}$ and gu- (ultimately $<\mathrm{Fk}^{\mathbf{m}} \mathrm{i} / \mathrm{*k}^{\mathbf{w}}$ a but probably a T fusion).
*ka
111. (*24/*42/*43; probably the latter in view of T loss of *? from *? k) C (kúúve) ? yäàkà to be slobbery, to slobber; T (g) a^{3} ka ${ }^{5}$ to leak. Plte sy11: C *ya; T $\{* k a\}$.
112. (*22) M-SM sākā, sákă to divide up, to distribute, sáká

 (to cut firewood); $T(g) a^{3} \mathrm{ka}^{3}$ to shave, $n a^{3} \mathrm{ka}^{3}$ to sharpen (something metallic), ($n \cdot e^{3-5}$) ka^{3} scissors. Plte syll: M has fused sa- to make, to do fultimately from PMx * θ a but probably a M fusion); C *ka (throughout one verb), *ka, *xa/*xi, *ka, *nda (with vowel palatalization in the last two or three tense forms); T $\left\{{ }^{*} \mathrm{ka}\right\}$.
113. (*33/*23; C *11) M-SM, SE, J kūkà; C káákà comb. Pite syll: M $\left\{* k^{\mathrm{F}} \mathrm{a}\right\}$; $\mathrm{C} * \mathrm{ka}$.
114. (*22/*34; C *21/*14) M-SM, SE ndikà; C tyáak banana. No plte syll. M has ${ }^{\text {n }}$ di- and C has tya- of uncertain origin.

 ?káká to operate (something). ndăàkà (po and pt), i-ndààkà (pr), nī-ndáká (pp) to get, to find, na-ndàakà (po and pt), $\overline{\mathrm{i}}-\mathrm{n}$ ā-ndàakà (pr) nī-na-ndāāká to find; $\mathrm{T}_{\mathrm{ni}}{ }^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to have, na ${ }^{3} \mathrm{ka}^{3-4} \mathrm{~h}^{3}$ to gather up, $z^{3} \mathrm{ka}^{3}-4_{\mathrm{h}}$ to take, get, fetch, $\mathrm{a}^{3} \mathrm{ni}^{3} \mathrm{ka}^{3}-4_{h}$ to revolve, na^{3} $\mathrm{ni}^{3}{ }^{3}{ }^{3}{ }^{3-4}$ h to turn about, to return; A ntkam to turn by itself, rkam to revolve. Plte syll: $M^{*} k^{\mathbf{m}} a$, *xa (with fused ${ }^{\mathbf{n}} \mathrm{d} V-+$ ya $>\mathrm{n}_{\mathrm{j}}$,

 ${ }^{n}$ dyaka; T na ${ }^{3}$ kaha ${ }^{4-3 ;}$ A nda kwe glue. (The A phrase which means 'sticky water' may involve a popular etymology.) Plte syll:

115. (*33/*23; C *11) M-SM, SE tăkà ; C ? ${ }^{\text {dáakà } ; ~ T ~ z i ~}{ }^{3}$ - ga^{5} ka^{5} ? ; A katkya (sg), kantkya (pl) nest. Plte syll: M *ta; $C * \theta a$; Tga-.
116. (*23) M-SM kākà, M-SE kākā quicklime; C kāākā quick-
 ci-ki-(?y.), ni-ki-(?y.) to burn something; $\mathrm{T} \mathrm{ga}^{3} \mathrm{ka}^{3}{ }^{3} \mathrm{~m}^{4}$ to get
 vowel palatalization in the last two or three tenses; with late palatalization of vowel in the abbreviated form of the verb); T $\{*$ ka $\}$.
117. (*23/*32/*34) M-SM tī-kàká, M-J ti-kaka; T ža ${ }^{3}{ }_{k a}{ }^{4-3}$ the crow. Possibly no plte syll: M has a reduplicated form with prior tī-; T has ža- (ultimately from some PMx *ta element.)
118. (*24; C *21) C yăák pine wood, 1-yááká? pine tree, inćáká? ladder, hāākā roof-pole, n? dááka, īn? dááká, n? dāàkà, nī-n? dáka sweep; T ka? ${ }^{3}$ pine wood, torch, candle, re ${ }^{3} k a$? a^{4-3} stick, $r e^{3} k e^{?} \mathrm{e}^{4-3}$ splinter, $n a^{3} \mathrm{ka}^{3-5}$? to sweep; A ska (sg), lka (pl) candle, kaa, tkaa, lkaa to sweep. Plte syll: C *ya, *xa, $*^{n}$ da (also with prior Cin; and with ${ }^{*^{n}}$ dV- + *ya $>$ nca accompanied by prior i-); $T *^{n}$ da and re- $\left\langle\mathrm{X}_{\mathrm{c}}{ }^{3}\right.$ wood (note ' r ' effect on vowel of the ultima in one form.)
119. M-SM tī-yáká, と́áká, M-SE Càká, M-J; M tyaka, C ${ }^{\text {? }}$ yāàkà; T žu ${ }^{3}$ kwaha ${ }^{3}$; A katska (sg), kalka (pl) fish. Plte syll: M *ya (with fusion of ť animal + ya $>\chi_{a}$ and tya); C *ya; T žuanimal. The fused elements in both M and T hark back ultimately to PMx *tu? animal, but the fusions seem to be post-PMx.

123．（＊22；C，T＊21）M－SM，SE kākā，híkā，M－J kaka，Zika， M－M kaka，گ̌ika to walk；C ku－ciìkà，i－cìikà，kẽ－cì̀kà，ni－cìi kä to walk，take a walk，kááka，híiká，čì̀ à，ndifká to walk；T（g）a ${ }^{3}$ $\overline{z e}^{2-1}$ ，ga ${ }^{4} \mathrm{c}^{4}{ }^{4}$ to walk，とehe ${ }^{3}$ path；A kaa to walk．Plte syll：M ＊ka，＊xi；C＊ki（throughout first verb），＊ka，＊xi，＊ki，＊n da（with vowel palatalization in the last tense）；T \｛＊ka ．

124．（＊32／＊42）M－SM，SE J kàā iron，bell；C kūù bell，kūū－tif ax；T ga ${ }^{3} \mathrm{ga}^{3}{ }^{3}$ metal，bell， ga^{3} ？hour of day，du ${ }^{3} \mathrm{kwa}^{2} \mathrm{ga}^{2} \mathrm{a}^{3}$ jail， $\mathrm{zu}^{3} \mathrm{kwa}^{2-1} \mathrm{ga}^{1-2}$ rattle－snake， $\mathrm{zi}^{3}-\mathrm{ka}^{3-4} \mathrm{~h}$ rattle of（rattle－ snake）．No plte syll．Treduplicates．

125．M－SM，SE－gà，M－J－ka；C kã；T ga ${ }^{5}$ ？more．
 ${ }^{\text {n }}$ daka，rika，$M-M^{n}$ daka to ask；C kāākā，hīikā，cī̀ikà，ndifiká to ask；$T(g) a^{3} \varepsilon_{i}^{2-1}$ to ask for；$A k_{z}, t k_{q}, l_{z q}, t z$ to ask a loan．A further T form offers a possible cognate in which the peculiar sit－ uation leading to the $* k>\varepsilon$ was not involved；but the vowel reflex
 $*_{x i}, *_{k a}{ }^{*^{2}}$ da（with vowel palatalization in the last two tense forms．）
＊${ }^{\text {w }}$ a

 vuiva．Plte syll：M＊la，$*^{\boldsymbol{n}}$ da；C＊ya；T＊la，＊日a．

128．（＊23）M－SM，SE yūkù bush，plant，shrub；C，küü－（dī－yáá ？nø̨ ${ }^{\text {？}}$ ）lanita de agua（algae）；T kwehe ${ }^{3}$ edible herbs；A tskwa（sg）， lkwa（pl）lanita de agua．No plte syll：M fuses yu－tree，wood．

129．（＊23；C＊11）M－SM hīkà，M－SE hīkã thorax；C ťikwª̀； thorax；T $\mathrm{zi}^{3}-\mathrm{ru}{ }^{4} \mathrm{kwa}^{4}$ rib．Possibly no plte syll．M has hi－ which could hark back to PMx＊xi－．C has tii～which could hark back to $\mathrm{PMx} *$ tu．Thas ru－$<\mathrm{Cu}^{3}{ }^{3} \mathrm{~h}$ oval－shaped．

130．（＊42；T＊41）M－SM，SE tìkā，M－J tika；C trikwà；T ži ${ }^{3}$ ${ }_{r i} 3_{k i}{ }^{1-2}$ grasshopper．Plte syll：$M, C{ }^{*}$ tu．T ri－$<民 V-$ fused element．（Note＇r＇effect on vowel of the ultima and on the fused zu^{3}－animal prior syllable．）
 spin．Proto monosyllabic verb of $* C V$ ？type is reshaped in C to ${ }^{?} \mathrm{CVV}$ and in T to $\mathrm{CV} ? \mathrm{~V}$ ．Ult syll： $\mathrm{C} * \mathrm{k}^{\mathrm{F}}-$ ，$* \mathrm{w}-,{ }^{*} \mathrm{k}-$ ，$*^{n} \mathrm{~d}$－（but with PC＊？waa $>$ ？aa in accordance with general elimination of
w－forms from C verb paradigms）．T＊w－，＊kw．
132．（＊24；T＊21）M－SM，SE yūkę；T du $^{3}{ }^{\text {kwą }}{ }^{1-2}$ row，furrow． Plte syll：M＊yu；T＊日u．

 （The A forms may be more immediately cognate with the T verb $w^{3}{ }^{3}$ to be in motion；but all these forms may belong to a PMx＊a／ ＊am paradigm）．Proto monosyllabic verb of CV？V form． M ＊k－， （ $\mathrm{x}-$ ）； $\mathrm{C} *^{*} \mathrm{k}^{\mathrm{w}}-,\left(\mathrm{x}-\right.$ ），＊k－，$*_{\mathrm{n}}$－（with substitution of $\mathrm{x}-$ for original ${ }^{*} \mathrm{w}$－in M and C ；and with vowel palatalization in C ）； T ＊w－，＊km．

134．（＊24；T＊21）M－SM kų̧̄̆
 $\mathrm{wą}^{2-1} / \mathrm{gaz}^{2-1}$ to dig．Proto monosyllabic verb of $\mathrm{CV}^{\text {？}}$ form． M
 $*_{\mathrm{w}}$ ）； $\mathrm{T} *_{\mathrm{W}}-{ }^{*} \mathrm{k}_{\mathrm{k}}$ ．
＊θ a
135．（＊34；C＊14）M－SM ti－sāà，M－SE sāā，M－J saa；C
 M adds ti^{2} in $\mathrm{M}-\mathrm{SM}$ ； C ＊ya； T ＊ta．

136．（＊33 ？；M＊11）M－SM ’isá，M－SE píbá，M－M ？isa；T $\mathrm{a}^{3} \mathrm{ta}^{3} \mathrm{~h}$ the day after tomorrow．Plte syll： M, T＊ya．

137．（＊34）M－SM（sę ？ē）kāsā，M－SE（sę ？モ̃）kàsá；C dāādā； T（ $\mathrm{da}^{3}{ }^{2} \mathrm{ni}^{2-1}$ ） $\mathrm{zi}^{3}{ }^{3} \mathrm{ga}^{3} \mathrm{ta}^{3-4} \mathrm{~h}$ son－in－law．Plte syll： M ＊ka；C re－ duplicates；T $\{*$ ka\}.

138．（＊22？／＊33？）M－SM ${ }^{n}$ däsā how；${ }^{\text {n }}$ dú－sáa and then，M－SE ${ }^{n}$ dēsè how；T da ${ }^{3} \mathrm{~h}$ thus，dą ${ }^{3} \mathrm{~h}$ a certain．Possibly no plte syll． M forms have ${ }^{\mathrm{n}}$ da－and ${ }^{2}$ du－．
＊xa
139．M－SM háa，M－SE hēé，M－J と̌aa new；C（nā－dīi－）háí to moult（of fowl）；T na ${ }^{5} \mathrm{ka}^{5-3}$ new．No plte syll．T adds na－．
 క̌ąą；C ndā̄ku？；T da ${ }^{3}{ }_{k a ̨}{ }^{3}{ }^{3} 4_{h} / \mathrm{ką}{ }^{3} \mathrm{~h}$ ；A tskam（sg），lkam（pl）san－
 ＊θ a．

141．（＊24；T＊21）M－SM hāpà，M－SE hē？ $k a ̈ ? \bar{a} ; T z_{i}{ }^{3}{ }_{j}{ }^{2}$ foot（the T form has been displaced in many
contexts by a newer form $\mathrm{da}^{3} \mathrm{ko}^{2-1}$ foot, of obscure origin). Monosyllabic root of *CV?V type (possibly verbal in origin; cf. 133). M *x-; C *k-; T *x-
*x $^{\mathbf{w}}$ a
142. (*23; M, C *11) M-SM yákª́, M-SE yàk"á; C ? $k w \in i$ crooked; $\mathrm{T} \mathrm{du}{ }^{3} \mathrm{gwa}^{3-4}$? to turn downwards, to twist downwards, du 3 gwą $^{3}{ }^{\text {? }}{ }^{\text {ąhą }}{ }^{4-3}$ a forked stick (probably a PT nasalization rather than PMx *-m), la ${ }^{3} \mathrm{kwą}^{3}$ lame (by back-formation from the former, cf. z^{3} gwe 3 ? ehe ${ }^{4-3}$ mattery eyes $<\mathrm{kwe}^{3} \mathrm{~h}$ pus). The diphthongized C reflex raises a phonological problem. Plte syll: M *ya; T * $\theta \mathrm{a}$, *la.
143. (*33/*23; T *11) M-SM, SE, J kū-vāà to make an uproar, $\mathrm{M}-\mathrm{SM}, \mathrm{SE}$ vằ noisy; C (kūūvê) váa to make noise, c_{1}^{1-}
 gwa ${ }^{2} h$ to scream, to bellow, to cackle. T du ${ }^{3}$ gwe? e^{3} to weep may possibly fit in here as well. Plte syll: M *kwa; C *xa (> ?a by metathesis of *? of medial ${ }^{*} ?_{\mathrm{k}}$ cluster). *kwa, *xa, *ka, ${ }^{\boldsymbol{n}}$ da (with analogical reshaping of $* k a>$ とa $^{\prime}$); $T\{* k a\}$.
${ }^{* n}$ da
144. (*34) M-SM ${ }^{n}$ dū̃ā water, to dissolve, $M-S E{ }^{n}$ dūtē, $M-$

 ne ${ }^{3-4}$ melt, $T-C o n \cdot a$ water; A nda liquid, water. Plte syll: $\mathrm{M}, \mathrm{C}, \mathrm{T} *^{\mathrm{A}} \mathrm{do} ; \mathrm{T}\left\{\mathrm{*}_{\mathrm{k}} \mathrm{J}\right\}$.

 $\mathrm{n} \cdot \mathrm{e}^{3}$ to be (somewhereh reside, sit. No plte syll: M has kaand ku- (from *ka and *k"a auxiliary verb). C has fused auxiliary verb, giving forms ? kwii-, ?ii-, $\boldsymbol{` P}_{\text {ii- }}$ and ? nii- in one verb but preserves evidence of old present ${ }^{*} \mathrm{w}-\mathrm{in}$ the other verb); $\mathrm{T}\left\{{ }^{*} \mathrm{ka}\right\}$.

 break; T-Ch (g) a ${ }^{3}$? ne ${ }^{3}-5$?, T-I ga?ni? to cut; A ? nę to dig (in wood, earth, rock). Ult syll: C $*_{k}{ }^{*}-, *_{x}-, *_{k-}, *_{n}-$. Plte syll: $\mathrm{M} * \mathrm{ka}$, *xa; $\mathrm{T}\{* \mathrm{ka}\}$. Probably either the M or C treatment (inflection of ult syll vs addition of plte) is PMx and the other is a development in the particular language.
147. M-SM, SE stáā, M-J క̌ita to pull; C kū-n? dāà, ī-n? dāà, $\mathrm{c}_{\mathrm{i}-\mathrm{n}}$? dāà $\mathrm{ni}-\mathrm{n}$? dā to pull, to guide. Cf. M-SM skáa, M-SE skáá to stretch (something); C kuiu, hî̀, čî̀, ndíi to stretch oneself; $T \mathrm{nu}^{3} \mathrm{kwa}^{2}-3$ to stretch (something), $\mathrm{n} \cdot \mathrm{I}^{3} \mathrm{~h} \mathrm{nu}{ }^{2}$ kwa ${ }^{3}$ sling-
 usual vowel palatalization); $T{ }^{*} \mathrm{k}^{\mathrm{w}} \ldots$. Plte syll: $\mathrm{M} * \boldsymbol{*} \mathrm{a}$; $\mathrm{T} \boldsymbol{*}^{\mathrm{n}}$ da.
 ${ }^{n}$ daa (yavi) (second constituent means century-plant); C ndáa; T $\mathrm{da}^{3} \mathrm{~F} / \mathrm{ya}{ }^{7} \mathrm{a}^{3}$ fiber of the century-plant. Ult syll: $\mathrm{M}, \mathrm{C} *^{\mathrm{a}}$ da-; T *y-, ${ }^{\mathbf{n}} \mathrm{d}$-.
149. (*34) M-SM, SE, J ${ }^{n}$ dā ${ }^{\text {a }}$ hand; ${ }^{*} C$ kü-tā? ${ }^{\text {a }}$ to sieze, tā? ${ }^{2}$ hand; $T\left(\mathrm{gi}^{3}\right) \mathrm{da}^{3}$? a^{3-4} to sieze, $r u^{3} \mathrm{da}^{2} \mathrm{a}^{4-3}$ mano de metate (stone rolling pin used in grinding corn), ra ${ }^{3}{ }^{n} \mathrm{a}^{3}$ hand. This set and the preceding may be related in that $*^{n}$ da? a may be a PMx expansion of ${ }^{n}$ da? ; $M^{n} d \bar{a}{ }^{n}>{ }^{n} d \overline{d a}$ in some morpheme sequences. Ult syll: $M^{*}{ }^{\boldsymbol{n}} \mathrm{d}-$; $C * t-; ~ T *^{n} \mathrm{~d}-, \mathrm{T}$ has $\mathrm{r}-$, and $\mathrm{ru}^{3}-$ both $<\mathrm{K}_{\mathrm{H}}{ }^{3} \mathrm{~h}$ ovalmshaped.
$* \operatorname{tna} /{ }^{\mathrm{n}}$ da (latter in C)

 ${ }^{2} \mathrm{y}^{3-4}$ h to bother, to pester (g) $\mathrm{a}^{3} \mathrm{ra}^{3-47} \mathrm{ru}^{3} \mathrm{wa}^{2-3}$ to be pleased with. Ult syll: M *tn- (with s-from fused sa- to make $<$ PMx *日a); C *nd-; T *tn-(with fused d- element, possibly <*日a also).
 ${ }^{2} \mathrm{e}$ (pp) to chew, to dance; $\mathrm{T}\left(\mathrm{gi}^{3}\right) \mathrm{rz}^{2}{ }^{2} z^{5} \mathrm{~h}$ to dance. An alternative etymology would be to list the above C cognate with M-SM $\zeta^{n}{ }^{n} ? \bar{i}$ pulverize, grind-in which case the T form would not be cognate because of its vowel reflex. Ult syll: $C,{ }^{* n} d ; T{ }^{*}$ nn.
*nga
 $\check{z}^{5}{ }^{5}$ nga ${ }^{5}$? truly. Probably no plte syll. M has ${ }^{\text {n }}$ di-; T has ža-.
153. (*43/*24/*42) M-SM kê-há? ́a, M-SE kē-h 6 . M-J ke-

${ }^{* n} g^{\prime \prime}$ a
154. (*43; C, T *13) M-SM ${ }^{n}$ dāvā, ${ }^{n}$ dávā, to jump, ${ }^{n}$ dūā
arrow，dart，M－SE，J^{n} dăvā，${ }^{n}$ dávā to jump，${ }^{n} d \bar{u} v a ̄$ arrow，dart； C kávà，hăà，kāà，ndáa to jump；i－yāàvà arrow，dart；T da ${ }^{3}$ ngwe ${ }^{3-4} \mathrm{~h}$ to spring away，to jump away，（ g$) \mathrm{w} \cdot \mathrm{e}^{2} \mathrm{~h}$ to jump．Ult
 $*^{\mathrm{n}} \mathrm{da},{ }^{{ }^{\mathrm{n}} \mathrm{do}}{ }^{\text {；}} \mathrm{C} \cdot{ }^{* k a}$ ，＊ya（with prior C i－）； T ＊日a．

 retains PMx and PM final＊－m on addition of－i（by analogy with ${ }^{?}$ uvi two and $?$ uni three）．
 Cf．M－SM（nāná）fiúù and năná $\not \subset a{ }^{?}$ nū grandmother－with the first constituent consisting of a Nahuatl or Mayan loan corresponding to a similar loan－word in T viz．na ${ }^{3}$ na $^{3} h$ elderly lady，honorable lady．The second constituent of the first M－SM phrase，i．e．，fiud may be an fi－initial variant of the root here presented．The sec－ ond M－SM＇phrase－which has spread through the other M dialects －has as second constituent a form listed under 276.
＊ma
 smoke；$T y^{3}{ }^{3} o^{5-3}$ the gummy deposit made by smoke from a wood fire；A ntiam smoke．Plte syll：M, C, T＊yam．

158．（＊33）M－SM hà－níとã？mà，M－SE（hēe）nī－とfmā some－
 sii？má to flatten；$T\left(\mathrm{gi}^{3}\right) \mathrm{na}^{3}$ ？mą ${ }^{3}$ to cave in（of earth in a clay pit）．No plte syll．M has fusion of some $t V$－element with＊ya $>\mathrm{r}_{\mathrm{a}}$ or t_{i} ．Origin of C sii－is obscure．T adds na－．

159．（＊22？；C，T＊21）M－SM，SE，J，M ศ̄̄̄？
 C＊ham／＊yam；T＊өam，＊niam／＊yam．

 A tma talk over，${ }^{9} \mathrm{mz}$ to teach．Plte syll：M＊ka；C＊k＂a，＊xa， ＊ka，and＊ka with prior＊nim－．The nasalization in the penulti－ mate syllables of the various M and C forms is resultant on re－ duction to CVPV pattern at one or more spots in the verb para－ digm of each language．

 couple of（only in the phrase $a^{3}{ }^{n} n^{2} a^{4} \mathrm{ma}^{3-4}{ }^{3} \quad \mathrm{c}^{3}$ a couple
more tortillas), nu ${ }^{5}$ gwą 5 ? together with ($*_{\text {numą }}{ }^{n}>*_{\text {nuwz̨ }}{ }^{7}>$
 friend. Plte syll: M *tna; C *na; T *ya (with loss of *y in first T form, and with spread of nasalization to plte syll on reduction to disyllabic CV?V in the third form. The second T form is probably by fusion of some PT *nu- element.
162. (*33; M *11) M-SM, SE, J máa that one; C mą̧ád oneself; T mą 3 ? z^{3} oneself. T has added a syllable after the final ${ }^{*}-$? *na
163. (*23) M-SM (kükā) nđù, to be ashamed, (tükā) nūu shame, M-SE kū-kānū, kúi-kānū to be ashamed, M-J (koo tuka) nuu to be ashamed; C (kūuvè kwì-) náa to be ashamed; $T\left(\mathrm{zi}^{3}-\right.$) na ${ }^{4}$ aha ${ }^{4-3}$ shame of.
164. M-SM nāā (?iní), M-SE naz (-ni), M-J naa (${ }^{2} \mathrm{ini}$) to forget, $M-S M, S E, J$ nāā to get lost; C (kūūvē) náa to forget.
165. (*33; C *11) M-SM ?īnà, tî- ?īnà, M-SE, J ${ }^{\text {innā dog; }}$
 *yu and ya-; T *tu.
166. (*23) M-SM, SE, J nüù face, towards, in front of, place where, time when; C nā-n̨̄̄ă in front of, $k^{\text {wa }} \mathfrak{a}$-vēnă \bar{a} place before, $\mathrm{k}^{\mathrm{w}} \overline{\mathrm{z}} \mathrm{a}$ place, time the latter, if really cognate, possibly represents a fusion of this root with some preceding element); T yą ${ }^{3-4} /$ $\mathrm{ri}^{3} \mathrm{z}^{3-4}$ face of, surface of, in front of, place where, time when, (g) $a^{3}{ }_{d i}{ }^{3} z^{3-4}$ to precede; A nam (sg), and ndse (pl) face, edge. No plte syll. Various fused elements in C and T . Tri- $<\mathrm{Cu}^{3} \mathrm{~h}$ oval-shaped; T di- with prior a-.
167. (*22?) M-SM, SE, M fūnū, M-J yunu; C yāānà̀; $\mathrm{Tn}^{\bullet} \mathrm{z}^{3} \mathrm{~h}$ net-work bag (Sp. red), $z_{i}{ }^{3} n a ̨{ }^{2} h$ crop (of a bird). Plte syll: M *ñam; C*fia/*ya; T \{*ta\}.
168. (*32; M *31) M-SM nū-mà ?ná, M-SE mà ?ná, M-J fiuma ?na; T n'ehe ${ }^{3}$ drowsiness, sleep. Plte syll: M has some sort of ma- penultimate element that is presumably a post-PMx fusion in that there is no clear evidence for PMx prevocalic ${ }^{m}$ min plte syll. T strengthening of $n>n$, indicates however, loss of some plte element.
*fia (*గi-, * θ - in most sets)

blackberries. Ult syll: M *ñ-; $C *_{\tilde{n}-} /{ }^{*} y-$; $T * \theta-$. Plte syll: M *ña; T *fa/*ya.
170. (*33/*23/*24; C *11, T *21) M-SM, J గüù, M-SE naū;
 possessed: the unpossessed form, $x^{3}{ }^{3} \mathrm{~m}_{\mathrm{z}}{ }^{\text {? }} z^{4-3}$ village, is apparently from a root for which I at present have no etymology. No plte syll. Thas $\mathrm{zi}^{3}{ }^{3}$ - (which ultimately harks back to some PMx *xi- or *tV- element).
171. (*34; C*14) M-SM, SE, J, M Piñū; C yą̧á T tąhą $^{3} A$ tsiam, niam thorn. Ult syll: M *ini-; $C * n-/ * y-$; $T * \theta-$. No plte syll. M adds Pi_{i} element.
172. (*23; C *11) M-SM, SE, J n̄ü? ${ }^{7} y \frac{1}{2}$? $\underset{z}{2}$ to burn (something) (for the first constituent see l18),

 *日. . No plte syll. T adds ni^{3} - with prior gu^{3}-. Notice the parallelism of C and T forms with ${ }^{7} \mathrm{y}-$.
 wa ${ }^{3}$ tą 4 ? six more; A fiam six. ' Ult syll: M *in-; C *x-; T * θ. . Plte syll: M *wa/*ya; T *wa, *ya.
 A tsam? foam, suds. Ult syll: $M *$ ñ-; $T * \theta-$. Plte syll: M, T *ya.
175. (*22) M-SM, SE Kūñū honey-bee; T žu ${ }^{3}$ tą ${ }^{3}$ honey-bee, honey-comb; A katsiam?, kaniam? bee. Ult syll: M *ñ-; T * θ-. Probably no plte syll. M reduplicates. T adds žu ${ }^{3}$ - animal.
176. (*23; C, T *11) M-SM kwị衣, hif?

 $*_{k}{ }^{\mathbf{w}}$, *xi (the former may be an analogical development in M-SM); M-J *Tda; C *ya, *yam (may be PC stem reduplications); $T{ }^{\text {* }}$ xi (with prior $\mathrm{gi}^{3}-$), *ta.
 respected; $T\left(\mathrm{gi}^{3}\right) \mathrm{na}^{3} \mathrm{yz}^{3}$? $\mathrm{z}^{3-4} \mathrm{~h}$ to respect. (cf. 193, 173) Plte syll: M-SM $* x i, \mathrm{M}-\mathrm{SE} * \mathrm{yi}^{2} ; \mathrm{T} \mathrm{na}^{3}$ - with prior gi^{3}.
178. (*42; C, T *41) M-SM, SE, J kùnut; C yưaità; T n•e ${ }^{3-5-4}$ meat. Ult syll: M *nin- C *t; $T{ }^{*}$ n-. Plte syll: M *ku; C *yu; T loss of plte indicated by strengthening of $n>n \cdot$.
*wa
179. (24; M *21) M-SM yựà, M-SE, M yū?và; C ?īi?vā; TCh ? we? ${ }^{3}$, T-Co yu? wi?, T-I yu? we? ice, frost. Plte syll: M, C, T *yu.
180. (*23; C *11) M-SM yū?à , M-SE, M yū? và; C つifvà; TCh du ${ }^{3}$? we ${ }^{3-4}$ h/? wehe ${ }^{3}$, T-Co yu? wih, T-I yu? weh thread. Plte M, C, T *yu; T * θ.

 tā̃ ?và to send things, da-ha?a? a gift; $T(g) a^{3 ?} w^{3-5}$? to give,
 *ka, *na (with merger of po and pt), *ta, $*_{\text {xa }}$ with prior da-; T \{*ka\}.
182. (*32) M-SM, SE $\mathrm{k}^{\text {¹a }}$? $\mathrm{a}, \mathrm{M}, \mathrm{J} \mathrm{ku}$? va brother of a woman, sister of a man; C kāa? và brother; T zu ${ }^{3} \mathrm{gwe}^{3-4} \mathrm{~h}$ brother of a woman, sister of a man. Plte syll: $M, C * k^{w} a ; T$ adds za ${ }^{3}{ }^{3}$.
183. (*22/*33) M-SM tī-kà ?vá, M-J ti-kava plum; T ru ${ }^{3} \mathrm{gwi}^{3}$ $\mathrm{P}_{\mathrm{i}}{ }^{3}$ peach. A possible C cognate does not fit in here unless there
 peach. Possibly no plte syll. M adds ka-, with prior ti- thing. T has $r u^{3}-<\mathrm{Xu}^{3} \mathrm{~h}$ oval-shaped.
184. (*42; T *41) M-SM, SE, J và ${ }^{\text {a }}$; $T \mathrm{we}^{3} \mathrm{r}_{\mathrm{e}}{ }^{2}$ good, fine.
185. (*24) M-SM tīi-k"âá, M-SE tī-kùvā; C ? yává; T ža ${ }^{3}$ wi ${ }^{5-3}$ butterfly. $P M * k^{\mathbf{w}}$ ava became $k^{\text {w }}$ aa or kuva by reduction of sequence of labials; T vowel is a bit difficult and may be a borrowing from T-Co. Plte syll: M * $\mathrm{k}^{\mathrm{*}}$ a; C *ya; T *ta.
186. C kā-vā ?à (po and pt), hā-vā?à (pr), nā-vā ${ }^{\text {à }}$ (pp); T
 *ka, *na; T *na (with prior na ${ }^{3}$-).
187. (*22; T *21) M-SM, SE tāvā to draw out, to disrobe, M-SM tāvā ?īní, M-SE tāvā-nì to be courageous, to dare; $T \mathrm{w} \cdot \mathrm{e}^{3}$ fierce, formidable, $\mathrm{za}^{3} \mathrm{wi}^{2}$ to lick (with the tongue). Plte syll: $\mathrm{M} * \mathrm{ta}$; T *ta in one form, with loss of plte indicated in other form by strengthening of $w>w^{\cdot}$.
188. M-SM ${ }^{2}$ ãñá, M-SE ?ánva heart, M-J (̌iki) yuva stomach; C či-daãvá heart; $\mathrm{Tru}^{3} \mathrm{wa}^{2-3}$ insides of. (The M-SM development is somewhat obscure.)
*ya

 gin. $T y / y^{*}$ variation probably indicates that the strengthening of $y>y \cdot$ is a late analogical development in some idiolects, rather than a reflex of a lost PMx plte syll.
190. (*22?) M~SM, SE, M yā? $\mathrm{ya}^{3}{ }^{3} \mathrm{a}^{3} \mathrm{~h}$ chile pepper. No plte syll. C adds $i-$.
191. (*332) M-SM, SE, M yầ; C i-yétyè̀i; T ya ${ }^{3}$ h; A tshaa? ashes. The C diphthongization is probably resultant on PC sequence *ey in the reduplicated root and is essentially a development in the first syllable with subsequent spread to the second syllable. No plte syll. C reduplicates and adds $1-$.
192. (*33/*23; T *11) M-SM yāà, M-SE yä̀ă music; T yaz ${ }^{2}$? ${ }^{2}$ q̨ą $^{5-4}$ musical instrument; A sam music, song, dance. The T verb (g) $a^{37 \mathrm{ya}^{2} \mathrm{~h}}$ blow may possibly fit in here.
 +yà, M-SE yâà, M-J ya; C (tīilo) īhę ${ }^{7}$ ą stone gods (pre-Columbian remains); T y ${\underset{c}{3}}^{3}$? qhaza $^{4-3}$ saint, god, sacred personage, gi ${ }^{3}$ ${ }^{\text {? yąhą }}{ }^{4-3}$ holy day, festival; At?o (sg), nt?s (pl) god, saint. C ? $\overline{\text { iryà }}$ people, ? Ult syll: $\mathrm{M}, \mathrm{T} * \mathrm{y} *$; $\mathrm{C} * \mathrm{x}$ - (with addition of $\mathrm{i}-$). No plte syll. MSM has added some Pi_{i} element. T has $\mathrm{gi}^{3}{ }^{\mathbf{3}} \mathrm{K}_{\mathrm{gwi}}{ }^{3}$ day. *ts
194. (*33; M *11) M-SM. Čtú full, sčitú to fill, M-SE čitu full, skútú to fill, M-J Citu full, sa-kutu to fill; C diitū full, dā-
 full, (g) a ${ }^{3} \mathrm{C}_{\mathrm{a}}{ }^{3}$ to fill. Plte syll: PM has fusion of ${ }^{\mathrm{d}} \mathrm{dV}+\mathrm{ya}>\mathrm{c}_{\mathrm{i}}$;
 'stative' prefix.
195. (*43) M-SM, SE, J tō̄; T nga ${ }^{3} \mathrm{Ca}^{5-3}$ a span (measure). No plte syll. Thas some nga ${ }^{3}$ - element.
196. (*22; M *21) M-SM kútu, M-SE kütú safe, secure (tones of M-SE cognate are obscure); $T(g) a^{3} \mathrm{ca}^{3}\left(\mathrm{za}^{5} \overline{\text { ? }}\right), \mathrm{na}^{3 \mathrm{ca}^{3}\left(\mathrm{za}^{5}\right.}$?)
to put away securely (may be same root as 194).
197. M-SM, SE kiti to boil. k. (ciii) to have a stomach ache; C (kā? a) kứtu to warm, (kūūvē) kūūtù? to get warm. T (g) u ${ }^{3}$ ya ${ }^{3-4} \mathrm{~h}$ to boil, (g) u^{3} ? ya^{3-5} ? ($\mathrm{ri}^{3} \mathrm{ki}^{3}$) to have a stomach ache. Ult syll: $\mathrm{M}, \mathrm{C} * \mathrm{t}-$; $\mathrm{T} * \mathrm{y}$. Plte syll: $\mathrm{M}, \mathrm{C}, \mathrm{T}$ *ku. This is presumably a root inflected according to paradigm A, i.e., a PMx noun, but with PMx verbal derivatives derived by addition of $* k u-$. *ko
198. (*34) M-SM, SE yōkō; T ka ${ }^{3-4-3}$ ear (of grain). Plte syll: M *yV-.

200. (*22/*33) M-SM ti-y $\delta \mathrm{k} \delta$, と $\delta \mathrm{k} \delta, \mathrm{M}-\mathrm{SE}$ ह $\delta \mathrm{k} \delta, \mathrm{M}-\mathrm{J}$ tyoko
 fusion of $\mathrm{ti}+{ }^{*} \mathrm{yV}>$ co and tyo; $\mathrm{C} * \mathrm{yu}$, *ya; T *tu/*ta.
201. (*24, *23; C, T *21) M-SM, SE, J kṑ snake; M-J ku(yoti) lizard; C kúá snake; T žu ${ }^{3}$ kwa ${ }^{1-2}$ snake, ži ${ }^{3}{ }^{\text {ra }}{ }^{3}{ }^{\text {kaha }}{ }^{4-3}$ lizard; A katsko (sg), kalko (pl) lizard. No plte syll. T adds zu ${ }^{3}$ animal, and ra- ($\left\langle X V\right.$ - element) with prior $z_{i}{ }^{3}\left(<z_{u}{ }^{3}\right.$ animal with regressive ' r ' effect on the vowel.
202. M-SM, SE, J súkú̆ tall; T そ̌a ${ }^{5} \mathrm{ka}^{5-3}$ tall; A tko long. Plte syll: $M * \theta o$; T *to lapparent overlap of ' θ ' and ' t ' declensions.)
203. M-SM, SE sükì neck; T gą ${ }^{3}$ windpipe (usually in the
 weakened the ${ }^{*} k$ to g in position of relatively less stress in such a phrase as that quoted, with subsequent leveling to g everywhere. Plte syll: $M * \theta \rho$ for vowel of some other quality regressively assimilated); Tzi^{3} - is an analogical extension of zi^{3} - possessed marker.

* ${ }^{0}$

204. (*23) M-SM nāsù, M-SE nā-sìu none of, it isn't so (answer to question.) $\mathrm{T} \mathrm{ni}^{3}{ }^{3} \mathrm{a}^{4} \mathrm{~h}$ nothing of. Possibly no plte syll. M adds na-; T adds ni ${ }^{3}$-.
205. (*22; T *21) M-SM, J, M kōsō, yósō, M-SE kōsō, yósб; $T\left(\mathrm{gi}^{3}\right) \mathrm{ta}^{2-1} / \mathrm{ta}^{5} \mathrm{~h}$ to mount, to be on top of; A sho high mountain,

yo by analogy with kos δ); T *ki.
 kōnsō, $M-J^{\mathbf{n}}$ diso, $\mathrm{k}^{\mathbf{w}}$ iso, $\mathrm{M}-\mathrm{M}^{\mathbf{n}}$ diso, viso to take, to carry away; T (g) $a^{3} \mathrm{ta}^{3}$ to carry. Plte syll: $\mathrm{M} *^{\mathrm{n}} \mathrm{do},{ }^{*} \mathrm{k}^{\boldsymbol{w}} \mathrm{o}$, *wo (with

206. (*23; $M * 11) ~ M-S M{ }^{n}$ dūsù tone, voice, $\mathcal{C f s} \delta$ to reply, to add, $M-S E{ }^{\text {a }}$ dūsū tone, voice, $\boldsymbol{\text { risis, }}$ s sठ to reply, to add, M J^{J} dusu tone, voice; C ndūado word; $\mathrm{T}\left(\mathrm{ga}^{3}\right) \mathrm{ta}^{3-4}$ h to say. Plte

207. (*32; T *12) M-SM, SE k"ìsō, hísō, M-J Ciso to puncture; $T z_{a}^{3}{ }^{2}{ }^{2}{ }_{h}$ to sting (of a scorpion, wasp, bee). Plte syll: $\mathrm{M}^{*} \mathrm{k}^{\mathbf{w}} 0$, *xo; T *to.
208. (*33?; C *11) M-SM, J, M ?isù, M-SE Pisū deer; C ? yríúdù? horse; T žu ${ }^{3}$ ta $^{3}{ }^{3}$ deer; A kaso (sg), katso (pl) mule, k . hndai deer. (T classificatory noun dę ${ }^{2}$ animal of may be from this root also; if so, the passage to d may be the sort of weakening in syllables with lessened stress that has been illustrated for *k to g in T). Plte syll: M, C *yu; T *tu.
209. (*23; T *11) M-SM kāsù, hāsư, M-SE kāsī, hésin, M-J
 $\mathrm{M}-\mathrm{J}^{\mathrm{n}}$ dasi closed; $\mathrm{T} \mathrm{du}{ }^{3} \mathrm{ta}^{2}{ }_{\mathrm{h}}$ to cover over something (with a mat, blanket, etc.) Plite syll: $M * k a, *_{x a}, *^{\mathrm{n}} \mathrm{da} ; \mathrm{T} * \theta \mathrm{u} / *^{\mathrm{a}} \mathrm{du}$.
210. M yoso plain (in proper names of M origin, e.g. Yosonduchi, Ituñoso), from M of San Mateo Zozala comes the form yodб (cf. place name Magdalena Yodocono). C yúúdù? plain; T da ${ }^{3}$ - plain, (classificatory noun in weakly stressed position; cf. deq^{2} in 206). Cf. here M and T names of a village near Ch.: Yosonduchi (M), da ${ }^{3}-\mathrm{zdu}^{3} \mathrm{ne}^{3}$ (T). Plte syll: M, C *yo. ${ }^{* n}$ do
211. (*32; T *12) M-SM, SE, J ${ }^{a}$ d 8 o to stay, to remain; C kā-ndūu, ìnd., $x_{i}-n d .$, nitnd. to leave (something); $T(g) u^{3}$ na^{2-3}, (g) $\mathrm{u}^{3} \mathrm{na}^{2} \mathrm{~h}$ to remain, $\mathrm{du}^{3} \mathrm{na}^{2-3}$, $\mathrm{du}^{3} \mathrm{na}^{2} \mathrm{~h}$ to leave (something). No plte syll. T adds gu^{3} - and du^{3}..
*" g o
212. (*42; M, T *41) M-SM hàkú (supplanted by Sp. corral in the other M dialects); T ri $^{3}{ }^{3}$ na 2 fence. Possibly no plte syll.

 とaku，M－M xaku；$T(g) a^{3}$ ？nga ${ }^{3-5}$ ？；A nko to laugh．Plte syll：M ＊kwa，＊xa；T $\{* k a / * x a\}$ ．

215．（＊34）M－SM，SE，J，M kakī，T（g） a^{3} ？nga ${ }^{3-4}$ to be born； A nkui to give birth to．Plte syll：M, T＊ka．

216．C ndūūkū；T nga ${ }^{4}$ with， da 3 ？nga ${ }^{4}$ and then．Plte syll： C＊n ${ }^{\text {n }} \mathrm{do} ; \mathrm{T}^{*} \boldsymbol{*} 0$ 。

217．（＊42）M－SM，SE kikū，kíku，M－J kwiku to sew；C kā？mą （ w^{w} äaū ）to swear，to testify； $\mathrm{T} \mathrm{da}^{3}$ ？nga？ a^{4-3} scar，proof．Plte

 （n．）to prepare little by little；$T \mathrm{na}^{3}{ }^{3} \mathrm{nga}^{2} \mathrm{~h} / \mathrm{na}^{2}{ }^{2} \mathrm{nga}{ }^{5} \mathrm{~h}$ to whittle， （g）$a^{37}{ }^{n g} a^{2} h /(g) a^{27} n g a^{5} h$ to scrape．Plte syll：C＊ko，＊xi，＊kr， $*^{\mathbf{n}}$ do（with vowel palatalization in the last two forms）；$T *^{* n} \mathrm{do}$ ， \｛＊ko \}.

219．（＊33）M－SM，SE，J vikd cloud；T nga ${ }^{3}$ cloud，ni ${ }^{5}$ nga ${ }^{5-3}$ damp，moist；T ntska cloudy，drizzly．Plte syll：M＊wi；$T *^{n}$ di． $*^{n}{ }^{n}{ }^{w}$ כ

220．（＊23；C，T＊11）MmSM，SE，J kāvà，kávà to twist；C kā－ nkứa，i－nkúa，厄i－nkừ，nī－nkúG to grind；$T \operatorname{du}^{3} \mathrm{gwa}^{2} \mathrm{~h}$ to twist， $\mathrm{ga}^{2} \mathrm{~h} / \mathrm{wa}^{2} \mathrm{~h}$ to grind．Plte syll：M $\mathrm{M}_{\mathrm{k}} \mathrm{ka}$ ；C ka－，i－；とi－，ni is pro－ bably a preposed C auxiliary verb；$T * \theta a$ ．
＊ \boldsymbol{n}
 yz^{3-47} teeth．Ult syll： $\mathrm{M}^{*} \mathrm{n}_{\mathrm{n}}$ ，＊tn－； C, T＊fr－，＊y－．No plte syll．C adds diiz of obscure origin．

222．（＊22？；C，T＊21？）M－SM，SE kūnū，kúnū，to weave， kūnū，hind to run，$M-J$ kunu，Cinu，$M-M$ kunu，צ̌inu to run，to weave；C káanu，heenð，ceend，neend to rún，tīinठ（yüùdठ）blan－ ket，tiino（mę̨̨ ）underwear；$T(g) u^{3} n \not \varepsilon^{2} h$ to run，（g）$a^{3} n e^{2} h$ to weave，$\check{z}_{i}{ }^{3}{ }_{n a ̨}^{1-2}$ loom；A nam run，hnam looms．Plte syll：M ${ }^{*}{ }^{*}{ }^{\mathbf{w}} \mathrm{a}$ ；＊xi；C＊ka，＊xi，＊ka，$*^{n}$ da（with vowel palatalization in the

223．（＊34；C＊14）M－SM，SE ？inī，M－J，M ̧anu；C yứņ̧； I n＂${ }^{\text {ahą̨ }}{ }^{3}$ ；A hnam（pl）cigarette（probably original meaning， tobacco）．T ko ${ }^{3} h n \varphi^{3}$ tobacco may be a borrowing from M ；this would account for both the vowel reflex in T and the loss of $* ?$ ． Plte syll：M－SM，SE＊yu；M－J，M＊xa；C＊yu；T strengthening
of $n>n$. indicates loss of some plte syll.
*
224. (*32/*34; C*12/*14)'M-SM tī-fiúu (Bini), M-J tiñu (Gini) stars (the first constituent means hens, the second means sky); C ? ${ }^{[G y} y$ stars; T ngu ${ }^{3} y^{4-3}$ road-runner. Probably no plte syll. M had added ti animal; C has "iic of obscure origin; T has nguof obscure origin. If these forms are traceable to PMx penultimate, then: $M *$ tu; C *yum; $T{ }^{* 1}$ gu.
225. (*22/*24; T *21) M-SM, J k"áfī̃, M-SE kweñū; C Piìyd; $T \chi^{3} w^{2}$ squirrel the T medial w would be a regular development in ua sequence, but it is difficult to explain the loss of medial *y). Possibly no plte syll. M has $\mathbf{k}^{w a-; ~ C ~ h a s ~ ? ~}{ }_{i i}$-; T has žu ${ }^{3}$ animal. If these forms are traceable to $P \mathbf{M x}$ penultimate, then; M*k"a; C *yu; T *tu.
*W \mathbf{w}
226. (*22) M-SM, SE, J y-l ? du^{3} ? wa^{3} mouth; A ndo (sg), ntue (pl). Plte syll: M *yi; $\mathrm{C} * \theta \mathrm{i}$; T ${ }^{\boldsymbol{n}} \mathrm{di}$.

 guished, du ${ }^{3} a^{3}$? a^{3-4} to extinguish (T drops *w of medial cluster under obscure conditions here). Plte syll: $M *^{*^{n}} d a ; C *^{n} d \supset$; T*na/*ns.
228. M-SM, SE ($\left.{ }^{n} d a ̄-\right)$ va? \bar{a} the right hand (for the ${ }^{n} d a \overline{,}, c f$. 148, 149); T wa ${ }^{5}$? the right.
229. (*22; $\mathrm{C} * 21$) M-SM とठ? 6 , tī-yd?6, M-SE 8ठ?6, M-J tyo?o
 kal ${ }^{7}$) (pl) flea. Plte syll: M *yu, with fusion of M ti + yo $>$ Ko and tyo; $C^{* y} ; ~ T * t u$ (fused into PMx ultima).
230. (*34) M-SM, SE ${ }^{n}$ dēyü food, M-J dayu dinnex; $T n^{3}$ a^{4-3} dinner. Plte syll: $M^{*{ }^{*}}$ da; T *na.
231. (*34) M-SM, SE yō?
 cord may also be related to the cognates of this set. Ult syll: M
 element (possibly from some PMx *yu element).

neck. Plte syll: M, T *ta.
233. (*34) M-SM, SE, J kōyō to be pouring out; T (g) $a^{3} y^{2} z^{3-4} h$ to pour out, to empty out. Plte syll: $M *{ }^{* m} a ; T * k a$.
*to
234. (*24) M-SM, SE yūtù; C ī? yứtù tump-line, ${ }^{7}$ kā-kū ${ }^{2}$ yāàtú (po), níkú- ? yátú (pp) to tie; $\mathrm{T} \mathrm{zi}^{3} \mathrm{c}_{\mathrm{o}}{ }^{\text {? }} \mathrm{o}^{4-3}$ the little straw mat on the tump-line. Plte syll: M *yu; C *yu (plus prior i-), *ya; T *tu/*ta.
235. (*42; C *41) M-SM hā-tìtư, tứy black, (${ }^{\text {n }}$ dōkō) tứt the
 zapote, M-J tuy black; C thy soot; T (re ${ }^{3} \mathrm{ko}^{4-5}$) ču ${ }^{5-3}$ black zapote, (zi ${ }^{2-1}$) $\chi_{y^{3}}^{3}$ negro, $x_{0}{ }^{3-5-4}$ soot, ma ${ }^{4} \mathrm{ru}^{3-5.4}$ black (latter T form is probably a denasalization development in T itself). Ult syll: M *tn-; $C, T * t-$. The $T r$ form is difficult unless it be a contamination from ma ${ }^{4} \mathrm{re}^{3-5-4}$ green and ma ${ }^{4} \mathrm{re}^{3}$ red. No plte syll, but T adds ma- (found on a few words, most commonly terms for colors).
*ko
236. (*23, *32) M-SM ${ }^{\text {T}}$ dàkū broom, ${ }^{\text {n }}$ dūku firewood, M-SE ${ }^{n}$ dàkū broom, M-J ${ }^{\text {n }}$ daku broom, ${ }^{\text {n }}$ duku fixewood, M-M ${ }^{\text {? }}$ iku leaf, leafy branch, sprig; C i-húúkù stake, ndūūkū twig, switch, ndūükù (dī̄̀yū) little switch; T koho ${ }^{3}$ herb, plant, bush, re e^{3} koho ${ }^{4-3}$ leaves, $\mathrm{re}^{3} \mathrm{ko}$? o^{4-3} in the woods, in the forest; A tsko (sg), lko (pl), leaf. The presence of $?$ rather than h in the last T form may be by contamination with $\mathrm{re}^{3} \mathrm{ka}^{7} \mathrm{a}^{4-3}$ stick, and $\mathrm{re}^{3} \mathrm{ke}^{7} \mathrm{e}^{4-3}$ splinter of set 121. Plte syll: M^{n} da (morpheme for hand or sprig),
 wood.
237. (*32) M-SM, SE, J sòkō hunger, M-SM k $\delta k \measuredangle$, M-SE kōk6 to swallow; C $\mathrm{k}^{\mathbf{\pi}} \mathrm{i} \mathrm{i} k \overline{0}$ hunger; $\mathrm{T} \mathrm{zi}^{3}-\mathrm{ko}^{3-4} \mathrm{~h}, \mathrm{zi}^{3}-\mathrm{ko}^{4-5}$ stomach. Loss of h and tones 45 in the second T form is an obscure development. Plte syll: $M * \theta u ; C *{ }^{(w i} ; T * \theta i$. The M plte may however, not be from * $\theta \mathrm{u}$, but so- may simply be an analogical reshaping of earlier t_{i} - reflex $(<* \theta i$) in accordance with k $\delta k \delta$ swallow-or some such form no longer extant, should this latter etymology prove to be invalid.
 higher numerical sequences of the vigesimal system); C ndiikū, hääkü twenty (latter only in higher numerical sequences); T-Ch
ko ${ }^{4}$ ，T－Co iko twenty．（T－Co levels all penultimate vowels to i in the numerals＇seven＇，＇eight＇，＇ten＇，and＇twenty＇，but T－Ch drops the se vowels）；A ntkyu twenty．Plte syll：$M * \theta i ; C{ }^{* n} d i ;$
 origin．

239．（＊34）M－SM SE ${ }^{\text {n }}$ dōkō zapote，${ }^{\text {n }}$ dōkō（ ${ }^{\text {íníú）anona，}} \mathrm{M}-\mathrm{J}$ ${ }^{n}$ doko ${ }^{2} \mathrm{inu}$ anona；C ndū̀ùku chiremoya，ndưùkū（mę̂e ${ }^{2}$ ę）anona； T re ${ }^{3} \mathrm{ko}^{4-3}$ anona， $\mathrm{re}^{3} \mathrm{ko}^{4-5}\left(\mathrm{cc}^{5-3}\right)$ the black zapote．Plte syll： $\mathrm{M}, \mathrm{C} *^{\mathrm{n}} \mathrm{d}$ ； T has $\mathrm{re}^{3}-<\chi_{u^{3} h}$ fruit，oval－shaped．

240．（＊33）M－SM，SE－yōkঠ；T ̌̌a ${ }^{3}{ }^{\text {ko }}{ }^{3}$ honey－bee，honey－comb； A tsku（sg），lku（pl）hornet＇s nest，honey－comb．Plte syll：M ＊уг；T＊tっ．

 －t’ua，－nk？${ }^{\text {r }}$ to drink．Ult syll；M＊k－，＊x（i）；C＊k－，＊x（i）， ${ }^{* k}$－，$*^{\mathrm{n}} \mathrm{d}$－（with vowef palatalization in last two tenses）； T ＊k－。
 A Kua（sg），ndua（ pl ）clay pot．Cf．with the A cognates the $T \mathrm{gu}^{3}$ kwaha ${ }^{4-3}$ large pot for liquor；alternatively，this T form could be reconstructed with above in which case we could assume：（1）a root with last syllable＊ko ？and tones＊23，（2）expansion of M and C forms from CV？$>\mathrm{CV} 9 \mathrm{~V}$ ，（3）development of T kw in regular fashion after a Cu －prefix，and（4）borrowing of the T form $\mathrm{go}^{3}{ }^{\mathbf{7}} \mathrm{o}^{3}$ from M ．

243．C dà－k $T n^{3} \mathrm{ko}^{2}$ to be dry，na ${ }^{5} \mathrm{ko}^{5-3}$ dry．Plte syll：$C * \theta a ; \mathrm{T}{ }^{* n} \mathrm{da} /{ }^{*}$ na．

244．（＊33／＊23／＊24；C＊11／21；T 45 may be by analogy with
 nephew；T zdu ${ }^{3} \mathrm{ky}^{4-5 \text { ？}}$ nephew（similarly，M＇nephew＇$\sim C T$

245．（＊22）M－SM Xúkị́ louse．tị－yükū，cuiḳ̆ fly，M－SE culku
 （For T assume that PT＊ko $>\mathrm{ku}$ after development of zu^{3} in first syllable；the sequence u ．．．o does not occur in the same T word）． Plte syll：M＊yu，fusion of ti－$+{ }^{*} \mathrm{yu}>\mathrm{X}_{\mathrm{u}}$－and tyu－； T ＊tu． ＊$\theta$ o

246．（＊23／＊32／＊34）C dū̀dư fur，feathers，yūùdठ（1位）hair of
 moldy；A so wool，liaso（sg），liatso（pl）blanket．Plte syll：C
 auxiliary verb). (M tù̀ $\overline{\underline{q}}, \mathrm{~N} \overline{\mathrm{q}} \overline{\underline{q}}$ feathers may be an alternative paradigm with *tnom. This would make basic tones *32.)
247. (*32; $\mathrm{M} * 31, \mathrm{C} * 12) \mathrm{M}-\mathrm{SM}, \mathrm{SE}$ yठs6; C yưúdб; T to ${ }^{3-4-3 \text {; }}$ A (tsho?) su metate, grind stone. Plte syll: M, C*yo.
248. (*23) M-SM, J kūsù, kī̌i, M-SE küsù, kí̌í; C kū-yààdō, i-yāādo , kī-yāādō, nī-yāàdō; T (g) a ${ }^{3} \mathrm{to}^{3-4} \mathrm{~h}$; A tsam (sg), nda (pl) to sleep. Plte syll: M *kwa; C *ya; T \{*ka\}, *ya. M kisi by palatalization in that language.
${ }^{\boldsymbol{n}{ }^{\boldsymbol{n}} \text { do }}$
249. (*23; C *11) M-SM, SE, J ${ }^{\mathrm{n}}$ dṑ; C nduá; $\mathrm{T}_{\mathrm{do}}{ }^{3-4 / \mathrm{yo}^{3-4-3}}$ sugar cane; A tsho (sg), tho (pl) sugar cane, ntu cane leaves, Ult syll: M, C *"d-; T *"d-/*日-, *y-.
250. (*23) M-SM, SE yठठ moon, month, M-SM nul- ${ }^{\text {n }} \mathrm{d} 66, \mathrm{M}-$ $S E$ nü- ${ }^{n}$ d $\partial 6$ trough, manger, corn measure; C 9 iiỳ moon, month,
 manger, corn measure (almost any thing hollowed out or concave). Cf. 262. Ult syll: $M, C *^{n} \mathrm{~d}$-, *y-; T *y-. No plte syll. M adds nu-. C adds ${ }^{\text {ip }}=$ (possibly $<$ PMx *yu). T has ri- $<\mathrm{X}_{\mathrm{u}}{ }^{3} \mathrm{~h}$ ovalshaped.
251. (*24; T *21) M-SM, SE, J ${ }^{\mathrm{n}} \mathrm{d} \delta{ }^{7} \mathrm{Z}$; $\mathrm{T} \mathrm{do}^{2} / \mathrm{yo}^{2}$ tenate (handleless palm-leaf basket); A tso (sg), nto (pl) handleless

 to pester. Ult syll: $M, C *^{\mathrm{n}} \mathrm{d}-$; T *y-.
${ }^{* n}$ go
253. (*23) M-SM yāku, M-SE hēkū some, a bit of; T ${ }^{\text {? }}$ ngo ${ }^{4}$ one, go ${ }^{4}{ }^{2} \mathrm{ngo}^{4}$ a few of, some, a^{3} ? ngo^{2} another. Plte syll: M *ya, *xa; T *ya, and reduplication in second T cognate.
$*_{n o}$

 ${ }^{*^{n}}$ da (with vowel palatalization in the last two tenses); $T * k^{\text {w }}$ a, *na.
255. M-SM, SE, J núū, for a short time, M-SM, SE hinū an occasion; C ($\left.k \bar{̣}{ }^{7} \grave{q}\right)$ t鞄 to go again; T yy ${ }^{5}$ an occasion, $y^{2}{ }^{2}$
 No plte syll. M adds hi-.
*no

 No plte syll. C adds hiti-.
257. M-SM tifīu, M-SE Nif, M-J tifii; C ? díqu fingernail. Ult syll: M-SM, J *fin-; M-SE *tn-; C * $\boldsymbol{\theta}$-. No ple syll. M adds ti-.
258. (*33, *33?) M-SM nīfif, M-SE nīfì, M-J niffi; C yū̧̄ ? ${ }^{\text {? }}$
 plte syll. M reduplicates.
*yo
 corn-stalks; C hiiyo? bamboo; T-Ch gi ${ }^{3}$? yo ${ }^{5-3}$, T-Co go ${ }^{7}$ yo $^{?}$ o corn fodder; Ats? am tsho cornstalk. Possibly no plte syll. M preposes "da- hand, sprig. C adds hii-. T adds git. The C and T plte may hark back to PMx *xi and *ki respectively.
260. C nd3ōyd; T yo ${ }^{2}{ }^{3}$ year. Possibly no plte syll since T does not strengthen y to y^{\prime}. C adds ndom.
261. (24; T *21) M-SM, SE ${ }^{n}$ de ${ }^{\text {? }} \mathrm{yu}, \mathrm{M}-\mathrm{J}{ }^{\mathrm{n}} \mathrm{da}{ }^{7} \mathrm{yu}$ mud; T $z_{i}{ }^{3}$ 2 yo ${ }^{1-2}$ mud-hole. Plte syll: $M *^{n}$ da; $T *$ ta.
 (the clay griddle on which tortillas are cooked). T $z_{i}{ }^{3} o^{4}$ (ys ${ }^{3} \mathrm{~h}$) the circle of 3 stones on which the comal is placed (cf. 250). Plte syll: M, T *xi.
*?
 *tu
264. (*34, *32/*42; M *31/*41) M-SM yūíi, tī-yư̌íi something powdered, fitt sand, M-SE yū̌ī powder, something pown dered, fití sand, M-J yuti powder, sand, powdered, $\mathrm{M}-\mathrm{M}$ yuti
 sawdust (second constituent means wood), (yo ${ }^{3} \mathrm{ro}^{2-1}$) ču ${ }^{4}$ sand.

 animal, thing in M, and prior ru- $<\chi^{3}{ }^{3} h$ oval-shaped, fruit in T; both of these forms hark back to PMx *tu? (266) but the fusions are presumably post-PMx).
266. (*22/*24/*42; T $* 21 / * 41$) C ndūute, ndüüte (tone sandhi variants depending on following word in the phrase) egg, fruit, vegetable (used as a classifying noun in many phrases involving various sorts of oval or spherical shaped objects); $T \mathrm{zi}^{3} \mathrm{ru}^{2-1 /}$ $x_{u}{ }^{3} h$ egg, fruit (a classificatory noun with a broad range of meaning similar to that stated for C). The T prefix $r V^{3}$ - oval-shaped, spherical is from this root but has become homophonous with rVing wooden $<X_{y}{ }^{3}$ (set 110). Likewise, the M prefix tī - thing is from this root, but has become homophonous with tin animal (see set 268). Plte syll: $C{ }^{* n}$ du; $T\left\{\begin{array}{l} \\ *\end{array}\right.$ PMx reduplication of the pattern $*(m)$ tu-tu.
267. (*23) M-SM kütu; M-SE zini; M-J §iti; C dūūtu nose; T (g) $u^{3} \varepsilon_{q^{3}}{ }^{-4}$ h to sniff, to smell. (Notice the striking differences in the Mixtec dialect forms according to presence or absence of influence of $P M x$ and $P M *-m$.) Ult syll: $M * \operatorname{tn}-$; $C, T * t-$. Ple syll: M-SM, T ${ }^{*} \mathrm{ku}$; M-SE, J , and $\mathrm{C}{ }^{*} \theta \mathrm{u}$.
 T žu ${ }^{3}$ - animal. Ple syll: $M * k i ; C *_{x i}$. *ku
269. (*22; T ${ }^{* 21)} \mathrm{M}-\mathrm{SM}, \mathrm{SE}{ }^{\mathrm{n}} \mathrm{d}_{\mathrm{i}}^{\mathrm{k}} \mathrm{k} \overline{\mathrm{i}}, \mathrm{M}-\mathrm{J}, \mathrm{M}^{\mathrm{n}} \mathrm{diki}$, horn; T $\mathrm{ku}^{\text {I-2 }}$ bone, horn (cf. set 74 which is rather similar to this one). Plte syll: $\mathrm{M}^{*^{\mathrm{D}} \mathrm{dV}}$-.
270. (*33?/*23; T *11) M-SM hiki corner, M-SM, SE sīki contrary to, on top of, concerning; M-SE yiki corner; $T z_{i}{ }^{3} \mathrm{ku}^{2} \mathrm{~h}$ corner (cf. set 77; there may be some sort of unanalyzed connection between some of the sets grouped under ${ }^{*} k^{w} i$ and those grouped here under *ku). Plite syll: M-SM *xi, *日i-, M-SE *yi, * $\mathrm{Hi}_{\mathrm{i}} \mathrm{T} \mathrm{T}$ * ${ }^{*}$ i.
271. (*23/*32/*34) M-SM P1-síkī, M-SE kánsíkí to play; C nā-dà-kùuku (po and pt), $\overline{1}-\mathrm{d}$ à-kùukū (pr), ní-dī-kūūkú (pp) to adorn; T zdu ${ }^{3} \mathrm{ku}^{4-3}$ necklace, (gu^{3}) $\mathrm{du}^{3} \mathrm{ku}^{3-4}$ to play, gu ${ }^{3} \mathrm{du}^{3} \mathrm{ku}^{4-3}$ Garnival (pre-lenten festival); A nkue nkyu? Carnival, -kyo?, $-k y u^{?},-k y \rho ? ~ t o ~ p l a y, ~ t o ~ t o u c h, ~ t o ~ h a n d l e . ~ P l t e ~ s y l l: ~ M, ~ T * \theta u . ~$
＊lu
272．（＊22；M＊21） $\mathrm{M}-\mathrm{SM}, \mathrm{SE}$ vilu（ $\mathrm{M}-\mathrm{J}$ has Nahuatl loan mistu）； T－Ch $\mathrm{zi}^{3}{ }^{3} \mathrm{u}^{3}, \mathrm{~T}-\mathrm{SD} \mathrm{l} * \mathrm{u}^{3}$ cat．Ple syll： $\mathrm{M} * \mathrm{wi}$ ； $\mathrm{T} * \mathrm{ti}$ ．

273．（＊22，＊33； $\mathrm{M} * 11, \mathrm{~T} * 21$ ） $\mathrm{M}-\mathrm{SM}$ vil6 little lizard； $\mathrm{T} \mathrm{zi}^{3}$ $1 u^{1-2,} 1 u^{2-1}$ worm；A katsu（sg），kantu（pl）snake．Plte syll：M ＊wi；T＊ti．
$*_{n u}$
274．（＊24）M－SM kā？nù，há？nù，M－SE kā？nù，hé ？nù，M－J ka ${ }^{\text {n nu }}$ to break，to cut，M－SM tā nù，M－SE Nä？nù to become
 syll：M＊ka，＊xa，＊tna；T \｛＊ka\}, \{*ta\}/*xi.

 uncle；A hndai，hndee to be bigger，to be stronger．Plte syll：M

276．（＊32／＊42）M－SM hànū，M－SE hènū，M－J Canu；C そêēnठ sister－in－law．（This set is tentatively listed here but may belong under＊no）．Plte syll：M＊xa；C has fusion of some $t V$－element with＊ya＞とeee－．
＊ 凡u
277．（＊34）M－SM tiffí，M－SE Nífíí，M－J tiffi；C ？y ${ }^{7}$ tyaùde；$T \mathrm{zu}^{3} \mathrm{tu}^{4-3}$ mouse，Zu ${ }^{3} \mathrm{tu}^{4-5}$（gwi ${ }^{5-3}$ ）rat．Ult syll：M $*$ fi－；$C, T * \theta-$ ．Plte syll：$M * \operatorname{tnu} ; C * y$ ，and late fusion of some tV －element in second C form； T ＊tu．
＊yu
 to spoil，to rot．Plte syll：M＊ya，and fusion of some $t V$－ele－ ment with＊ya $>$ te and tya；T has ri＜cV－element．The fused elements in both languages may hark back to the same PMx＊tV element，but the fusions are post－PMx．

279．（＊23／＊32／＊34）M－SM hà̀－7〔チ，M－SE（heè）？ìý́，M－SM tí－？11，M－J ti－？iyu empty；C nā－？yäi to empty（the diphthongiza－ tion poses a problem）；T yu ${ }^{3}$ ？uhu $4-3$ hole，ri ${ }^{3}$ uhu ${ }^{5-3}$ hollow reed （tones are obscure）， $\mathrm{zi}^{3}{ }^{3}{ }^{3-4}$ anus，vulva；A tsui？（sg），lui？（p1） hole．No plte syll．PM reduplicates（＊yu－yu $>$ ？$_{\text {iul }} /{ }^{\text {iyu }}$ ）with prior tim．T expands＊？yu？$>$ yu？uh（ u ）in one form；adds fused ru－$<\varepsilon_{u}{ }^{3} h$ oval－shaped and $z^{3}{ }^{3}$－possessed marker in other forms．

8. Summary and suggestions as to future research

By summarizing the salient points of the reconstructions presented in the previous sections of this study it is possible to present in broad outline the phonological and grammatical characteristics of Proto-Mixtecan-the language which lies behind Mixtec, Cuicatec and Trique.

PMx had a stock of 27 phonemes: 16 consonants, 7 vowels and 4 tones. For the purposes of this section I modify the grouping of the reconstructed consonants as presented in 2. 1., by subdividing the laterals, nasals and semi-vowels into two series-a nasal series, and a semi-vowel series (including*l). This enables us to speak of five series of consonants and three orders. In the table below the consonants in horizontal line form a series, while those in vertical line form an order:

* t	* ${ }^{\text {k }}$	$*_{k}{ }^{\text {T}}$
* θ	$*_{x}$	* $\mathbf{x}^{\mathbf{*}}$
$*^{\mathrm{n}} \mathrm{d}$	${ }^{*}{ }^{\mathbf{a}} \mathrm{g}$	${ }^{*}{ }^{\text {g }}$ (
$*_{n}$	*fif	$*_{\text {m }}$
*1	*y	*W

I refer to the five series from top to bottom as (1) stops, (2) spirants, (3) prenasalized, (4) nasals (5) semi-vowels. I refer to the orders from left to right as (a) alveolar, (b) palatal-velar, (c) labiovelar-labial. The vowels may be divided into (1) front vowels, *i and *e; (2) central vowels *i, *a and *o; (c) back vowels *u and *o.

The distribution of $\mathbf{P M x}$ phonemes is described in reference to reconstructed *CV and *CVCV forms (with certain sub-varieties to be discussed further on). In our statements it is convenient to distinguish ultimate syllables (*CV forms, and the last syllable of *CVCV forms) from penultimate syllables (the first syllable of *CVCV forms).

All consonants and all vowels occurred in ultimate syllables. There are, however, certain restrictions on consonant-vowel
combination in ultimas: (1) $\boldsymbol{*}^{\mathbf{n}} \mathrm{g}$ and $*^{\mathbf{n}} g^{\mathbf{w}}$ of the prenasalized series occur almost exclusively before the central vowels (except, in fact, for one occurrence of ${ }^{*^{n}} g$ before ${ }^{*} 0$). (2) The labiovelarlabial order along with ${ }^{*} x$ does not occur before the back vowels. (3) $* k$, $* \mathrm{f}$, and $* y$ of the palatal-velar order along with $* \mathrm{t}$ occur most typically before central and back vowels: before front vowels they occur only rarely or not at all (\overbrace{k} only before $*_{j}$ and that in but two sets; $\boldsymbol{*}_{\bar{n}}$ not at all; *y only before ${ }^{*} \mathrm{i}$ and that in but one set; ${ }^{*} t$ only before ${ }^{*} e$ and that in but one set). (4) * θ, ${ }^{* n} d$, and *n of the alveolar order are the least restricted in distribution. $* 1$ of the same order occurs before both front and back vowels ($*_{i}$ and *u) but is of very infrequent occurrence and does not occur before central vowels in our array of cognates.

Certain consonants and vowels did not occur in PMx penultimate syllables. Of the labiovelar-labial order $*_{x}{ }^{\mathbf{w}},{ }^{*}{ }^{\mathbf{n}} \mathrm{g}^{\mathbf{w}}$ and ${ }^{*} \mathrm{~m}$ do not occur in penultimate syllables, while evidence for ${ }^{* n} \mathrm{~g}$ in that position is not very solid. Of the vowels only $*_{i}, *_{a}, *_{3}$ and $*_{u}$ occurred in penultimate syllables. Penultimate Vm is statistically rare but apparently existed in a few forms. I attribute its occurrence to fusions of $* C V m-C V$ sequences within the $P M x$ period itself. Presumably all medial pre-PMx clusters of $* m-C$ were reduced by loss of $*_{m}$ on fusion to $\mathrm{PMx} * \mathrm{CVCV}$-except for pre-PMx $*_{m-t}$, $*_{m-k}, *_{m}-k^{w}$ and $*_{m-y}$, which coalesced to form the PMx prenasalized series and *fir

The schematic forms *CV and *CVCV introduced above subsume several sub-varieties occasioned by the occurrence of $*$? and $*_{m}$ in certain positions not filled by other consonants. These further sub-varieties are: (a) (?) CV $(\mathrm{m})(?)$ and $\mathrm{CV}(?) \mathrm{CV}(\mathrm{m})(?)$ -both with all possible combinations of the obligatory and optional elements (inclosed in parentheses) represented in the formulae. (b) $* C V ? V(m)$ with the $* ?$ interrupting the vowel of the syllable and with the entire unit monosyllabic. The latter also occurred with another $* ?$ present somewhere on the form; the data are inconclusive as to whether the second $* 7$ occurred in initial or final position. (c) There may also have been some disyllabic forms with initial *? C but the evidence for this is not very solid.

There was an enclitic or suffixal $*_{-m}$ occurring with considerable frequency on PMx forms. When this $*-m$ was added to a *CV? or *CVCV? form there was metathesis of the added $*=m$ and the final $*$? so that an $*-m$? sequence resulted. Post-vocalic *-m, whether basic in a PMx form or occurring as this added element, is the source of all M, C, T nasalized vowels- except those developed at a later date in a given language. Inconsistency
of nasalized vs. non-nasalized vowel reflex within a cognate set is occasioned by the occurrence in one language or dialect of a cognate harking back to a form with added $*-m$ vs. the occurrence in another language or dialect of a cognate harking back to the same form without this added element.

There probably also occurred in PMx an infixal *-? morpheme of obscure (perhaps derivative) function. This infix was added directly before the ultimate syllable consonant in *CVCV forms. This results in apparent inconsistencies in a few sets as to presence or absence of reconstructed $* ?$ in this position.

Penultimate syllables and, to a lesser degree, ultimate syllables were subject to consonantal alternation. This consonantal alternation was of two sorts. The first sort of alternation, which I have termed Paradigm A involved these three sub-varieties: ${ }^{*} \mathrm{y}-$,
 structed forms characterized by this sort of consonantal alternation may be termed PMx nouns. The ${ }^{*} \theta-$ and ${ }^{*}$ t- elements in the above alternations probably together comprised a morpheme meaning definite ($>$ A singular, T possessed). The second sort of consonantal alternation which I have termed Paradigm B, involved
 occasioned by the differing variants of the second element. Reconstructed forms characterized by this sort of consonantal alternation may be termed PMx verbs. The consonantal alternations here served to mark four PMx tense-aspects. Beginning with the alternations reconstructed as Paradigm B it is possible to trace in broad outline the development of the M, C, T verb-systems.

Eight tone patterns occurred as basic in PMx forms. None of these basic patterns involved tone $* 1$ - the highest level of the fourlevel system. Tone $* 1$ was restricted to tone patterns that occurred as tone sandhi variants of the basic patterns. The tone classes of PMx are clearly distinguished in that the eight basic tone patterns determine eight basic tone classes each of which had its characteristic tone sandhi variant-except that two tone classes shared a *ll variant and two of the tone classes shared a *2l variant. PMx tone sandhi was probably a tono-mechanical phenomenon like that found in present-day M and C; viz., certain forms (which would have had to have been arbitrarily listed) had tone sandhi variants the occurrence of which was dependent on the occurrence somewhere in the immediate context of another "perturbing' form.

PMx was probably characterized by a stress-group like that found in present-day M and C. There has been a constant tendency from pre-PMx through PMx and post-PMx and on into the present
$\mathrm{M}, \mathrm{C}, \mathrm{T}$ dialects for certain elements in the stress-group to fuse together into word-like units. The origin of PMx *CVCV canonical forms was probably by such fusion of pre-PMx monosyllabic forms. Post-PMx fusions in the various languages have in some sets obscured developments in PMx penultimates or added penultimate syllables to originally $* \mathrm{CV}$ forms.

Future research should include (a) reconstruction of PM, PC, and PT in their own right. Pike and colleagues in the M dialects have done a considerable amount of dialect survey and have enough data on hand to initiate the reconstruction of PM. Davis and Waiker have made a careful survey of practically the entire Cuicatec speaking region in Oaxaca and have already initiated the reconstruction of PC. No other T dialect than that of Chicahuaxtla has been investigated with any thoroughness, and field work of this sort must precede any attempt to reconstruct PT. (b) Reconstruction of PMx elements in enclitic position-especially the pronouns, It is very probably that the phonological developments in this position, which we may term post-ultimate, will prove to be somewhat distinct from the developments either in ultimate or in penultimate syllable. (c) Incorporation of A into the PMx reconstructions with the revamping and adjustment that the adding of a further language inevitably brings. The importance of the latter cannot be overestimated in that there has been occasion several times in the course of this study to refer to A at crucial points in our argument, viz. in reference to final ${ }^{*}-\mathrm{m}$, and in reference to the consonantal alternations of Paradigm A which, in altered form, still characterize Amuzgo.

The above projects, once completed, should put the reconstruction of PMx on a somewhat more solid foundation than I have been able to provide for it in this study. Meanwhile- and we cannot be detained indefinitely if the above projects are not consum-mated- there is the further and more difficult task of lining up PMx with other presumably related stocks such as Popolocan, Otomian, and perhaps Zapotecan. Miss Sarah Gudschinsky of the Summer Institute of Linguistics hopes to initiate the task of comparing the Mixtecan and Popolocan stocks. Ecker (El Mexico Antiguo 4. 209-240, 1939) some years ago published some exploratory probings in connection with Mixtec-Otomian affinities. Mix-tec-Zapotecan affinities-in spite of the confidence with which this relationship was assumed by early Mexican linguists-is still in the speculative stage. In establishing more distant relationships such as Mixtec-Otomian and Mixtec-Zapotecan it is doubtful whether the number of extant cognates will be sufficient to permit
reconstruction in enough detail to gain a very satisfactory picture of the phonological and grammatical characteristics of the reconstructed structures. It is my hope, however, that at least in respect to Mixtec-Popolocan, this will not prove true.

Extensive lexicostatistical investigation of the linguistic affinities of Mexican Indian languages is being carried on at present by Swadesh. This investigation should give some indication of what language stocks might next be compared with Mixtecan, with some probability of finding enough cognates to make such further reconstruction profitable. Glottochronology can thus function as a valuable auxiliary to the comparative method. It might not be amiss, however, to point out that as an"auxiliary to the comparative method, glottochronology cannot supersede that method itself. As linguists, our interest goes beyond considerations as to what languages are related and degrees of relationship; ultimately we want to know something of the phonological and grammatical structure of the language which was the historical progenitor of a given language family. For this reason-if for no other- we heartily agree with George Lane's statement (Collitz lecture before the Linguistic Institute at Chicago, Aug., 1954) "There is no substitute for the comparative method of the nineteenth century."

APPENDIX

Tabular summaries of the phonological developments described in this study follow．In the following formulae，commas separate the re－ flexes of M－SM，M－SE and M－J in the order given．Slash separates vary－ ing reflexes in a given language or dialect．Conditioning factors，enclosed in parentheses，are given preceding and or following the M, C ，T reflexes． An（ m ）in parentheses after reconstructed $* C V$ combination indicates either（a）variant proto－forms，one with and one without post－vocalic $*-m$ ， or（b）only a possible（but not certain）reconstruction of $*-m$ ．Where the weight of probability is that a nasalized vowel in one or more of the lan－ guages is a post－PMx development I do not represent（m）at all in the formulae．

A．Reflexes of consonant－vowel combinations in reconstructed ultimas：


```
*ta>M (a)ta/(u, i) とa, (a)ta/(u,i)te, ta; C ta; T とa
*to > M tu/too/tई(*?); C tu; T とa
*to>M tu; C tu; T とo
```



```
*ki}>>M hi, hi, ci; C とe; T ki
*ki}>>M\textrm{Mki}/\textrm{ki}, ki, ki; C Ei/\varepsilone; T ki
*kim}>>M kiz, kiz, kici; T ką
*ka > M ka/+ga; C ka/kuu; T ka/PT kakal }%>\mp@subsup{\textrm{ga}}{}{3}\mp@subsup{\textrm{ce}}{}{2-1/(u) kwa
```



```
*ko > M ko/kä(?); C ko/kuu; T ka/(u)kwa
*kom}>>M\textrm{Myz}; T kz
*ko > M ku/ko; C ku/ko; T ko
*ku > M ki/(i) ki, ki, ki; C ku; T ku
*k"i(m) > M kuq; C ku; T kwi
*kwi}>>M M ku; C ku/ko; % T ki
*kwa > M (a)kwa/(u) ku/(i, i) ka; C (v) kwa/(space)kuu; T kwa/kwe(h)
```



```
    kwąą; T kwą
*0i}>>M\\mp@code{Zi; C di; T ci
```



```
*0e>M Si; C de
```



```
*0a}>>M\mp@code{sa; C da; T ta
**O > M su/so; C du; T ta
**o > M su/so; C du/do; T to
*0u}>>C de; T tu
```



```
*xi \((\mathrm{m})>\mathrm{M}\) hą, hę; C と્ટe; T kį
```



```
*xa(m) > M hą, hę, ¿̨z̨; C ku; T ką
```



```
    \({ }^{n}\) da( \(\pm\) ?)a; C (CVV)nę/(CVV)nie/(space)nda( \(\pm\) ?) a; T (CV)ne/
    (space) da( \(\pm\) ) a
\({ }^{\text {n }} \mathrm{do}>\mathrm{M}^{\text {I }}\) doo; C nduu; T (V) na
```



```
*"ga>M ha, he, Xa; C nga?a; T nga/disyllabic \(\mathrm{Z}_{\mathrm{i}}{ }^{\mathrm{P}} \mathrm{i}\)
*ngo \(>\mathrm{M} \mathrm{ku} / \mathrm{ko} ; \mathrm{C}\) ku; T nga
* \({ }^{\text {ngo }}>\mathrm{M} \mathrm{ku}\); T ngo
```



```
*"g \({ }^{\text {wa }}>\mathrm{M}\) (V) va; C (V)va; \(T\) (space) gwe/(V) ngwe
```



```
*li \(>\) M li; C li ; T li
*lu \(>\mathrm{M} \operatorname{lu} / \mathrm{lo}\); T lu
*? \({ }^{\mathrm{mi}}>\mathrm{M}\) ? \(\mathrm{mu}, ~ ? \mathrm{mu}, ~ ? \mathrm{mi} ; ~ C ~ ? m i ; ~ T \mathrm{mi}\) ?
```



```
*? ma>M ? ma; C ? ma/? me; T ? mą
```



```
\(*_{n i}>M \mathrm{ni} ; \mathbf{C m i} / \mathrm{no} ; T \mathrm{ni}\)
*na \(>\) M na; C na; T ne
*na \(^{(m)}\) ) \(>\mathrm{M}\) nu; \(C\) nąą; \(T\) ną
```



```
*fin \((\mathrm{m})>\mathrm{Mnin} / \mathrm{ni}\), fii, fii; C yqui; \(T\) yą
```



```
*? \(\mathrm{fra}(\mathrm{m})>\mathrm{M}\) ? \({ }^{\text {? }}\), \({ }^{\text {? ffa; } C \text { yą; } T \text { ?yą }}\)
```



```
*fio \(>\mathrm{M}\) fi, fin, fil
*fiom \(>\mathrm{M}\) fu; \(\mathrm{C} y q / \mathrm{yyy}\); T yч
*fiul \(>\mathrm{M}\) fii, 的, fii
*wi \(>\mathrm{M}\) (V) u, (V)u, (V) vi; C ve; T wi/(u) gwi
\(*_{\text {we }}>\mathrm{M}\) (V)u, (V)u, (V) vi; C va; T wi
```

```
*wi \(>\mathrm{M}(\mathrm{V})\) vi, (V) vi, (V) vi; C vi; T wa
*wa \(>\mathrm{M}\) va; C va; T (space) we; (a) wi, (u) wa
```



```
    T (u) ? we? (or h), (a) ? wi? (or h); with metathesized \({ }^{*}-\) ? - ;
    (u) gwe \((\mathrm{h})\), (u) gwi(?)
*yim \(>\mathrm{C}(\mathrm{V}) \mathrm{i}_{\mathrm{i}} ; \mathrm{T}(\mathrm{V}) \mathrm{i}_{2}\)
*ya \(>\mathrm{M}\) ya; \(\mathbf{C}\) ya; \(T\) ya
*yo \(>\) M yo; \(\mathbf{C}\) yo; \(\mathbf{T}\) (Ci) a/ya
*yo \(>\) M yo/ \({ }^{\text {yu }}\); C yo; T (Ci) o/yo
*yu \(>\mathrm{M} y \mathrm{y} /(\mathrm{Ci}) \mathrm{u}\), yu, yu; C yai; T (Ci)u/yu
```



```
\(\left.\begin{array}{l}* \operatorname{tnu} \\ *_{\text {tno }}\end{array}\right\}>\mathrm{M}\) ti, \(\mathrm{Ni}, \mathrm{ti}\)
```

B. Reflexes of consonant-vowel combinations in reconstructed penultimate syllables. In the following, i is to be understood as occurring only in M-SM, SE with corresponding reflex i in M-J, M.

```
*ti>M ti (Ci); C tuu(m,v); T \check{zi}/\mp@subsup{y}{u}{\prime}(? ? w)
```



```
*ts> T za/zi(と)
```



```
*ki}>>M\textrm{Mki}(\textrm{n},\textrm{s})/\textrm{ki}(\textrm{Ci}); C \ii; T gi
*ka > M ka/ke (ha?a); C kaa; T ga
*ko > M ki/ki(Ci); C kaa; T ga
*k"
```



```
*k"
**i>M Si/sų(?y); C dii/duu(v); T zi/zą(?q̨hą)
*0a}>\mp@subsup{M}{\textrm{sa}/\textrm{s}(taa)}{(t)
    n, (*y)a)/du(m, (p)w, gw)
*0\rho> M su(Cu)/5i(Ci); C duu(d); T da/du(gw)
*0u}>>M\mp@code{Mi}(\textrm{Ci}); C duu(t)/diig(?mą); T d
**i}>>M\mp@code{Mi, hi, či; C hii/hee; T zi
*xa>M ha, he, ca; C haa/hii (no); T ga
*xo > M hi, hi, či; C hău; T ga
```



```
*nda>M N da (but M-SM, SE 'me(?yu)): C ndaa; T na(k, gw, 厄)/da
```



```
*ni}>> T ni
*na>M na; C na; T na/ni(*y)a
*no >M nu(u)
*fia>M fia(M-SM fle(fiu)). The C and T reflexes merge uncondition-
    ally with reflexes of *ya.
*fis >M mf(Cr). For C, T gee above.
*fiu>M fi(?i). For C, T see above.
*wi}>>M\mathrm{ vi; C vii(nu,no)
```

```
*wa \(>\mathrm{M}\) va(hi) \(/ \mathrm{P}_{\mathrm{u}}(\mathrm{ni}) / \mathrm{P}_{\mathrm{i}}(\mathrm{fi} u) ; \mathrm{C} \mathrm{P}_{\mathrm{ii}}(\mathrm{nu}) ; \mathrm{T}\) wa
\(*_{\text {w }}>\mathrm{M}\) vi( \((\mathrm{K}\), 巨)
```



```
*ya \(>\mathrm{M}\) ya/ \(\mathrm{P}_{\mathrm{i}}(\mathrm{n}, \mathrm{s})\) and M-SE ye(N); C yaa/hii (va); Ta/yą(? \({ }^{\text {ą }}\) )/yo
    (?o) and T-Co yu(wi)
*yo \(>\mathrm{M}\) yu/yi(Ci) yo(Co); C yuu; T a/ya and \(\mathrm{T}-\mathrm{Co}\) ya(? w , w), but
    \(\mathrm{yu}\left(\mathrm{w}^{*}<{ }^{n^{n}} \mathrm{~g}^{\mathbf{\prime \prime}}\right.\) )
*yu \(>\mathrm{M}\) yu/yo(Co)/?i(n, s, , y) ; C yuu/hii(?)va, (?) ma, ko, ku); T-
    Chzero; T-Co yu
```

C. No tabular summary of reflexes of $* ?$ in various positions is offered here because the complexity of developments in M, C, T makes such tabulation overly intricate; see 5 .
D. Reflexes of reconstructed tone patterns.
D.1. Basic patterns.


```
*22? \(>\mathrm{M}^{-\boldsymbol{-}} ; \mathrm{C}^{--}\left( \pm{ }^{\text {? }}\right.\) ); T 2h, leveled to T 3 h in most nouns (<PT
        *2 ? )
*33> \(\mathrm{M}^{-`} ; \mathrm{C}^{-=-}\); T (3) \(3(<\mathrm{PT}\) *33)
*33? \(>\mathrm{M}^{-`} ; \mathrm{C}^{--}( \pm\)? \() ; \mathrm{T} 3 \mathrm{~h}(<\mathrm{PT} * 33\) ?)
*23> \(\mathrm{M}^{--}\); \(\mathrm{C}^{---}\); \(\mathrm{T} 34(<\mathrm{PT} * 23)\)
*32> M \({ }^{-}\); C \({ }^{---}\); T 34(<PT *23)
\(* 34>\mathrm{M}^{-\cdots} ; \mathrm{C}^{-\cdots} ; \mathrm{T} 45\), leveled to 34 in almost all contexts ( \(<\) PT
        *34)
*43> M \({ }^{* *}\); \(\mathrm{C}^{-\cdots}\); T \(35(<\mathrm{PT}\) *24)
*24> \(\mathrm{M}^{--} ; \mathrm{C}^{---}\); \(\mathrm{T} 35(<\mathrm{PT} * 24)\)
*42> M**; C--"; T 35(< PT *24)
```

D.2. Patterns in tone sandhi variants:
 (*?); T 2-1 (<PT *1?) 2 (< PT * 1)
 (< PT *12?) and 23 ($<$ PT *12)
 * 12 ?) and $23(<\mathrm{PT}$ *12)

*41 > M"; C CVVCV, CVV; T 2-1 (< PT *1 ?) and $2(<\mathrm{PT} * 1)$
*31 > M
*12> C CV́V́CV́; T 25h/2h (<PT *122) and*23 (<PT *12)

INDICES

In these indices the location is given for every citation of a $\mathrm{M}, \mathrm{C}, \mathrm{T}$ or A form mentioned anywhere in this volume, whether or not that form is included in the array of cognates in section 7. For forms included in the array of cognates, the underlined number immediately following the form is that of the set number in section 7. Page numbers followed by an asterisk indicate that the form is cited only by set number. M and C verbs are regularly indexed only by the form of the potential aspect. Trique verbs are regularly indexed only by the form occurring. with the $g(V)$-noncontinuative aspect prefix for verbs occurring with this prefix. Trique nouns are regularly indexed only by the possessed form for nouns having a formally distinct possessed stem.

Index of Mixtec forms

```
Eaa (J) new 139. pp. 35, 44
cà (SM) man. p. }1
caka (SM) fish 122. p. }3
caká (SE) fish 122. p. }3
Xanu (J) sister-in-law 276.
Xate (J) back 107. p.54*
Caty (J) box 111. pp.40, 72
Xa?a (J) foot 141. pp. 35, 90
<a ?{ (SM, SE) lice eggs 70. p. 112*
ca ?ü (SM) to pay 69. pp. 55*, 67
<a?vi (M) to pay 69. p. 55*
`eni (J) afternoon, early evening 29.
cin (SM) stomach 2.
ci-n dùhi (SM, SE) to bury 11. pp. 61, 110
`ihi (SE) stomach 2.
_iki (J) fist 72. PP. 44, 55*
<iki yuva (J) stomach 188.
cili (M) little 19. P. }3
cis6 (SM) to reply, to add 207.
Xis6 (SE) to reply, to add 207.
<i-sákü (SM) to wrap around 3. pp, 34, 48, 55*, 56*, 111*
cisi (J) aunt 51.
cituृ (J) oven 111. p. 40
Xitu (J) full 194. P. }6
Ěita (SM) full 194. pp. 67, 111*
Eitu (SE) full 194. Pp.67, 111*
```

Eiyo（J）comal（the clay griddle on which tortillas are cooked）262．p． 42
新？（SM）skunk 95．p． 40
疑 7 （SE）skunk 95 ．p． 40
と 6 k 6 （SM）ant 200 ．pp．33，45，54＊， 66
crko（SE）ant 200．pp，33，45，54＊， 66
C 76 （SM，SE）flea 229．pp．54＊， 66
とuku（SE）louse 245．p．54＊
とて́kị́（SM）louse 245．pp．52，54＊

cukş̧（SE）fly 245．pp．52，54＊
cū－súky（SE）to wrap around 3．pp．34，48，55＊，56＊，111＊
dak ${ }^{W} \mathrm{a}$（M）pus 127．pp．34，55＊，83 e

+ de（SM）man．p． 12
${ }^{n}$ daa yavi（ J ）fiber of the century－plant 148 ．
${ }^{n}$ daà yaú（SM）fiber of the century－plant 148．pp．37，45，
${ }^{n} \mathrm{dax}_{\mathrm{i}}$（ J ）to untie 10．pp．29，47＊，63
${ }^{n}$ dāhì（SE）to untie 10．pp．29，47＊，63
＂dáhí（SM）to untie 10．pp．29，47＊，63，111＊
${ }^{n} \mathrm{dani}$（SE）to get wet 52．pp．35，43，57＊
${ }^{n}$ dahi（SM）to get wet 52．pp．35，43，57＊
${ }^{7}$ daka（J）glue 117．p． 68
${ }^{n}$ daka（ J, M ）to ask for 126 ．p． 33
${ }^{n}$ daka（J）to take along 116．pp．59＊， 68
${ }^{\text {n}}$ dàkū（SM，SE，J）broom 236．p． 46
＂dak＂a（J）pus 127．pp．34，55＊
${ }^{n} \mathrm{da}-\mathrm{N}{ }^{\mathrm{T}}{ }^{\text {¹ }}$（SE）to converse 22.
${ }^{\text {n }}$ desa（SM）how 138 ．
${ }^{n}$ dasù（SM）closed 210.
${ }^{n}$ dasi（ J ）to close 210 ．

${ }^{n}$ däva（SM，SE）to jump 154．pp．38， 45
${ }^{\text {a }}$ dā－va？${ }^{\text {a }}$（SM，SE）the right hand 228.
${ }^{n}$ dā－y ${ }^{\circ}{ }^{\circ}$（SM）corn fodder，dried cornstalks 259.
${ }^{\text {ndax－yb？（ }}$（SE）corn fodder，dried cornstalks 259.
${ }^{n}$ dayu（ J ）dinner 230．pp．42，55＊， 72
${ }^{\text {n }}$ dā？ã（SM，SE，J）hand 149．pp．37， 109
${ }^{n}$ dá？ 1 （ SM, SE ）poor 44．pp． $54 *, 63,85,92$
${ }^{\text {ndā }}$ và（SM，SE，J，M）to be extinguished 227．pp．42，45，55＊，108＊
${ }^{3}$ da ${ }^{2}$ vi（J）poor 44．p．54＊
${ }^{n}$ da ${ }^{7} \mathrm{yu}$（J）mud 261．pp．42， 72
${ }^{n}$ da？ yu （J）to yell 176．pp．41， 51
${ }^{1}$ dé（ $S E$ ）to be（somewhere），to be seated 145 ．
${ }^{\text {n }}$ dëka（SE）to take along 116．p． 68
${ }^{n}$ dekà（SE）glue 117．p． 68
${ }^{n}$ dé－ni－hinì + rì（SM）wherever have I Been．p． 12

```
nde + 6 (SM) we '1l see. p. 12
ndėse (SE) how 138.
ndesil (SE) to close 210.
"deyu (SM, SE) dinner 230. pp. 42, 55*,72
nde?\epsilon (SM) to see. p. 12
"de`7yul (SM, SE) mud 261. pp. 42, 72
"dica (J) in sincerity 152. pp. 38, 44
" dicaz (J) sandal 140. pp. 28*, 35, 51, 55*
"di}\mp@subsup{\varepsilon}{iz}{(J) wing 10. pp. 35, 47*,70
ndihā (SM) in sincerity 152. pp. 38, 44
"dihž̨ (SM) sandal 140. pp. 28*, 35, 51, 55*
" dihē (SE) in sincerity 152. pp. 38, 44
"Gihę̀ (SE) sandal 140. Pp. 28*, 35, 51, 55*
"dihi (SE) to return 8. Pp, 57*, 109
n}\mathrm{ dii (SM) to return 8. pp. 43, 57*, 109
'dikã (SM, SE) banana 115.
"diki (J, M) horn 269. p. }4
"dikiz (J) short 199. p. }4
"di-kumi (J) onion 80. p. }3
n
`di-马゙ąą (M) sandal 140. pp. 28*, 35, 55*
ndisi (SE, J) cane-whiskey 81. pp. 35, 44, 71, 109
```



```
ndi}\mp@subsup{}{}{\prime}\textrm{i}\mathrm{ (J) all, finished 89. p. 44
ndịhę
n}\mathrm{ djhì (SM) wing 10. pp. 29, 35, 47*, 70
"an (SM, SE) in every place, completely 89. Pp. 44, 83
n d#ki (SE) short 199. pp. 45, 55*, 64
" dikf (SM, SE) horn 269. p. }4
" d`kI (SM) short 199. Pp. 45, 55*, 63, 83, 110*
n di ki (SM) onion 80.
# dikfl (SM, SE) seeds 75.
" d]
ndy\mp@code{il (SM) cane-whiskey 81. pp. 35, 44, 71, 109}
ndivi (SE) egg. p. 96
" dï``\mp@code{(SM, SE) all, finished 89. PP. 44, 83}
n}\mathrm{ döठ (SM, SE, J) sugar cane 249. pp. 37, 46, 108*
nd8ó (SM, SE, J) to stay, to remain 212. pp. 37, 45
n}\mathrm{ dōkō (SM, SE) zapote 239. p. 109
nookō ?\m| (SM, SE) anona 239.
#doko `inu (J) anona 239.
* dökō N&&& (SE) the black zapote 235.
"dooko tug}\mathrm{ (SM) the black zapote 235.
n}\mathrm{ dó?o' (SM, SE) trouble, calamity, a bother 252.
"dō?8 (SM, SE, J) tenate (handleless palm-leaf basket) 251. p. 37
"dūa (SM) arrow, dart 154.
ndru (SM) by day 93.
# dūu}(SE) by day 93.
```

${ }^{n}$ dūū (SM, SE, J) to become 48. p. 57
${ }^{n}$ dūčā (SM) water 144. pp. 3B, 44, 51, 63
${ }^{1}$ dūei (SM, SE) beans 17. pp. 63, 109
${ }^{n}$ dùhi (SE) hens, domestic fowl 53. p. 112*
${ }^{n}$ dūkù (SM, J) firewood 236. P. 55*
${ }^{n}$ dúsad (SM) and then 138 .
${ }^{\text {n }}$ dusu (J) tone, voice 207. p. 35
${ }^{n}$ düsü (SE) tone, voice 207. p. 35
${ }^{n}$ dūsù (SM) tone, voice 207. p. 35
${ }^{n}$ dusi (SM, SE, J) honey 5. pp. 35, 43, 83
${ }^{n}$ duta (J) water 144. pp. 38, 44, 51, 63
${ }^{n}$ dūtē (SE) water 144. pp. 38, 44, 51, 63
${ }^{1}$ duti (J) beans 17. p. 63
${ }^{n}$ duva (SE) arrow, dart 154 .
${ }^{n}$ duvi (J) by day 93 .
${ }^{n}$ dyaka (M) glue 117. P. 68

+ ga (SM, 6E) more 125. p. 33
há (SM) new 139. pp. 35, 44
häa (SM) that thing, that which. p. 12
 hàkú (SM) fence 213. p. 112* hà-ni-cà? mà (SM) something flattened 158. pp. 39, 67, 85, 108
hānù (SM) box 111. pp. 40, 72
hànū (SM) sister-in-1aw 276.

hā? (SM) foot 141 . pp. 35, 90
hà- ?1ü (SM) empty 279.
$h \bar{e}-{ }^{n}$ dühit (SE) the past year 12 .
hēe (SE) new 139. pp. 35, 44
heè ni-cimā (SE) something flattened 158. p. 67
hēe 7 iyu (SE) empty 279.
hêkũ (SE) some, a bit of 253. pp. 38, 55*
hènū (SE) sister-in-law 276.
he-Nę̨ ${ }^{\text {? }}$ th -ni (SE) to be pleased with 150. p. 38
hë? ${ }^{\text {e }}$ (SE) foot 141 . Pp. 35, 90
hiča (SM) wide 109. pp. 32, 45
hilta (SE) thorax 129.
hikà (SM) thorax 129. p. 129
hiki (SM) fist 72. pp. 44, 55*
hīkì (SM) corner 270. pp. 46, 55*
hinu (SM) to run (cont. of kūnū) 222. p. 63
hinü (SM, SE) an occasion 255. p. 74*
hinu (SM) oven 111. p. 40
hi-f乌̧? (SM) honored, respected 177. p. 111*
hio (SM) comal (the clay griddle on which tortillas are cooked) 262. pp. 42, 108*
hitte (SE) wide 109. PP. 32, 45
hitti (SM) intestines 71. pp. 44, 54*, 109
hiyd (SE) comal (the clay griddle on which tortillas are cooked) 262. pp. 42, 108*
hì ? fã (SE) to bark 176. pp. 41, 51, 63
nyaka (SM) to take along 116. Pp. 59*, 68
nyakà (SM) glue 117. p. 68
t ka (J) more 125 . P. 33
ká- ${ }^{\text {Jāà }}$ (SM) to be somewhere, to be seated 145. p. 37
kā (SM, SE, J) iron, bell 124. pp. 33, 45
kači (J) to choose 54. pp. 36, 43
kaC_{i} (J) warm, damp 87. Pp. 36, 49
kac_{i} (J) clear, clearly 15. p. 36
káhi (SM, SE) clear, clearly 15. p. 36
kàhi (SM, SE) to choose 54. Pp. 36, 43, 108
kāhỉ (SM, SE) warm, darmp 87. pp. 36, 49
kākā (SM, SE, J, M) to walk 123, Pp. 33, 45, 60*, 61, 71, 89
kākā (SE) quicklime 119. p. I08
kākà (SM) quicklime 119. p. 108
kāk
kākū (SM, SE, J, M) to be born 215. p. 89
käni (SM, SE) to put in place, to set up 36. pp. 59*, 86
kāni (SM, SE, J) to pound, to hit 25. Pp. 91, 109
kāni-ni (SE) to think 35 .
kāni ? ini (SM) to think 35 .
kasi (J) to close 210 .
käsī (SE) to close 210.
ká-s伸 (SE) to play 271. p. 33
kăsù (SM) to close 210.
kaxi (J) to nurse 7. pp. 29, 35
kākit (SM) to press, to chew 84. pp. 35, 57*, 59, 61
kāsí (SM, SE) to nurse 7. pp. 29, 35, 59*, 107
kātā (SM, SE, J, M) to sing 105. pp. 32, 60*, 61, 88
kava (SM, SE, J) to twist 220. p. 39
ka? ${ }^{n}$ da (J) to cut 146. pp. 38, 45
kā ${ }^{n}$ de (SE) to cut 146. Pp. 38, 45, 51
$\mathrm{ka}{ }^{7 n} \mathrm{di}$ (J) to explode 90.
kā ${ }^{n}$ dì (SM, SE) to explode 90 . pp. 37, 89
kā? ${ }^{\text {ya }}$ (SM) to cut 146. Pp. 38, 45, 51, 89, 109
ka? mi (J) to burn something 21. pp. 39, 48, 59*, 85
kä ${ }^{\mathrm{m}} \mathrm{mü}$ (SM, SE) to burn something 21. pp. 39, 48, 59*, 85
ká ${ }^{n u}$ (SM, SE, J, M) large 275. Pp. 59*, 84*, 85
kā 7nu (SM, SE, J) to break, to cut 274. pp. 46, 59*, 85, 110*
kę̨ą (SE) to pierce, to make a hole in 134. pp. 34, 60*

$\mathrm{k} \underset{\text { än }}{ }{ }^{7}$ द̆ ($\mathrm{SM}_{2} \mathrm{SE}, \mathrm{J}$) to talk 160 .

```
kz̨`?̨̨ k{́hi (SM) to talk clearly 15.
ke-ča`a (J) to begin 153. p, 45
ken}\mathrm{ dà (SM) to come out. p. 12
ke\overline{e} (SM) will go away. p. }9
kēe (SM) wrll eat. p. }9
kee Pis% (SM) the rabbit will eat. p. }9
kee Pisd (SM) the rabbit will go away. p. }9
kē-ha`á (SM) to begin 153. p. 45
ke\overline{-hé (SE) to begin 153. p. }45
ki\mp@subsup{c}{i}{\prime}(J) to return 8. p. 43
kìhi (SM, SE) fever 9. pp. 35, 60, 61, 88, 110
kìkū (SM, SE) to sew 217. pp. 45, 73, 89, 110
kini (SM, SE, J) disgusting, repulsive 26. pp. 60, 61%, 66, 70, 86
kisi (J) to tremble, to quiver 84.
kiti ku?u (J) animal 268.
kivi (J) day 93. pp. 38, 44
kisf (SM, SE) to tremble, to quiver 84. pp. 35, 57*
kiti= (SM, SE) animal 268. p. }1
kiti (SM, SE) to boil 197. pp, 45, 61
kitit cin (SM) to have a stomach ache 197.
kivì (SM, SE) day 93. PP. 38, 44, 71, 108
kō-" dēé (SE) to be (somewhere), to be seated 145. Pp. 37, 44, 60*, 108
ko--"disō (SE) to take, to carry away 206. p. 60%
kok% (SM) to swallow 237.
kokk (SE) to swallow 237.
kōnso (SE) to take, to carry away 206, p. 60*
koo tuka nuu (J) to be a.shamed 163.
köò (SM, SE) snake 201. pp. 45, 93, 94
köò yúčí (SM) alligator 50. pp. 32, 74
kōठ yưcri (SE) alligator 50. pp. 32, 74
kösō (SM, SE, J, M) to mount 205. p. 61*
kōyö (SM, SE, J) to pour out, to empty out 233. p. 52
kō }\mp@subsup{}{\circ}{\circ}\mathrm{ (SM, SE, J) to drink 241. P. 90
kō?8 (SM, SE, J) plate, bowl 242. pp. 102, 107
ku-a (SM) it will be that. P. 12
kuči (J) to bury ll.
kü̆cíc (SM) pig. p. }9
kūči (SM, SE) to chew 56. p. 60*
kū\mp@subsup{\varepsilon}{i}{\prime}(SM,SE) to take a bath 59. pp. 43, 60*, 71
kucci (SM, SE) to ripen 60. pp. 38, 60*, 62
ku}\mp@subsup{}{}{n}\textrm{da (J) to be (somewhere), to be seated 145. pp. 37, 44
```



```
kū-"diso (SM) to take, to carry away 206. p. 60*
```



```
kū-n}\mp@subsup{}{}{n
kū-nyà (SM) to be (somnewhere), to be seated 145. Pp. 37, 44, 60%, 108
kükà (SM, SE, J) comb 114.
kū-kảnū (SE) to be ashamed 163. p. 74*
```

kūkā nüù (SM) to be ashamed 163. p. 74*
kumi (J, M) four 155 . pp. 28, 30,38
kūni (SE) to see, to know 28. pp. 61*, 62, 71
kūni so ?ō (SM, SE, J) to hear 28. pp. 61*, 62, 71, 86
kuni (SM) to see, to know 28. pp. 12, 61*, 62, 71, 86
kinu (SM, SE, J, M) to weave 221. pp. 52, 57*, 60, 107
kūnū (SM, SE, J, M) to run 221. pp. 52, 57\%, 60, 107
kùfū (SM, SE, J) meat 178. P. 41
kū-sĭ -ni (SE) to be content 83
kū-sin sinf (SM) to be content 83 . p. 108
küsù (SM, SE, J) to sleep 248. pp. 35, 46, 57*, 61*
kūzini (SM, SE) to eat supper 29
kuti (J) to chew 56. p. 60*
kuti (J) to take a bath 59. p. 43
kuti (J) to ripen 60. p. 38
kútū (SM) safe, secure 196.
kūtù (SM) nose 267. pp. 53, 93, 108*
kūtu (SE) safe, secure 196.
kūu (SE) to die 43. pp. 102,103
kūu (SM, SE, J) to exist, to be able 48. pp. 12, 57, 62, 72, 107
kūu (SM) to die 43. pp. 42, 102, 109
kü-vàa (SM, SE, J) to make an uproar 143. pp. 36, 45
kuvi (J) to die 43. p. 42
ku-yoti (J) alligator, lizard 50, 201.

$\mathrm{k} \mathrm{u}^{\mathrm{T}} \mathrm{u}$ (SM, SE) sister of a woman 38. pp. 42, 86, 108
ku? va (J) brother of a woman, sister of a man 182 . pp. 72, 86
ku?va (J) to give 181 . p. 42
kū̧̌ (SM, SE) four 155. pp. 28, 38, 83, 108

$\mathrm{k}^{\mathbf{*}}$ akù (SM, J) to laugh 214. pp. 38, 89, 110*
k^{*} áñu (SM, J) squirrel 225 .

$k^{w a ?}$ à (SM, SE) to give 181. pp. 42, 59, 62
$\mathrm{k}^{\text {wa }}$? a (SM, SE) brother or a woman, sister of a man 182. pp. 72, 86, 108
$\mathrm{k}^{\mathrm{E}} \mathrm{a}$? nū (SM, J) to grow 275 . pp. 59*, 84*, 85

k^{w} ēka (SE) to take away 116. p. 59*
$\mathrm{k}^{\text {weeku (}}$ (SE) to laugh 214. Pp. 38, 110*
k^{*} हñu (SE) squirrel 225 .
$\mathrm{k}^{*} \mathrm{E}_{\text {g }}$ (SE) to press, to chew 84. p. $57 *$
$\mathrm{k}^{\mathrm{W}} \mathrm{e}^{7} \mathrm{nü}$ (SE) to grow 275 . pp. $84 *, 85$
$\mathrm{k}^{\mathbf{w}} \mathrm{iku}(\mathrm{J})$ to sew 217. p. 62
k^{w} iso (J) to take, to carry away 206.
$\mathrm{k}^{\text {iso }}$ (SM, SE) to puncture 208. p. 72
k"i ? ${ }_{\text {ą }}$ (SM) to bark 176. pp. 41, 51, 108*

```
14#Yi (SE) sheep, p. }9
la`kwä (SM, SE) pus 127, pp. 34, 55*, 64, 83, 107
lāt< (SM) plow. p. }2
lelG (SE) hat. p. 20
ITk' (SM) short 199. pp. 55*, 64
10%o (M) Little 19. pp. 39, 48
IG1l (SM) little 19. pp. 39, 48
lūli (SE) little 19. pp. 39, 48
Iu Plu/Lu?u (J) little 19. pp. 39, 48
mäà (SM) potential negative. p. 12
maa (SM, SE, J) that one 162. pp. 39, 51
```



```
mà ?ná (SE) drowsiness, sleep 168. p. 84*
mini (SM) puddle, p. }9
mistu (J) cat (Nahuatl loan) 272.
na- resumptive-repetitive prefix. p. }6
nāā (SM, SE, J) to get lost 164.
naaa-ni (SE) to forget 164.
naa ?in! (SM, J) to forget 164.
nāna ña?nü (SM) grandmother 156, 275.
nāná fų̛̣y (SM) grandmother 156
n\overline{a}-sat?\overline{a}+na (SM) I'm going to do it again. p. }6
nāsu (SM) none of, it isn't so (answer to a question) 204. pp. 64, 74*
na-sùu (SE) none of, it isn't so (answer to a question) 204. p.64
ni (SE) metaphorical, non-physical 30.
```



```
ni-kānì tę́?द́&-ná (SM) we traded blows. p. }9
nji (SM) completed action. p. 12
nini (J) all of, complete 89.
nifii (J) blood 258.
niz?F
nW% (SM, SE) all of, complete 89.
n^กกี (SM) blood 258. p. }5
ninì (SE) blood 258. p. }5
nu\overline{u}}\textrm{m}\mathrm{ doे (SE) trough, manger, corn measure 250.
nu-nd66 (SM) trough, manger, corn measure 250.
n<i-mà-fi? + d+dt (SM) if we can't obtain a man. p. 12
nū-mà?ná (SM) drowsiness, sleep 168. p.84*
nuni (J) corn 37. pp.63,73
nüni (SE) corn 37. pp, 63, 73
nüni (SM) corn 37. pp. 63, 73
naú (SM) if, mypothesis. p. 12
nuü (SM, SE, J) for a short time 255.
nūu} (SM, SE, J) to come down 63, p. 109
nūü (SM, SE, J) face, towards, in front of, place where, time when 166.
    pp. 50, 108
```

nūu ${ }^{n} \mathrm{df}^{3} \mathrm{v}$＂（SE）to the ege．p． 96
na－ya？$\overline{\text { u }}$（SM）at the market－place 69．p．55＊， 65
nழ̨？$\overline{\text { ̌（ }}$（SM，J）teeth 221．pp．52， 108
fiä ${ }^{\text {mū }}$（SE）sweet potato，tubular root 20．pp．39，55＊
fīa ？mù（SM）sweet potato，tubular root 20 ．pp．39．55＊
fia？nū（SM）great，aged 275．P． 85
fiaǹ（SM，SE）brother of a man 24．pp．40，55＊， $56 *, 62,72,86$
fianil sùxi＋¢（SM）the brother of that child．p． 94
fianil sư̌i＋t（SM）that younger brother．p． 94
fià－yivi（SM）people 94. p． 73
ñä－yťí（SE）world 94．p． 73
fă－yūū（SE）people 94．
గeñu（SM，SE）blackberries 169．p． 72
fii（M）ear of corn 98.
fill（SM，J）salt 99．pp．41，49， 108
finini（J）ear of corn 98.
fiffy（SM）hail 97．pp．41，49，111＊
fitt（SM，SE）sand 264．PP．33，46，55，65， 72
fivi（J）people 94.
fir ${ }^{\text {i }}$（SM）steatn－bath．p． 93
fii 71 （SM）to obtain．P． 12
filit（SE）salt 99．PP．41，49， 108
戶ifi（SE）hail 97．pp．41，49，111＊
fiñif（SM，SE）ear of corn 98．pp．83， 109
fiūhę（SE）dough 85．pp．35，49， 109
fiu－ma？na（J）drowsiness，sleep 168.
fiu－nivi（ J ）world 94.
fiūnu（SM，SE，M）net－work bag 167．pp．50，83， 107
frifiù（SM，SE）bee 175 ．
fiu（ J ）village $170 . \mathrm{pp} .41,51,72$
fiūū（SE）village 170 ．pp．41，51， 72
fiù（SM）village 170 ．pp．41，50， 72
nưù（SE）palm tree 256．p． 53
fù－ytivi（SM）world 94.
fiū ${ }^{\text {mà }}$（ SM, SE ）smoke 157. Pp．65，74， 109
fī̄ $? \overline{\text { ü }}$（SM， $\mathrm{SE}, \mathrm{J}, \mathrm{M}$ ）land，soil 159 ．pp． $51,56 *, 64,74,90$
fīt？
Nā？nù（SE）to become broken 274．p． 110^{*}
N大̨？$\overline{\text { ä }}$（SE）comrade，of the same clas 161 ．pp． 40,55
Ną̨？${ }^{\text {ą }}$（SE）to transpixe 150 ．p． 38
N11，（SE）fingernail 257. P． 53
Nini（SE）mouse 277．pp．41，46，55， 109
Ņ̛̛̛（SE）black 235．p． 52
Nप̀义̄（SE）feathers 246.
Nì ${ }^{7} \bar{\psi}$（SE）word 22．p． 70


```
+r6 (SE) you. p. 20
+ rठ (SM) you. P. 20
r66 (SM) you. p. 20
r676 (SE) you. p. 20
rül (SM) I. p. 12
```

s - causative prefix. p. 111
sā (SE, J) bird 135. p. 35
sači (J) nephew 13 .
sāhī (SE) nephew 13.
sāhy (SM) nephew 13 .
saka (SM) to divide up, to distribute 113. p. 107
sáká núū (SM) to mix 113.
sākānu ${ }^{3} \bar{u}$ (SE) to mix 113 .
sa-kini (J) to disgust 26 .
sa-kutu (J) to fill 194. p. 32
sà-nií (SM, J) corn cob 100. p. 41
sána (SM) turkey, p. 93
sàn (SE) corn cob 100. p. 41
sa-tivi (J) to err, to destroy 102. pp. 61, 71
sà́ (SM, SE) Indian, non-Spanish-speaking 46. pp. 86, 112*
sā̀ (SM, SE) rain 45. pp, 42, 62, 92, 102, 108
savi (J) rain 45. pp. 42, 62
savi (J) Indian, non-Spanish-speaking 46.
sa?ā+ná (SM) I'm doing it. p. 64
sà $7 \overline{\mathrm{u}}$ (SM, SE) to submerge 45. p. 92
sčitú (SM) to fill 194. PP. 32, 111*
se?e yani grandson 27. pp, 55*, 56*, 72
sè ?ē čáni (SE) grandson 27. pp. 55*, 56*, 72
se? ${ }^{\text {e }}$ kāsā (SM) son-in-law 137.
sè?ē kàsá (SE) son-in-law 137.
se ? \mathfrak{i} (J) foot 96. p. 49
siki (SM, SE) contrary to, on top of, concerning 270. p. 55*
sïf ${ }^{\text {PI }}$ (SE) post, leg of table 96.
$\mathrm{s}^{\prime \prime} \mathrm{P}^{\prime \prime}$ (SM, SE) leg 96 . Pp. $49,86,110$
skáa (SE) to stretch (something) 147.
skáa (SM) to stretch (something) 147.
skǔ̌i (SM) to bathe (someone) 59. pp. 60*, 111*
skucl (SE) to bathe (bomeone) 59. Pp. 60*, 111*
skítu (SE) to fill 194. pp. 32, 111*
sokō (SM, SE, J) hunger 237. Pp. 46, 108
s 86 (SE) to reply, to add 207.
stáa (SM, SE) to pull 147.
stāà (SM, SE) tortilla 106. pp. 11, 56*, 62, 72
sty? (SM , SE) to bother, to pester 150. p. 55*
stivi (SM) to err, to destroy 102. Pp. 61, 71
stาvi (SE) to err, to destroy 102. pp, 61, 71
succi/+i (SM) child. Pp. 13, 93, 94
safkg ($\mathrm{SM}, \mathrm{SE}, \mathrm{J}$) tall 202. pp. 52, 56

```
sūkự (SM, SE) neck 203. p. 52
Kanu (J, M) cigarette 223. pp. 40, 52
G}\mp@subsup{}{}{\textrm{a}}\mp@subsup{\textrm{di}}{7}{7}(\textrm{SM})\mathrm{ to pulverize, to grind 151.
sii (SM) aunt 5l. pp. 35, 43
gii (SM) tough 6.
Giko (SM, SE, J) twenty (in the higher numerical sequences of the
    vigesimal system) 238. pp. 55*, 56*, 62
\xiiktl (SM, SE) niece 244. p. }5
_̌ini (SM, SE) supper 29. pp. 86, 111*
GiNì (SE) noge 267. Pp. 53, 108*
kita (J, M) tortilla 106. pp. 11, 55*, 56*, 62,72
rita (J) to pull 147.
Ziti (J) nose 267. p. }5
gizi (SE) aunt 51. pp. 35, 43
sy̨?¢¢ (SM, SE, M) bright, shining 23. pp. 62, 71, 82*
能?4 (SM, SE, J, M) money, bit 23. pp. 48, 62, 71, 82*, 112*
tači (J) to send l.
tacel (SM, SE) wind 58. pp. 38, 55*, 109
tack nici-1 ?i}\mp@subsup{i}{}{3-2}\mathrm{ (SE) strong wind. p. 96
táhi (SM) to send 1. p. 112*
tahi (SE) to send 1. p. 112*
taka (SE) each. P. }9
takä "divi (SE) each egg. p. 96
täkà (SM, SE) nest 118. pp. 33, 88
tati (J) wind 58. pp. 38, 55*
táu (SE) to owe 44. p. 54*
taū (SM) to roast, to toast 47.
tau (SM) to owe 44. pp. 54*, 85, 92
tava (SM, SE) to draw out, to disrobe 187.
tavā-ni (SE) to be courageous, to dare 187.
tävă ?inil (SM) to be courageous, to dare 187.
ta-yoेo (SE) throat 232.
ta`? mu (SM) to become broken 274. p. 110*
t\̧̨?ą (SM, J, M) comrade, of the same class 161. pp. 40, 51,
    55, 86, 94
tą?ằ (SM) to transpire 150. pp. 38, 108
tee (SM) and. p. 12
tè-n\ -kēe}\mp@subsup{}{}{\textrm{A}}\textrm{da}\mathrm{ (SM) and came out. p. 12
tē7yù (SM, SE) to spoil, to rot 278. pp. 46, 67, 85, 108
tiči (J) stomach 2.
tizt (SE) avocado 16. pp. 38, 43, 48, 73
tici= (SM) avocado 16. pp. 38, 43, 48,73
tika (J) grasshopper 130.
ti-kaka (J) crow 120.
ti-kava (J) plum 183.
tiko (M) onion 80.
```

ti-kwiti (J) potatoes 265 .
tifi (J) mouse 277. pp. 41, 46
tiffi (J) fingernail 257, p. 53
tí-ff ?1 (SM, SE) shunk 95. p. 40
ti-fii ${ }^{\text {i (}}$ (J) skunk 95. p. 40
tifiu (SM) fingernail 257. p. 53
tīnü (SE) foam, suds 174. p. 110*
tiffu sini (J) stars 224. p. 63
tī-ñú (SM) hens 224 . pp. 63, 65
tī-fìư Einí (SM) stars 224. p. 63.
ti-suku (J) to wrap around 3. pp. 34, 55*
titi (J) avocado 16. p. 38
tivi (J) to play a wind instrument, to blow 103. p. 42
ti-yâká (SM) fish 122. p. 33
tī-yà ? $\mathrm{G}^{(S M)}$ lice eggs 70. pp. 54, 112*
tī-y $\overline{\mathrm{k}}^{\mathbf{k}}$ (SM) ant 200 . pp. 33, 54*, 66, 73, 88
ti-yd? (SM) flea 229. pp. 54*, 66
ti-yư̌i (SM) powder, something powdered 264.
ti-yükig (SM) fly 245 .
tī- ? īnà (SM) dog 165 .

ti- ? 14 (SM) empty 279.
ti-? iyu (J) empty 279.
ti ? vi (J) to suck 101. pp. 42, 44, 73
ti - (SM, SE) gyal shaped, thing, animal 266., 268, p. 12.
$t^{\bar{n}}{ }^{\text {da }}$ yau (SE) fiber of the century-plant 148.
ti- ${ }^{n} \mathrm{~d} \sigma$? $\bar{\circ}$ (SM) trouble, calamity, a bother 252 .
tị-hání (SM) grandson 27. pp. 43, 55*, 56*, 63, 72
ttkä (SM, SE) grasshopper 130 .
thilkàká (SM) crow 120 .
tīlkà ? va (SM) plum 183.
t̄-kùva (SE) butterfly 185.
tī̈nkū? ni (SM) group, herd 32. pp. 84*, 110*
tī-kü? ${ }^{-1}$ (SE) onion 80 .
tī-k"áa (SM) butterfiy 185.
titk"tif (SE) potatoes 265

tīní (SM) mouse 277. pp. 41, 46, 55, 109
tilsà (SM) bird 135. pp. 35, 88
tīvi (SE) to play a wind instrument, to blow 103. pp. 42, 61
tivi (SM) to play a wind instrument, to blow 103 . pp. 42, 61
tif ? $\mathrm{vil}^{\text {(}} \mathrm{SM}, \mathrm{SE}$) to suck, to suck blood, to practice
witcheraft 101. pp. 42, 44, 55, 61, 73
tōō (SM, SE, J) ą span 195. pp. 45, 109
tì - ${ }^{n} \mathrm{~d} 6^{?}{ }^{\circ}$ (SE, J) trouble, calamity, a bother 252.
tūkā nūù (SM) shame 163.
tutu (M) firewood 110. pp. 54*, 61
tứt (SM, J) black 235. p. 52

```
tùपָ (SM) feathers 246.
ty̨ ?\overline{q} (SM, J, M) word 22. pp. 70, 86
tyaka (J, M) fish 122. p. }3
tya?vi (J) to pay 69. pp. 55%, 67
tya?vi (J) lice egge 70.
tya\mp@subsup{}{}{7}yu (J) to spoil, to rot 278. p. }6
tyoko (J) ant 200. pp. 33, 45, 54*, 66, 73
tyo?o (J) flea 229. pp. 54*, 66
tyuku k"i (I) fly 245. p. 54*
vāà (SM, SE) noisy 143. pp. 36, 45
vaci (J) to return 8. p. 43
vahi (SM, SE) is coming 8.
và `a (SM, SE, J) good, fine 184. P. 90
va?u (SM) coyote. p. }9
vë?e- (SM) house. p. }9
vicr (SM) naked 57. p. }6
wi\r (SE) naked 57. p. }6
vikठ (SM, SE, J) cloud 219. p. 45
vn6 (SM) little lizard 273. pp. 39, 46, 111*
vilü (SM, SE) cat 272. pp. 39, 46, 70, 111*
viso (M) to take, to carry away 206. p. 60%
viri (SM, SE, J) sweet 5. Pp. 35, 83
vixi (SM, SE, J) grey hairs 4. pp. 60*, 108
tyà (SM) saint, god, sacred personage 193. p. 51
yak (SE) tongue 189. Pp. 42, 111*
yáa (SM) tongue 189. pp. 42, 111*
yāā (SE) music 192.
yäà (SE) saint, god, sacred personage 193. pp. 51, 108*
yäà (SM, SE, M) ashes 191. p. 108*
yäà (SM) music 192.
yākù (SM) some, a bit of 253. pp. 38, 46, 55*
yák"a (SM) crooked 142. pp. 36, 55*, 64, 88, 111*
yak*a (SE) crooked 142. pp. 36, 55*, 64, 111*
yani (J) brother of a man 24. pp. 40, 55*, 56*, }7
yätà (SM, SE) back 107. pp. 54*, 56*, 72
yäū (SM, SE) century-plant 66. pp. 55*, 72, 109
yauu (SM, SE) hole 67. pp. 12, 42, 55*, 65, 94, 108
yāu kāvā (SM) cave 67. p. 12
yāu ?{Nu (SE) barbecue-pit 111. p. 40
yau\ ?iso the cave of the rabbit. p. }9
yavi (J) century-plant 66. p. 55*
yavi (M) hole 67. pp. 42, 55*
yāvü (SE) century-plant 66. p. 55*
yā?а̄ (SM, SE, M) chile pepper 190. pp. 42, 56*, 107
ya?mi (J) sweet potato, tubular root 20. pp. 39, 55*
yà?ū (SM, SE) pay, wages 69. pp. 55%},65,6
```

```
yêNù (SE) box ll1. pp. 40, 72
yikï (SM) bone, shell, horn 74. pp. 33, 44, 55*, 70
yf
ylki (SM) cubit 73. pp. 33, 44, 73
y7ki (SE) fist 72. pp. 42, 55*
y7k
y彳\overline{kī (SE) bone, shell horn 74. pp. 33, 44, 55*,70}
yuky (SE) corner 270. pp. 46, 55*
```



```
yiti (SE) intestines 71. pp. 44, 54*, 109
+y%/+o (SM) we. pp. 12, 13
Yodocono Mixtec place name 211.
yōkō (SM, SE) ear (of grain) 198
yōkठ (SM, SE) honey-bee, honey-comb 240. pp. 54*, 72, 107
y66 (SM) we. pp. 12, 13
yöd (SM, SE) moon, month 250. p. 108*
yoó (SM) throat 232.
yoso (in place names of Mixtec origin) plain 211.
yosठ (SM, SE) grind stone 247. p. 112*
Yosonduchi Mixtec place name 211.
yöo (SM, SE) rope, cord, root 231. p. 56*
yuxà (SM) river 108. pp. 32, 44
yü`i (SM, SE) powder, something powdered 264. pp. 32, 46, 55,
    64, 72, 109
yū\mp@subsup{C}{i}{*}
yühăg (SM) dough 85. pp. 35, 49, 74, 109
yuhiz (SM) to bury 11. pp, 61,89
yúk\overline{q}/+q(SM) that thing. p. 13
yūkū (SM, SE, M) mountain 77. Pp. 44, 49, 54*, 55, 56*
    65, 73, 88
yukuü "dívf( (SE) egg mountain. P. }9
yukü la 2-1 脑琣(SE) sheep mountain. p. }9
yūku (SM, SE) bush, plant, shrub 128. pp. 34, 45, 108
yūkù füù (SM) palm tree 256. P. }5
yükỳ (SM, SE) row, furrow 132. pp. 34, 55*
yunu (J) net-work bag 167.
yünü (SM) tree 110. Pp. 40, 51, 54*
yüNū (SE) tree 110, pp 40 51 54*
yuszz (M) dough 85. pp. 35, 49
yùte (SE) river 108. pp, 32, 44
yuti (J) powder, gand, powdered 264. pp. 32, 46
yuti (M) sand 264. Pp. 32, 46
yütù (SM, SE) tump-line 234. pp. 32, 46, 54*, 73, 109
yuty (J) tree trunk 110. pp. 40, 51, 54*
yūū (SM, SE) straw mat 68. pp. 43, 55*,65
yuvii (M) straw mat 68. p. 43, 55*
yú?a (SM) ice, frost 179. p. 111*
yü7a (SM) thread 180. pp. 45, 73, 108*
```

yu? ma (J) smoke 157. pp. 65, 73
yü? (SM, SE, J) mouth 226. pp. 42, 45, 55*, 56*, 71, 107
yù ? k ($_{\text {(}}^{2}, \mathrm{SE}$) to be afraid 62. PP. $54,85,112 *$
yū ? và (SE, M) ice, frost 179. p. 109
yu ? và (SE, M) thread 180 .
yu ${ }^{?}$ vi (J) to be afraid 62. p. 85
?a- ${ }^{n}$ divi (J) the heavens 93. p. 71
? a- ${ }^{n}$ divf (SM) the heavens 93. p. 71
${ }^{?} \bar{a}-{ }^{n}$ divf (SE) the heavens 93. p. 71
$7 \bar{a}^{n}{ }^{n}$ dūh $(S M)$ the past year 12 .
${ }^{9}$ affr (SM) heart 188. p. 42
? anva (SE) heart 188. p. 42
$\bar{i} \bar{i} \bar{c} \bar{i}$ (SM, SE) road, direction towards 18. pp. 65, 109
"iki (M) bone 74. Pp. 44, 55*
Pikit (M) squash 76. pp. 55*, 72
?iku (M) leaf, leafy branch, sprig 236. p. 55*
Pikū (SM, SE, J) yesterday 79. pp. 34, 107
Pina (J) dog 165 . pp. 31*, 40,86
?iña (SE) dog 165. pp. $31 *, 40,86,102,108$
Pína (SM) dog 165 . pp. $31 *, 40,45,86,102,108$
?ini (J) metaphorical, non-physical 30. p. 65
?ini (SM, SE) afternoon, early evening 29. pp. 86, 109
คīī (SE) insides 30. pp. 55*, 65
pini (SM) insides, non-physical, metaphorical 30. pp. 55*, 65
?inū (SM, SE) cigarette 223. pp. 40, 52
Piffu (J) foam suds 174. p. 72
Pifū (SM, SE, J, M) thorns 17I. pp. 41, 51
pīnu (SM, SE, J, M) six 173. p. 65
${ }^{7}$ isa (M) the day after tomorrow 136 .
pisa (SE) the day after tomorrow 136. p. 111*
písa (SM) the day after tomorrow 136. p. 111*
? í-siki (SM) to play 271 . pp. 33, 46
Pīsठ (SM) rabbit. P. 94
?īū (SE) deer 209. pp. 54*, 73, 88, 108
?īsù (SM, J, M) deer 209. 'Pp. 54*, 73, 88, 108
?i-sukey (J) to wrap around 3. p. 55*
${ }^{2}$ iti (J) road, direction towards 18.
(${ }^{\circ}$) Itufioso Mixtec place name 211 .
Pi Pa (SM) saint, god, sacred personage 193. pp. 51, 91, 108*
っ̄pyà (SM) saint, god, sacred personage 193, pp. 51, 91, 108*
${ }^{\mathrm{T}} \mathrm{ii}$ (J) nine 104. Pp. 49, 77
${ }^{\text {P }} \mathrm{jki}$ (M) seeds 75.
${ }^{7 \bar{q}^{n}} \mathrm{ga}{ }^{\mathrm{n}}$ divì (SE) another egg. p. 96
${ }^{\text {PTHTK }}{ }^{\text {n }}$ divi (SE) one egg. p. 96
䧻 (SM SE) nine 104. pp. 49, 77
${ }^{7}{ }^{\text {on }}$ de (SM) where. pp. 12, 23
? Kk ($\mathrm{SM}, \mathrm{SE}, \mathrm{J}$) twenty 238. p. 33

```
\({ }^{2}\) ūì (SM, SE, J, M) three 31. pp. 65, 72
7 ū̀ (SM, SE) two 42. pp. 42, 43
```



```
?uvi ( \(J, M\) ) two 42. pp. 42, 43
\({ }^{2} \bar{q}\) ? \({ }^{\text {I }}\) (SM, SE, J, M) five 263. pp. 53, 90
```

Index of Cuicatec forms
Cēeno sister－in－law 276．p． 67
ce $7 E$ vifio to eat supper 29.
 xi－kī̀ \bar{q} grandmother 156.
と̄i－ 1 āākī a sound 143 ．pp．36， 45
とiff và wages 69．p． 67
Zyāādè sugar 5.
とクīiya tongue 189．p． 42
dāādā son－in－1aw 137.
dáak̀ nephew 244．p． 52
dāave thunder 45．pp．42，62，92， 108
dā－hā̀à？a gift 181 ．
dāiyā dénō granddaughter 27．pp．43，55＊，56＊， 72
dāiyā hifin 6 grandson 27．pp． $55 \%, 56 *, 63,72$
dà－kàa $\chi_{\bar{i}}$ to boil 9．Pp．35，60，61，88， 110
dā－kūata to fill 194．p． 32
dà－kčuy to dry 243．p． 52
dà－n7de ？${ }^{\text {en to }}$ thew，to dance 151 ．pp． 38,90
dā－tù̀vi to destroy 102．Pp．61， 71
dā－$?_{\mathrm{k}} \mathrm{kitita}_{\text {to }}$ to grow 109 ．pp．32， 45
dà－${ }^{\text {niqu }}{ }^{?} \overline{4}$ to move，to stir 34.
dāiz a drop 7．Pp．28，30，31＊， 107
dāi－nkūuve rain drops 45．Pp．28，30， 42
diì－dà̀vā to clean 64.
dīitū full 194．pp．32， 67
dī－$-\bar{u} \bar{u} v e \bar{t}$ twins 42 ．
did－ndo？s to bother 252.
dijs eir？ma to flatten 158．Pp．39，85， 108
difit？vapa to be afraid 62．p． 85
dij？mā leg 96．pp．49，86， 110
die？ye teeth 221．Pp．52，112＊
dūūdē agunt 51．pp．35， 43
dū̆̀dú fur，feathers 246 ．p． 46
dūūtū noвe 267．Pp．53，108＊
dūūvī mouthful 226．pp．42，45，55＊，56＊，71， 107
hāākā roof－pole 121．p．55＊
hāāk twenty（in the higher numerical sequences of the yigesimal system） 238.
hẵ six 173 .
heècè wing, arm 10. pp. 29, 35, 71
heend to run (pr of kánù) . p. 63
hēēte intestines 71. pp. 44, 54*, 109

híĺcư river 78. P. 111*
hīikù hill 77. pp. 44, 49, 54*, 65, 73
hīima salt 99.
hîinō insides, non-physical 30 . pp. $55 *, 65$
hīina insides (variant of previous form). p. 15
hiilyö? bamboo 259.
hiiva hole 67. Pp. 24, 42, 55\%, 65, 108
hîiva straw mat 68. pp. 55*, 65
hīivä yáva cave 67. pp. 24, 55*
hiivà century-plant 66. pp. 55*, 72, 109
hîy
hưux niece 13. p. 63
hūūvē the day 93 . pp. 38, 44, 71, 108
hī $\overline{\overline{4}}$ five 263. PP. 53, 90
i- continuative or present. p. 15
i-dicickàni+ dë he will hurry. p. 30
i-hứkù stake 236. p. 55*

i-nā-dă-kùukü+dē he will decorate something. p. 15
i-ncaaka? ladder 121. p. 68
i-ndúa trough 250.
$\bar{i}-n \frac{T}{i}$ roasting-ear 100 .
i-yáka? pine tree 121. p. 55*
$\bar{i}-y a ̈ a ̀ a ̀ ~ a r r o w, ~ d a r t ~ 154 . ~$
i-yêíyè ashes 191. Pp. 31, 108
i- ? yāā? chile pepper 190. pp. 42, $56 \%, 107$
$\bar{i}-7$ yuíatù tump-1ine 234. Pp. 32, 46, 54*, 73, 109
+kä more 125. p. 33
kā -kū- ? nüù to put in 33 .
kâ-ndì̀? và to frighten 62. pp. 54, 85, 98
kä̈-ndừ to leave (something) 212. pp. 37, 45
kā-nkứ to grind 220. pp. 39, 111*
kā-vāà to recite prayers, to chant 186.
kā- ? kááká to operate (something) 116. pp. 59*, 71, 88, 111*
kà- 7 kāākā to divide up 113. Pp. 59*, 107
kä- Pkúlina to bathe (someone) 59. pp. 30, 71, 74, 111*
käă- ? yé? ${ }^{\text {à }}$ to burn (something) 119, 172.
káká to walk 123. Pp, 33, 45, 60*, 61, 71, 89, 111*
kákà comb 114. p. 111*
kāākā to ask 126. pp. 33, 51, 60*
kāākā quicklime 119. p. 108
káanù to run 221. pp. 52, 57*, 60, 107, 111*
kāātā to sing 105．pp．32，60＊，61， 88
káava to jump 154．pp．38，45，111＊
kāā？vä brother 182．pp．72，86， 108
kā？à foot 141 ．pp．35， 90
kảa to give，to sting 181．pp． $42,59,62$
kā？a kứitü to get warm 197 ．
kā？mà̆ kwāā to swear，to testify 217．pp．45，62，73，89， 110

ketr mosquito 49．p．31＊
k交？妾 to go 133．Pp．34，51，60
$k \bar{q}{ }^{9}$ à từ to go again 255.
kō－nỳut to dress oneself 254 ．p． 53
kò－nèe to stay（somewhere）145．pp．44，57\％， 108
kū－cii to come 8．pp．43， 109
$k \bar{u}$－čìk
kü－nkö？ \bar{o}（ku－nkā？${ }^{\text {a }}$ ）to begin 153．p． 45
kū－n7däa to pull，to guide 147．pp．55＊，56＊
kū－tả？a to seize 149．pp．37． 109
kī－yàdō to sleep 248 ．pp．35，46，61＊
kús snake 210 ．p． 45
kūu kaỉ gword．p． 98
kừ to stretch oneself 147 ．
kūi bell 124．pp．33，45， 98
kūu $k^{\text {Wijiyo }}$ lance．p． 98
kū̀̀－ntưúmi four bits，i．e．fifty centavos．p． 30
kūū dīyứ？$n \bar{̣}$ ？lanita de agua（river algae）128．pp．34，45， 108 kūū－t嵈 ax 124．p． 98
kū̀kù to burn 119 ．p． 108
kưưna dīi to ripen 60．pp． $38,60 *, 62,112 *$
künil to explode 90 ．pp．37， 89
kû̀no to plant，to sow 254．pp． $53,62,71$
küùvà to be hidden（of the sun） 65 ．
küùva to arriye descending 63．p． 109
kuiuva ？diti to become calm 83．p．82＊， 108
kuuve to complete 48 ．pp．62，72， 107
kūtuvē kāà ？vî̄nō to be disgusted 26．pp．43， 86
kūüve kūūtù to get warm 197．pp．45，61
kū̄̄e $\mathrm{k}^{w i} \mathrm{i}$－náa to be ashamed 163.
kūūe náa to forget 164 ．
kūūvē ndưákù to be foined 14．pp．36，43，55＊， 73
kūūve váa to make noise 143．p． 36
kưuve ${ }^{7}$ yāảka to be slobbery，to slobber 112．p． 88
kúa ？vè sister 38．pp．42，86，108，111＊
kíp to drink 241．pp．90，111＊
ki？${ }^{2}$ plate，bowl 242. p． 107
k＂̄̀े？four 155．pp．30，38，83， 108
kự̆－hāaku eighty 155．pp．83， 108
kṭ̛̆na to take a bath 59．pp．30，43，60＊，74，111\％
kị？${ }^{4}$ chicle 88．P． 49
$k^{\text {w }} \overline{\mathrm{a}}$-ven a ą ${ }^{\text {a }}$ place before 166 .
$k^{\text {wabā }}$ to weep 143. pp. 36, 45, 56*, 57*
$\mathrm{k}^{\text {wadad }}$ to wind up 3. pp. 34, 48
$k^{*} \overline{\text { eqa }}$ to pierce, to make a hole in 134, pp. 34, 60*, 82*
$\mathrm{k}^{\text {" }}$ 光à place, time 166 .
$k^{\boldsymbol{*}}$ èè-kúvè to rain 45 .
k^{w} Ę̨̌ ? to break 146. pp. 38, 45, 51, 89, 109
$\mathrm{k}^{\mathrm{F}} \mathrm{e}^{\text {? }}$?
$k^{\text {"Tijk }}$ hunger 237 . pp. 46, 62, 108
$k^{\text {wind }}$ to look at 28. pp. 61*, 62, 71, 86
làatū plow. p. 20
mẳa oneself 162. pp. 39, 51
nā- resumptive-repetitive prefix, p. 64
nä-dà-kùukū to adorn 271. pp. $15,33,46,98$
nā-dīí? và to pay 69. p. 67
nā-diji-hái to moult (of fowl) 139.
nā-dipí cactus-beex 81. pp. 35, 44, 109, 111*
nā-dī? honey 5. pp. 35, 43, 83
nā-hāākō slope, hillside 77. p. 88
nä-hüūe the heavens 93.
nā-nāā in front of 166. pp. 50, 108
nā-ndàka to find 116.
nä-ndūūc̄i to awaken. p. 29
nā-ndūūvī ?vīikū to bless animals 48. pp. 59*, 107
nā-n? dáätī dè he loosened it again. p. 64
nä-n? dùùī to be extinguished 227. pp. 42, 45, 55*, 59*
nā- ?ņ̨̧̨̧ín to open 21 . pp. 44, 64, 85
nä-? téè ${ }_{\text {l }}$ to loosen 10.

nā-? yä to empty 279.
nąą? mí to present. p. 99
n<̧̣? fixewood 110. pp. 40, 51, 82*, 111*
nę̣?
ną̈? ${ }^{\text {à }}$ nitino to breathe 176 .
ndá fiber of the century-plant 148. pp. 37, 45
ndākà to get, to find 116. pp. 59*, 71, 88
ndāakū? sandie 140. pp. 28*, 35, 51, 55*
ndāāā to choose 54. pp. 36, 43, 63, 108
nder ?yè? peach. p. 24
ndīikū twenty 238. pp, 33, 55*, 56*, 62
ndōōy year 260. p. 46
ndud sugar cane 249 . pp. 37, 46, 111*
ndūũ all $89 . \quad \mathrm{Pp} .44,83$
ndūu cord 231 .
ndūū \mathfrak{x}_{7}^{7} to awaken 10. pp. 63, 77
ndū̄dü word 207. p. 35

```
ndūükü with 216. p. }3
ndūūku twig, switch 236. pp. 46, 55*, 98
ndūūkù dTi\yū a little switch 236. p, 98
ndưulku chiremoya, a_tropical fruit 239. pp. 98, 109
ndūùkū mę̨`द̨ anona, a tropical fruit 239. Pp. 98, 109
ndūūtē egg, fruit, vegetable 266. pp. 54*, }9
nduūtē há? Ei nuts. p. }9
ndūūte kiǰ?y仑े? thorn-apple. p. }9
ndüütē y栘 blackberries 169. p. 111*
nduūte ?nę̧ę blackberries. p. }9
ndūutè ?vi`?i peach 183. p. 98
ndưưtē ? yāākū onion 80.
ndüuva to arrive from above 63. p. 109
ndūūvè ?vīikū to bless 48. pp. 59*, 72, 107
ndứ?ve eruption of the skin, pimple 39. Pp. 55*, 111*
nę`?
nín\< corn 37. pp. 63, 73, 73*, 98, 111*
nịinco ndūč pozol, hominy eaten as a vegetable 37. p. }9
nųù nine 104. pp. 49, 77
nप̄प్రె\mp@code{̨ avocado 16. PP. 38, 43, 48, 73, 73*}
nưप̄nę̨/{ beans 17. PP. 43, 48*, 63, 73*, 109
nư\̨nę̨/k wrater 144. Pp. 38, 44, 51, 63
n`\mp@code{dáká to sweep 121. P. 55*}
n?dāaka orchids. p. }9
n ?dáka nừtine name of a specie of large orchid. p. }9
n?daati to loosen. pp. 64,98
n? dáto? ? tomato. p. }9
n7dáátū vàakū ped-tomatoea. p. }9
n? dùuर्वं to awaken (someone) 10. p, 77
sa-animal prefix. p. 16.
sa}-7\overline{il}\mp@subsup{}{}{\prime}\mathrm{ mà skunk 95. p, 40
tǎata tile 107. Pp. 54*, 56*, 61, 72, 110*
tāāva/tāvā much. p. 24
tāāvē a pile 40. p. }5
tāà?và to send things 181. p. 42
ta`a hand 149. pp. 37, 109
téce to give 1. Pp. 33, 112*
tiik\delta a little hill 77. pp. 49, 54*, 55, 56*, 73
tiik"a thorax 129. p. }3
tiik"a grasshopper 130.
```



```
tînō màà underwear 222. p. }9
tî̀nò yüùdo blanket 222. p. }9
ti\overline{ivi}
t\overline{invi}}\mathrm{ nęę to sprinkle, to spatter 144. Pp. 38, 44, 51
t\overline{ii}
tù-víinu}\mathrm{ to disgust, to offend 26. pp. 43, 60, 66,70
```

tưmí nyąą २̄̄iyù full moon 250.
tuth soot 235. Pp. 46, 52
tyááká banana 115. P. 67
vāa pr. of $2 \mathrm{k} \mathrm{k}_{\text {iindi }}$ to be seated 145. p. 108
vẹ̄ivē̃ hominy. p. 24
viín ${ }^{\text {afternoon, early evening 29. Pp. 86, 109, 111* }}$
yäăct dough 85. Pp. 35, 49, 74, 109
yáká pine wood 121. Pp. 55*, 68
yāāk"̈à pus 127. Pp. 34, 55*, 83, 107
yäăǹ net-work bag 167. Pp. 50, 72, 83, 107
yāātá hìivà herb. P. 98
yāātā kwāā name of an herb. p. 98
yäàtà leaf. P. 98
yāàtà m? báa milky juice exuding from certain herbs. p. 98
yڭ̧ thorns 171. Pp. 41, 51, 111*
yst village $170 . \mathrm{Pp} .41,51,72,111 *$
yद̣? ${ }^{\text {át }}$ gtick 110. PP. 40, 51, 82*, 98, 111*
yद̣ ${ }^{7}$ दे fire 172 . Pp. 41, 51, 89, 111*
y̧̧tact ndilya the coast. P. 98
yạ̄ $\urcorner \frac{1}{4}$ ndiînd $? ~ \underline{a}$ digging -stick. p. 98
yą̣ P द̨ ndū̀̀tè ? sand 264. Pp. 32, 46, 55, 65, 72, 91, 98, 109

ydidid grind stone 247. p. 112*
yūdd 1 1 in hair of the head 246. p. 46
yádia? plain 211 .
yduki squash (in various phrases) 76. pp. 28*, 49*, 55, 72
yđukiū ndūūk a apecie of squash, calabacita chompa 76. p. 98
ydifkū yūùnù? a specie of squash, calabacita tierna 76. P. 98
yofikù ha? ái a a specie of squash, chilacayota 76. p. $98,11 k^{*}$

yừkì? summer equash, calabacita 76. Pp. 72, 82*, 83, 98
y
yứtà meat 178. PP. 41, 112*
yữuè toe-nail 41. P. 65 .
yefr ear of corn 98. Pp. 83, 109, 111*
yజ̛̀ h hail 97. pp. 41, 49
yquine road 18. Pp. 65, 109, 111*

?- non-reflexivizer prefix p. 77
? dáakà nest 118. PP. 33, 111*
? dákk6 a pile 77. PP. 49, 55, 56*, 82*, 88
? dîín ${ }^{\text {brother } 24 .}$ pp. 40, 55*, 56*, 62, 72, 82*, 86
${ }^{2}$ day fingernail 257. p. 53
${ }^{\circ}{ }^{-}$?

$\boldsymbol{r}_{\text {iiko }}$ louse 200. PP. 33, 45, 54*, 73, 88
? $\overline{\mathrm{i} i \mathrm{i}} \mathrm{c}$ y yesterday 79. pp. 34, 107
Pî̀nu three 31. pp. 65, 72
Tīite animal 268.
? iival thread 180 . Pp. 45, 73, 111*
7 iiva market-place 69. Pp. 55*, 65, 67
7 Î́y sand-flea 229. pp. 54*, 111*
7 iiyò squirrel 225 .
?īiyd moon, month 250.
? $\overline{\mathrm{i}}$?vā ice, frost 179. p. 109
? īi.? yo rope 231. p. 98
${ }^{2}{ }^{1 i}{ }^{7}$ yō kừ chain. p. 98
?īiyà people 193.
? iyyà n ? díiko saints 193.
? firy stars 224. Pp. 63, 65
? kā-kū- ? yāătú to tie 234. p. 54*
?käädí to shake (something) 84. pp. 35, 59, 61
? kāāk to cut (firewood) 113. p. 107
? kaakù ną̨̨ to prepare little by little 218. pp. 89, 107
?kę̨ąn푸 to set up, to stand up, to erect 36. pp. 59*, 86
?kł̨दृyt to laugh. p. 98
${ }^{?}$ kūuci to plant, to sow 11. pp. 61, 89, 110
${ }^{?}$ kūūni to see 28 .
?kūūni yçą to be born 172 .
${ }^{7}$ kuuvè to die 43. pp. 42, 109
?kiti ? mi to set fire to 21. pp. 39, 48, 59*, 85, 111*
${ }^{7} \mathrm{k}^{\mathrm{F}} \mathrm{a}$ a to tpin 131. p. 60*
? k"Ei crooked 142. pp. 88, 111*
$?_{k}{ }^{\prime \prime}$ Findi to be seated 145. Pp. 60\%, 108
2 k windi to sit down 145. pp. 44, 60*, 108
? 1if little 19. PP. 39, 48, 111*
? mixi sweet potato, tubular root 20. pp. 39, 111*
? nęéentiiyg to order, to command 92 .
? nü̧̆ hiinठ to think 35 .
?tēēē to untie, to loosen 10. p. 71
?tefeci to loosen. p. 29
?tiiku top, summit 77, pp, 54*, 55, 56*, 73, 82*
? tyīude mouse 277. p. 67
?ūùvè two 42. Pp. 42, 43
? vī?i fruit 183.
? yádá bird 135. Pp. 35, 54*, 88, 111*
?yāak fish 122. p. 33
? yaakō fly 200. Pp. 33, 45, 54*, 88
? yánà dog 165 . pp. $31,40,45,86,108,111 *$
? yáate lizard 50 . pp. 32, 74
? yáává butterfly 185. p. 92
${ }^{7}$ yą̨̆? me smoke 157. pp. 65, 74, 109
${ }^{?}$ yéciya k "a? a? mountain lion 176. pp. 31, 41, 111*

? yब̨? ?
${ }^{7}$ yūūè? fist 72. pp. 44, $55 *$
${ }^{7}$ yūū to fry 9. pp. 35, 61, 88
${ }^{7}$ yūuxì? cubit 73. pp. 33, 73
${ }^{7}$ yūùdè mouse 277 . pp. 41, 46, 55, 67, 92, 109
${ }^{7}$ yưudu? horse 209. pp. 54*, 73, 88, 108, 111*
${ }^{7}$ yúqua wind 58. pp. 31, 38, 55*, 109
? yģna fox 165. Pp. $40,86,108,111 *$
Index of Trique forms
$a^{3}{ }^{5}{ }_{9} i_{i}{ }^{3}$ bitter. p. 25
$\mathrm{a}^{3} \mathrm{ni}^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to revolve 116 .
$\mathrm{a}^{4} \mathrm{maz}^{3-4}$? a couple of 161 . pp. 40, 51, 86
$a^{3} \mathrm{ta}^{3} \mathrm{~h}$ the day after tomorrow 136 .
$a^{3} t_{\text {tą }}{ }^{4-3}$ hail 97 . Pp. 41, 49
$\mathrm{a}^{3} \mathrm{t}^{4-3}$ blackberriee 169. p. 72
a^{3} tą ? z^{4-3} foam, sunds 174 . p. 72
$a^{3} \mathrm{wi}^{3}$ head 41. p. 65
$\mathrm{a}^{3}{ }^{\text {? }}$ ngo ${ }^{2}$ another 253. p. 55*
ci^{5} tough 6.
c_{i}^{3} a drop, small quantity of 7. p. 29
عali-2 valley, canyon 108. pp. 32, 44, 91*
とa $^{\prime}$ a (Co) river 108. pp. 32, 91*
Eehe ${ }^{3}$ path 123. p. 78
zo^{3-5-4} soot 235 . pp. 46, 52
Ku_{3}^{3-4-3} powder 264. pp. 33, 46, 92, 109
$\mathrm{cu}^{3}{ }_{\mathrm{hzi}}{ }^{2}{ }_{\mathrm{kihf}}{ }^{5-4}$ peanuts 74. p. 91*
da^{3} plain 211.
$\mathrm{da}^{3}-\mathrm{zdu}^{3} \mathrm{ne}^{3}$ Trique place name 211.
da ${ }^{3} \mathrm{ra}^{2-1}$ tortilla 106 . pp. 62, 68, 72
da ${ }_{3}^{3} \mathrm{cu}^{4-5} \mathrm{cy}^{3}$ sawdust 264 . pp. $54,65,72,109$
$\mathrm{da}^{3} \mathrm{~h}$ thus 138 .
da ${ }^{3} \mathrm{ką}^{2-1}$ squash 76. pp. $28 *, 49,55,72,82 *, 83,111 *$
da ${ }^{3} \mathrm{ką}{ }^{3}$ slope, hillside 77. pp. 29, 49, 54*, 55, $56 *, 88$
$\mathrm{da}^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ sandal 140 . pp. $28 *, 35,51,55 *$
$\mathrm{da}^{3} k \mathbb{t}_{2}^{2-1}$ a hill of corn, the nose 77. pp. 29, 49, 54*, 55, 56*, 82*, 88
$\mathrm{da}^{3} \mathrm{kt}^{3}{ }^{3-4} \mathrm{~h}$ dough 85. pp. 35, 49, 80, 109
da ${ }^{3} \mathrm{ko}^{2-1}$ foot 141 .
da ${ }^{2}$ kuhu ${ }^{5-4}$ sty (of the eye) 77. p. $54 *$
da ${ }^{3}$ kuhu ${ }^{4-3}$ ascent 77 . p. 54^{*}
$\mathrm{da}^{3} n \mathrm{e}^{3-4}$ water 144. pp. 38, 44, 51, 63, 80
da ${ }^{3}$ ngwe ${ }^{3-4}$ to gpring away, to jump away 154. pp. 38, 45
$\mathrm{da}{ }^{3}$? fiber of the century-plant 148. pp. 36*, 37, 45
$\mathrm{da}^{3} \mathrm{~Pa}^{\frac{3-4}{3}}$ cord, root 231. p. $56 *$
da ${ }^{3} ?^{2} \mathrm{a}^{3} \mathrm{~h}_{5}$ chile pepper 190. pp. 42, 56*, 107
$\mathrm{da}^{3}{ }^{2} \mathrm{maq}^{5}$ leg 96. pp. 49, 86, 101, 110
$\mathrm{da}^{3}{ }^{2}{ }^{n g a^{4}}$ and then 216.
$\mathrm{da}^{3}{ }^{2}$ nga? ${ }^{4-3}{ }^{4}$ scar, proof 217. pp. $45,62,73,89,110$
$\mathrm{da}^{3}{ }^{2} \mathrm{ni}^{2-1} \mathrm{zi}^{3} \mathrm{ga}^{\frac{8}{3} \mathrm{ta}^{3}-\mathrm{C}_{\mathrm{h}} \text { son-in-1aw } 137 .}$
$\mathrm{da}^{3}{ }_{7} \mathrm{mi}^{2-1}{ }_{\mathrm{zi}}{ }^{5}{ }^{\mathrm{Smin}}{ }^{5}$ grandchild 27. pp. 43, 55*, $56 *$
$\mathrm{da}^{3} \mathrm{oni}^{3-5}$? uncle 244., 275. p. 85
da^{3} ? wi^{3} to owe 44. pp. 54*, 63, 86, 92
da_{2}^{2} corn cob 100 . p. 41
da^{2} animal of 209.
$\mathrm{da}_{e^{3-4}}$ salt 99. pp. $41,49,78,108$
da ${ }^{3}{ }^{7} q^{3-4}$ fire, light 172. pp. 41, 51, 56*, 89, 108*
dę ${ }^{3} h$ a certain 138 .
de ${ }^{3} u^{4-3}$ season. p. 25
$\mathrm{di}^{3} \mathrm{ci}^{3}$ breast 7. Pp. 29, 35, 107
$\mathrm{di}^{3} \mathrm{ci}^{3-4}$ roasting-ear 82. pp. 63, 71
$\mathrm{di}^{3} \mathrm{ci}^{3-5}$? cactus-beer 81. Pp. 35, 44, 80, 109
$\mathrm{di}^{3} \mathrm{nt}^{2-1}$ brother of a man 24. pp. $40,55 *, 56 *, 62,72,82 *, 86,111 *$
$\mathrm{di}^{3}{ }^{2} \mathrm{mi}^{2-1} \operatorname{cosn} 37$. pp. 63, 73, 111*
di^{2-1} calm, unruffied 83. p. 82*
$\mathrm{di}^{3} \mathrm{ra}^{3} \mathrm{~h}$ calm, wruffled 83. p. 108
do ${ }^{2}$ tenate (handieless palm-leaf basket) 251. pp. 36*, 37
do ${ }^{3-4}$ sugar cane 249. Pp. $36 *, 37,46,108 *$
$\mathrm{do}^{3}{ }^{7} \mathrm{o}^{2-1}$ land, soil 159 . pp. $51,56 *, 64,74,82 *, 90,111 *$
$\mathrm{do}^{3}{ }^{3} \mathrm{o}^{3}$ (SD) thunder 45.
$d x^{3}{ }^{3-4}{ }^{2} y_{\varepsilon}^{4}{ }^{4} \frac{y}{4}^{3-4} h$ to bother, to pester 150, 252. p. 91*
du ${ }^{3}$ - causative prefix. p. 77
$\mathrm{du}^{3} \mathrm{gy}{ }^{\frac{3-5}{3-5} \text { to shine. p. } 101}$
$\mathrm{du}^{3} \mathrm{gwa}^{4} \mathrm{ct}_{\mathrm{i}}{ }^{3}$ wing 10 . pp. 29, 35, 47*
$\mathrm{du}^{3} \mathrm{gwa}^{3} \mathrm{c}_{\mathrm{i}}{ }^{3-4{ }^{-4} \text { niece 13. pp. 63, 91* }}$
$\mathrm{du}_{3}^{3} \mathrm{gwa}^{2} \mathrm{~h}$ to twist 220. pp. 39, 111*
$\mathrm{du}_{3}^{3} \mathrm{gwa}_{3}^{3} \mathrm{ne}_{3-4}^{3-4}$ to bathe (someone) 59. p. $60 *$
$\mathrm{du}^{3} \mathrm{gwa}^{3} \mathrm{ne}^{3-4}$ to melt 144.
du^{3} gwa ${ }^{3-4}$? to turn or twist downwards 142. pp. 36, 55*, 64, 88
du_{3}^{3} gwaz $^{3}{ }^{\text {? }}$ aha $^{4}{ }^{4}$ a forked stick 142 . pp. $55 \%, 64$
du ${ }_{3}{ }^{\text {gwe }}{ }^{\text {? }} \mathrm{e}^{3}$ to weep 143 . p. 36
$\mathrm{du}^{3} \mathrm{gwi}^{3-4}$, together with, companion, neighbor, relative 14 .
Pp. 36, 43, 55*, 73
$\mathrm{du}^{3}{ }^{3} \mathrm{kwa}{ }^{2}-\mathrm{ga}^{9} \mathrm{a}^{3}$ jail 124 . p. 33
du ${ }^{3}$ kwa ${ }^{1-2}$ row, furs row 132. pp. 34, $55 *$, $91 *$
$\mathrm{du}^{3} \mathrm{mi}^{3-4}$ sweet potato, tubular root 20. p. 55*
$\mathrm{du}^{3} \mathrm{mi}^{3-5}$? soap-root, soap 20. pp. 39, 55*
$\mathrm{du}^{3} \mathrm{na}^{2-3} / \mathrm{du}^{3} \mathrm{na}^{2} \mathrm{~h}$ to leave (something) 212. pp. 37, 45, 112*
$\mathrm{du}^{3} \mathrm{na}^{3}{ }^{3} \mathrm{a}^{3-4}$ h to extinguish 227. pp. 55*, 108*
du ${ }^{3}{ }^{2}{ }^{2} \mathrm{~h}$ to cover over something (with a mat, blanket, etc.) 210. p. $91 *$
du^{3} we 2 -1 straw mat 68. pp. 43, 55*, 65, 111*
$\mathrm{du}^{3}{ }^{3} \mathrm{we}^{3-4}$ century-plant 66. pp. 55*, 72, 109
$\mathrm{du}^{3} \mathrm{we}^{3-4} \mathrm{~h}$ gave, cliff 67. Pp. 42, 55*, 65, 108
$\mathrm{du}^{3} \mathrm{xu}^{3}$? $\mathrm{wi}^{3}{ }^{\frac{2}{5} \text { ? to frighten } 62 .}$
du^{3} ? wa ${ }^{3}$ mouth 226 . Pp. 42, $45,55 *, 56 *, 71,107$

```
du \({ }^{3}\) ? we \(4-3\) wages 69. p. 55*
\(\mathrm{du}^{3}\) ? we \(^{3-4}\) h thread 180. pp. \(45,73,79,80,108 *\)
\(\mathrm{du}^{3}\) ? \(\mathrm{wi}^{3}\) thunder 45. Pp. 42, 62, 92, 108
\(\mathrm{dy}^{3}\) palm tree 256. p. 53
ga \({ }^{3} \mathrm{ci}^{2} \mathrm{i}^{4-3}\) honey 5. pp. 35, 43, 83
\(\mathrm{ga}^{3} \mathrm{cl}^{3} \mathrm{~h}\) to touch, to feel 84. Pp. 35, 59, 61, 63
ga \({ }^{3} \mathrm{ca}^{2-1}\) to sing 105. pp. \(32,58,60 *, 61,88,111 *\)
\(\mathrm{ga}^{3} \mathrm{ra}^{3}\) to fill 194. p. 32
\(\mathrm{ga}^{3} \mathrm{xa}^{3} \mathrm{za}^{5}\); to put away securely 196 .
ga \({ }^{5} \mathrm{ra}^{\text {? }}{ }^{5-3}\) wide 109 . pp. 32, 45
ga \({ }^{3} \mathrm{re}^{2-1}\) to walk 123. pp. 33, 45, 60*, 61, 71, 89, 111*
\(\mathrm{ga}^{3} \mathrm{r}_{\mathrm{i}, \mathrm{i}}{ }^{4-3}\) fever \(\frac{1}{9}\) pp. \(35,61,88,110\)
\(\mathrm{ga}_{3}^{3} \mathrm{c}_{\mathrm{i}}^{2-1}\) to ask for 126. pp. 33, 51, 60*, 81
\(\mathrm{ga}^{3} \mathrm{ci}^{2-3}\) to pass 12. p. 111*
\(\mathrm{ga}^{3} \mathrm{cit}_{\mathrm{c}_{3}}{ }^{-5}\) ? to bury 11. pp. 61, 81, 89, 110
\(\mathrm{ga}^{3} \mathrm{di}^{3} \mathrm{a}^{3}-4\) to precede 166.
\(\mathrm{ga}^{3} \mathrm{ga}^{2} \mathrm{a}^{3}\) metal, bell 124 . pp. 33, 45
\(\mathrm{ga}^{3}{ }_{2} \mathrm{gwa}{ }^{2} \mathrm{~h}\) to scream, to bellow, to cackle 143. pp. 36, 45, 111*
\(\mathrm{ga}^{2} \mathrm{~h}\) to grind 220. pp. 39, 111*
\(\mathrm{ga}^{3} \mathrm{ka}^{3}\) to shave 113 . p, 107
\(\mathrm{ga}^{3} \mathrm{ka}^{3-4}\) to get burned 119. p. 108
\(\mathrm{ga}^{3} \mathrm{ka}^{5}\) to leak 112 . p. 88
\(\mathrm{ga}^{3} \mathrm{na}^{3}\) wi \({ }^{3}\) to be finished, to come to an end 48. pp. 48, 107
\(\mathrm{ga}^{3} \mathrm{ma}^{3}\) wis to heal 48 . p. 107
\(\mathrm{ga}^{3} \mathrm{na}^{3} \mathrm{wr}^{3} \mathrm{nyq}^{2}\) to be blessed 48. p. 107
\(\mathrm{ga}^{3}{ }_{n \dot{a}} 2_{\mathrm{h}}\) to weave 222. pp. 52, 57\%, 60, 107
\(\mathrm{ga}^{2}\) ne \(^{3}\) to ripen 60. pp. 38, 60*, 62, 112*
\(\mathrm{ga}^{3} \mathrm{ne}^{2-3}\) to chew 56. pp. 60*, 111*
\(\mathrm{ga}^{3}\) ne \({ }^{3}\) to be (somewhere), reside, sit 145. Pp. 37, 44, 60*, 108
\(\mathrm{ga}^{3}\) ne \(^{3-4}\) to take a bath 59. pp. 43, 60\%, 71
\(\mathrm{ga}^{3} \mathrm{ni}^{2-3}\) to set up, to stand up, to erect 36. pp. 59*, 86, 111*
\(\mathrm{ga}^{3} \mathrm{nl}^{3}\) to explode 90. pp. 37, 89
\(\mathrm{ga}^{3} \mathrm{nl}^{2-3} \mathrm{za}^{5}\) ? \(\mathrm{ru}^{3} \mathrm{wa}^{2-3}\) to have a generous impulse 35. p. 111*
```



```
\(\mathrm{ga}^{3} \mathrm{ta}^{3}\) to carty 206. p. 60\%
\(\mathrm{ga}^{3} \mathrm{ta}^{3}-\mathrm{T}_{\mathrm{h}}\) to say 207. p. 35
\(\mathrm{ga}_{3}{ }^{3} \mathrm{ta}_{4-3}^{3-4} \mathrm{~h}\) gwi \({ }^{5}\) ? to say quickly 15 .
ga to \({ }_{3}\) moldy 246.
\(\mathrm{ga}^{3} \mathrm{to}^{3-4} \mathrm{~h}\) to sleep 248. pp. 35, 46, 59*, 61*
\(\mathrm{ga}^{3} \mathrm{u}^{7} \mathrm{u}^{4-3}\) incense-burner. p. 25
\(\mathrm{ga}^{3} \mathrm{wi}^{3-4}\) to go put, to go down 63. p. 109
\(\mathrm{ga}^{3} \mathrm{wi}^{3-5}\) ? to die 43. pp. 42, 109
\(\mathrm{ga}^{3}{ }^{3} \mathrm{wi}^{3}\) to be, to become 48 . pp. 48, 62, 72, 107
\(\mathrm{ga}^{3} \mathrm{y}_{2}{ }^{3-4} \mathrm{~h}\) to pour out, to empty out 233. p. 52
\(\mathrm{ga}^{3} \mathrm{zi}^{3}{ }^{3} \mathrm{i}^{5}\) to begin 153 . p. 45
\(\mathrm{ga}^{3}\) ? hour of day 124 . p. 33
\(\mathrm{ga}^{3}\) ? -ngo \({ }^{4}-3\) one o'clock. p. 33
\(\mathrm{ga}^{5}\) ? more 125. p. 33
```

$\mathrm{ga}^{3} ?^{2} \mathrm{a}^{2-3}$ to spin 131. p. 60*
$\mathrm{ga}^{3}{ }^{2} \mathrm{ma}^{3}$ to be warm 21. pp. 39, 48, 59*, 85
$\mathrm{ga}^{3}{ }^{3} \mathrm{maz}^{3} \mathrm{ru}^{3} \mathrm{wa}{ }^{2-3}$ to be angry 21 .
$\mathrm{ga}^{3}{ }^{3}$ ne $^{3-5}$? to cut 146. pp. 38, 45, 51, 89, 109
ga^{3} ? nga ${ }^{3-4}$ to be born 215. p. 89
$\mathrm{ga}^{3}{ }^{2} \mathrm{nga}^{2} \mathrm{~h} / \mathrm{ga}^{2}{ }^{2} \mathrm{r}_{\mathrm{nga}}{ }^{5} \mathrm{~h}$ to scrape 218. pp. 89, 107
$\mathrm{ga}^{3} 7_{\text {nga. }}{ }^{3-5}$? to laugh 214. pp. 38,89
ga?ni? (I) to cut 146 .
$\mathrm{ga}^{3} \mathrm{nni}^{2-1}$ to put in 33 .
$\mathrm{ga}^{3} ? \mathrm{ni}^{2-1}+\mathrm{g}^{3-4-3}$ to order, command 92 .
$\mathrm{ga}^{3} ?_{\mathrm{n}} \mathrm{m}^{3-5}$? to cut, to chop 274 . pp. 46, $59 *, 85,110 *$
ga^{3} ? wi^{3-5} ? to give, to strike 181. pp. 42, 59,62
ga ${ }^{3}$? yą ${ }^{2}$ h blow 192 .
gą ${ }^{2-1}$ to dig 134. pp. 34, 60*, 82*, 111*
g2 ${ }^{3}$ windpipe 203.
$g{\underset{z}{3}}^{3}-$ ̌i3 $_{a^{2}}{ }^{2}$ windpipe 203.
ga_{5}^{3} ? z^{3-4} h to go 133. Pp. 34, 51, 60, 91*
ga^{5} ? z^{3} h foux 155 . pp. 38, 83, 108
$\mathrm{gi}^{3} \mathrm{da}^{3}$? a^{3-4} to sieze 149. pp. 36, 37, 109
gi ${ }^{3} a^{3} y_{a^{3}}^{3}$? z^{3-4} h to respect 177 . p. $91 *$
$\mathrm{gi}^{3} \mathrm{na}^{3} \mathrm{~Pa}^{3-4}$ h to be extinguished 227. pp. 42, 45, 55*, 108*
gi ${ }^{3} \mathrm{na}^{3}$? mą ${ }^{3}$ to cave in (of earth in a clay pit) 158 . pp. 39, 85, 108
gina ${ }^{2-1}$ to wash. p. 58
$\mathrm{gi}^{3} \mathrm{ni}^{3-5}$ night fall (verb) 29. p. 109
$\mathrm{gi}^{3} \mathrm{ni}^{3}{ }_{\mathrm{P}} \mathrm{i}^{3}$ to gee, to know 28.
$\mathrm{gi}^{3} \mathrm{raz}^{3-4}$? to fare (well ox iLI) 150 . pp. 38, 108
$\mathrm{gi}^{3} \mathrm{raq}^{2} ? \mathrm{a}^{5} \mathrm{~h}$ to dance 151. pp. 38, 91
$\mathrm{gi}^{3} \mathrm{ri}^{3} \mathrm{y}^{3-4}$ to measure. p. 25
$\mathrm{gi}^{3} \mathrm{ri}^{3}{ }^{7} \mathrm{yu}^{3} \mathrm{~h}$ to spoil, to rot 278. pp. 46, 69*, 85, 108
$\mathrm{gi}^{3} \mathrm{ta}^{2-1 / \mathrm{ta}}{ }^{5} \mathrm{~h}$ to mount, to be on top of 205. pp. 61*, 91*
$\mathrm{gi}^{3} \mathrm{zi}^{3}{ }^{2} \mathrm{yz}^{3-4} \mathrm{~h}_{\mathrm{gi}}{ }^{3} \mathrm{ri}^{2}{ }^{2} \mathrm{y}^{2}{ }^{5} \mathrm{~h}$ to bark 176 . pp. $41,51,63,101,108 *, 111 *$
$\mathrm{gi}_{3}^{3}{ }^{7} \mathrm{ya}^{3} \mathrm{~h} \mathrm{zi}^{3}$ he did it. p. 64
$\mathrm{gi}^{3}{ }^{2}$ yąhą ${ }^{4-3}$ holy day, festival 193. pp. 51, 91, 108*
$\mathrm{gi}^{3}{ }^{3}$ yo $^{5-3}$ corn-fodder 259.
gt^{5} warm 87. pp. 36, 49
go ${ }^{4}{ }^{7} \mathrm{ngo}^{4}$ a few, some of 253. p. 38
go ${ }^{3}$?o 3 plate, bowl 242. p. 107
go^{3} ? 0^{3-4} to drink 241. p. 90
go ? yo? (Co) corn fodder 259.
$\mathrm{gu}^{3} \mathrm{ci}^{3}$ to nurse 7. pp. 29, 35, 59*, 107
$\mathrm{gu}^{3} \mathrm{ci}^{4-3}$ grey hairs 4. pp. 60*, 108
$\mathrm{gu}^{3} \mathrm{ce}^{3-4}$ to get wet 52. pp. 35, 43
gu^{3} ̌i $^{3}-5$? to arrive 8 . pp. 43, 109
$\mathrm{gu}^{3} \mathrm{x}_{\mathrm{t}} 3-4 \mathrm{~h}$ to sniff, to smell 267. pp. 53, 108*
$\mathrm{gu} \mathrm{cy}_{\mathrm{y}} 1-2$ oven, kiln 111 .
$\mathrm{gu}^{3} \mathrm{du}^{3} \mathrm{ku}{ }^{4-3}$ Carnival (pre-1enten festival) 271.
$\mathrm{gu}^{3} \mathrm{du}^{3} \mathrm{ku}^{3-4}$ to play 271 . pp. 33, 46, 70
$\mathrm{gu}^{3} \mathrm{du}^{3}$? we ${ }^{2} / \mathrm{gu}^{3} \mathrm{du}^{2}$? $\mathrm{we}^{5} \mathrm{~h}$ to sell 69. pp. 55*, 101
$\mathrm{gu}^{3} \mathrm{ki}^{3}$ yesterday 79. pp. 34, 107
$\mathrm{gu}^{3}{ }^{\mathrm{kwwha}}{ }^{4-3}$ large pot for liquor 242.
$\mathrm{gu}^{3} \mathrm{na}^{2-3} / \mathrm{gu}^{3} \mathrm{na}^{2} \mathrm{~h}$ to remain 212 pp. $37,45,112 *$
$\mathrm{gu}^{3} \mathrm{nat}^{2} \mathrm{~h}$ to run 222. pp. 52, 57*, 60, 107
$\mathrm{gu}^{3} \mathrm{ni}^{3}$? yąhę̨ ${ }^{4-3}$ day -light 172 . p. 89
$\mathrm{gu}^{3} \mathrm{nl}^{3}$ to hear 28. pp. 61*, 62, 71, 86
$\mathrm{gu}^{3} \mathrm{nH}^{3}-5$? to quarrel, to fight 25. pp. $91,91 *, 109$
$\mathrm{gu}^{3} \mathrm{nu}{ }^{3-4}$ to plant 254. pp. 53, 62, 71
$\mathrm{gu}^{3} \mathrm{yz}^{3-4} \mathrm{~h}$ to boil 197 . pp. 45, 62
$\mathrm{gu}^{3} \mathrm{zu}^{3}$? wi ${ }^{3-5}$? to be afraid 62. pp. 54, 85
$\mathrm{gu}^{3}{ }^{2} \mathrm{ya}^{3-5} ? \mathrm{ri}^{3} \mathrm{kci}^{3}$ to have a stomach ache 197.
gwe ${ }^{2}$ to jump 154. pp. 38, 112*
gwi ${ }^{3}$ day, sun 琞. pp. 38, $44,71,78,91,108$
$\mathrm{gwi}^{3} \sum_{\mathrm{z}_{2}}{ }^{5}-3$ the eleventh day. p. 78
$\mathrm{gwi}^{3-5^{2}} \mathrm{za}^{\frac{5}{5-3}}$ good people. p. 78
gwi ${ }^{3-5-4}$ people 94. pp. 73, 78
gwi ${ }^{5}$? quickly 15. pp. 36, $91 *$
hna ${ }^{3} \mathrm{c}_{\mathrm{i}}{ }^{3}$ to awaken (someone) 10. p. 77
iko (Co) twenty 238 pp. 33, 55*, 56*, 62
ka^{3-4-3} ear (of grain) 198.
ka ${ }^{3}{ }^{3}$ pine wood, torch, candle 121. pp. 34, 69, 80
kq^{3-4-3} seeds 75. p. 49
k^{1-2} bark 74.
Kihi ${ }^{3}$ mountain 77. pp. 29, 44, 49, 65
kit 3 river 78. p. 49
ko ${ }^{4}$ twenty 238. pp. 33, 56*
$\mathrm{ko}^{4}-{ }^{-7} \mathrm{y}^{5}$? twenty-five. p. 90
$k^{3} \mathrm{~h} \mathrm{ny}^{3}$ tobacco 223 . p. 52
koho ${ }^{3}$ herb, plant, bush 236. Pp. 46, 69, 78
kul-2 bone, horn 269. pp. 46, 78, 91*
$\mathrm{ku}^{2-1} a^{3} \mathrm{wi}^{3}$ skull. p. 78
kwe ${ }^{3} h$ pus 127, 142. pp. 34, 83, 107
kwe ${ }^{3} h$ kit 3 onion 80 .
kwehe ${ }^{3}$ edible herbs 128. pp. 34, 45, 91*, 108
la ${ }^{3} \mathrm{kwą}_{3}^{3}$ lame 142 . pp. 55*, 64
$1 a^{3}$ kwe 3 h mucus 127. pp. 34, 55*, 64, 83, 107
$1 e^{2} r^{3}{ }^{3}$ mule-driver. p. 20
$1 u^{2-1}$ worm 273 .
$1 \cdot \mathrm{i}^{3}$ h little 19. pp. 39, 48
$1 \cdot \mathrm{u}^{3}$ (SD) cat 272. p. 39
ma ${ }^{4}$ - prefix on terms for color 235.
$\mathrm{ma}^{4} \mathrm{re}^{3}$ red 235.
ma 4 re ${ }^{3-5-4}$ green 235.
ma ${ }^{4} \mathrm{ru}^{3-5-4}$ black 235 . p. 101
mą ${ }^{39} z^{3}$ oneself 162. pp. 39, 51
mil-2 copper-colored, yellow 23. pp. 62, 71, 82, 86
na ${ }^{3}$ - resumptive-repetitive prefix. p. 64
na ${ }^{3} \check{c a}^{3}$ za ${ }^{5}$? to put away securely 196 .
na $3 x_{i}{ }^{2-3}$ rough, splintery 10. p. 47*

na ${ }^{3} \varepsilon_{i}{ }^{3}$ to untie, to loosen 10. Pp. 29, 47*, 63
$n a^{3} \mathrm{gi}^{3}{ }^{3} \mathrm{ya}^{3} \mathrm{~h} \mathrm{zi}^{3}$ he repaired it. p. 64
na ${ }^{3}$ gwi $^{3-4}$ to chooses 54. Pp. $36,43,63,108$
na ${ }^{3} h$ language 22. (see zna ${ }^{3} h$)
na ${ }^{3} \mathrm{ka}^{3}$ to sharpen (something metallic) 113. p. 107
na ${ }^{5}$ ka ${ }^{5-3}$ new 139. Pp. 35, 44
$\mathrm{na}^{3} \mathrm{ka}^{3}-4 \mathrm{~h}$ to gather in 116. pp. 59*, 71, 88
na ${ }^{3}$ kaha ${ }^{4-3}$ glue 117. P. 91^{*}
$\mathrm{na}^{3} \mathrm{ka}^{3-5}$? to sweep 121. pp. 55*, 80
$\mathrm{na}^{3}{ }^{3}{ }^{4} \mathrm{~h}$ ru ${ }^{4} \mathrm{ne}^{4-3}$ bean atole. p. 77
na ${ }^{3}$ kihi $_{2}^{4-3}$ satole. Pp, 77, 78, 80
$n a^{3} \mathrm{ko}^{2}$ to be dry 243 .
na 5 ko ${ }^{5-3}$ dry 243. p. 52
nakuh-a (Co) atole. p. 78
$\mathrm{na}^{3} \mathrm{kwi}^{2-3}$ te wind up 3. pp. 34, 48, 55*, $56 *, 111 *$
$n a^{3} \mathrm{na}^{3} \mathrm{~h}$ elderly lady, honorable lady 156.
$n a^{3} n a^{2}{ }^{2} w^{5} 5$ to recite prayers, to chant 186.
$n a^{3} n e^{5-3}$ wind 58 . pp. 38, 55, 109
$\mathrm{na}^{3} \mathrm{ni}^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to turn about, to return 116 .
$n a^{3} \mathrm{nl}^{2-3} \mathrm{ru}^{3} \mathrm{wa}^{2}-3$ to think, to be sad 35. P. $111 *$
na ${ }^{3} n^{3-4}$ to dress oneself 254 . pp. 53, 71
$\mathrm{na}^{3} \mathrm{ru}^{3} \mathrm{wi}^{3-4}$ to erase 64. p. 69
$\mathrm{na}^{3} \mathrm{ru}^{3}{ }^{2} \mathrm{we}^{3-4} / \mathrm{na}^{3} \mathrm{ru}^{2}{ }^{7} \mathrm{wre}^{5} \mathrm{~h}$ to pay 69. p. 69*
na^{3} wi $^{3-4}$ to pile up 40 . p. 55
$n a^{3}{ }^{9}$ nga $^{2}{ }_{h} /$ na $^{2}{ }^{2}$ nga $^{5}{ }_{h}$ to whittle 218. pp. 89, 107
na ${ }^{3}$? n_{1}^{2} h to open 21: pp. 44, 64, 85
na ${ }^{2}$? nlhI $5-4$ open 21. p. 64
$\mathrm{na}^{3} 9 \mathrm{ni}^{3-5}$? to wash out 34 .
ną ${ }^{3}{ }^{9} z^{3}$ to smart, to be irritated 21. Pp. 40, 48
nà ${ }^{3}$? ą $^{3-4 h}$ to return. p. 60
ną̀ ${ }^{2}$? ąhą ${ }^{5-3}$ incantations, chante 22. pp. 86, 112*
ną ${ }^{3}$? ąhą ${ }^{4-3}$ conversation 22. p. 86
ną $^{3 \text { ? }}$ ąhą ${ }^{4-3}$ quicklime 21. p. 40
ne ${ }^{3-4 ?}$ direction towards 18. pp. 65, 109
nga ${ }^{3}$ cloud 219. p. 45
nga ${ }^{4}$ with 216. p. 38
nga ${ }^{3} \mathrm{ca}^{5-3}$ a span 195. pp. 45, 109
ngu ${ }^{3}$ ya $^{4-3}$ road-runner 224. pp, 63, 65
ngwą ${ }^{47}$ a $^{3} \mathrm{~h}$ four more 155. Pp. 38, 83
ngwi (I) people 94. p. 73
ni ${ }^{3-5-4}$ afternoon, early evening 29. p. 109
$\mathrm{ni}^{3} \mathrm{a}^{4-3}$ dinner 230. pp. 42, 55,72
$n i^{4} x_{a}{ }^{3}$ full 194. p. 32
$\mathrm{ni}^{3} \mathrm{ka}^{3-4} \mathrm{~h}$ to have 116 . pp. $55 *$, $59 *, 88$
$\mathrm{ni}^{5} \mathrm{ka}^{5}$? short 199 . pp. 45, 64, 83, 110*
$\mathrm{ni}^{5}{ }_{\mathrm{nga}}{ }^{5-3}$ damp, moist 219 .
$n i{ }^{4} \mathrm{nit}^{4}$ segregated, apart from others 89.
$\mathrm{ni}^{3} \mathrm{nHh}^{4-3}$ dirty, disgusting $\frac{26}{4}$. Pp. 60, 64, 66, 70, 86
$n i^{3}{ }^{3}{ }^{4}{ }^{4}$ n nothing of 204. pp. 64, 91*
$n i^{2}$? nini^{5-4} open 91 .
ni^{5} ? all 89. Pp. 44, 83
nu ${ }^{5}$ gwą ${ }^{5}$? together with 161. pp. 40, 51, 86
$n u{ }^{3}$ gwą ? ${ }^{\text {a }}{ }^{4-3}$ wrord 22. P. 86
nu ${ }^{3} \mathrm{kwa}^{2-3}$ to stretch (something) 147. pp. 55*, 56*
$n \cdot a$ (Co) water 144.
n^{*} z̨ $^{3} \mathrm{~h}$ net-work bagg 167. pp, 50, 72, 107
n. ąhą ${ }^{3}$ ciqarette 223. pp. 40,52
n^{*} e (Co) knife 55. p. $110 *$
$n \cdot e^{3-4} \mathrm{gu}^{3} \mathrm{ni}^{7 \mathrm{I}^{4-3}}$ mirror 28, p. 86
$n^{\cdot} \mathrm{e}^{3-4} \mathrm{ra}^{3} \mathrm{ngwi}^{3}$ place-name 'agua del sol' 93 . pp. 38, 69*
n: e ${ }^{3-5} \mathrm{ka}^{3}$ scissors 55, 113. pp. 107, 110*
$n \cdot e^{3-5-4}$ meat 178 . p. 41
$\mathrm{n} \cdot \mathrm{e}^{5}$ naked 57. p. 66
$n \cdot e^{3}$ drowsiness, sleep 168.
$n \cdot 1$ (I) nine 104 . pp. 49, 77
$n \cdot 7^{3} h n u^{2} \mathrm{kwa}$ 3ling-shot 147. p. 55*
$r V^{3}$ - wooden 266. pp. 68, 69
$r V^{3}$ - oyal-shaped, spherical 266. pp. 68, 69
ra ${ }^{3} x_{y}{ }^{1-2}$ bread. p. 68
$\mathrm{ra}^{3} \mathrm{zq}^{4-3}$ thing. p. 101
ra ${ }^{3}$?a 3 hand 149. pp. 30,37
rą̨ ${ }^{3}$? $z^{3}+a^{3}$ her hand. p. 30
$\mathrm{re}^{3} \mathrm{ka}{ }^{7} \mathrm{a}^{4-3}$ stick 121, 236. pp. 69, 80
re3ke e^{4-3} splinter 121, 236. p. 69
$\mathrm{re}^{3} \mathrm{ko}^{4-3}$ anona 239. pp. 69, 109
$\mathrm{re}^{3} \mathrm{ko}^{4-5} \mathrm{xy}^{5-3}$ the black zapote 235, 239. pp. 52, 109
re $3_{\text {koho }}{ }^{4-3}$ leaves 236 . p. 69
$\mathrm{re}^{3} \mathrm{ko}^{47} \mathrm{ga}^{5}+\mathrm{q}^{2} \boldsymbol{z}^{5-3}$ a thinned-out forest. p. 77
re ${ }^{3}$ ko 0^{4-3} in the woods, in the forest 236. p. 77
$\mathrm{re}^{2} \mathrm{kwa}^{3}$ hoe. p. 68
re ${ }^{3}$ to ${ }^{4-3}$ blanket 246. P. 69*
re5? you (formal). p. 20
$\mathrm{ri}^{3} \mathrm{a}^{4-3}$ oval. p. 25
$\mathrm{ri}^{3} \mathrm{z}^{3-4}$ face of, in front of 166. pp. 50, 69, 108
$\mathrm{ri}^{3} \mathrm{ci}^{3}$ a drop, small quantity of 7 . pp. 29, 69
$\mathrm{ri}^{3} \mathrm{ki}^{2-3}$ to give 1. Pp. 33, 112*
$\mathrm{ri}^{3} \mathrm{ki}^{3}$ stomach 2. p. 69
$r_{i}{ }^{3} 0^{4-3}$ trough, manger, corn-measure, (almost anything hollowed out or convex 250. pp, 69, 108*
${ }_{\text {ri }}{ }^{3}$ uhu ${ }^{5-3}$ hollow reed 279 . p. 25
$r u^{3} d a a^{4-3}$ mang de metate (stone rolling pin used in grinding corn) 149. p. 36*
$\mathrm{ru}^{3} \mathrm{gu}^{3}{ }^{3} \mathrm{ci}^{5-3}{ }^{\text {p. cross. }}$. p. 68
$\mathrm{ru}^{3} \mathrm{gu}^{3} \mathrm{zu}_{\mathrm{u}} \mathrm{Pu}^{4-3}$ potatoes 265. pp. 91*, 110
$\mathrm{ru}^{3} \mathrm{gwi}^{3}$? i 3 peach 183. p. 69
$\mathrm{ru}^{2} \mathrm{ne}^{3}$ avocado 16. Pp. 38, 43, 48, 69, 112*
ru^{3} ne $^{4-3}$ beans $\frac{17}{3}$. pp. 69, 78, 101, 109
ru^{3} ne $^{4} a^{2}$ wa 3 haba-beans. p. 78
$\mathrm{ru}^{3} \mathrm{ne}^{4-5} \mathrm{ga}^{4}$? nI 714-3 large, black beans 17, 275. pp, 59*, 85, 109
$\mathrm{ru}^{3} \mathrm{ne}^{4-5} \mathrm{gi}^{4} \mathrm{ci}^{3}$ small, vari-colored beans 17. p. 109
$\mathrm{ru}^{3} \mathrm{wa}^{2-3}$ insides of 188. p. 42
$\mathrm{ru}^{3} \mathrm{wi}^{2}$ to roast over hot coals 47. pp. 69*, 111*
tąhą ${ }^{3}$ thorns 171. pp. 41, 51
tą? ${ }^{3}{ }^{3}$ eas of corn 28. pp. 83, 109
te ${ }^{2}{ }^{2} 10^{5} \mathrm{~h} 1 \cdot \mathrm{i}^{3} \mathrm{~h}$ a little rooster. p. 78
te 2 ? loho ${ }^{5-4}$ rooster. p. 78
to 3-4-3 fur, feathers 246. p. 46
to ${ }^{3-4-3}$ grind stone 247 .
tu^{3} blood 258. pp. 53, 92
$w^{2} 2_{h}$ to grind 220. pp. 39, 111*
$\mathrm{wa}^{3} \mathrm{~h}$ to be in motion 133 .
wa $^{5} t^{5}{ }^{5}$? six 173. p. 66
wa 5 ? the right 228 .
wa ${ }^{3}$? a^{2-3} to spin 131. p. 60*
wa ${ }^{5} 7_{n 1} 5_{h}$ three 31. pp. 66, 72
wą ${ }^{2-1}$ to dig 134. pp. $34,60 *, 82 *, 111 *$
wą ${ }^{3}$? a $^{3-4}$ h to go 133 . pp. 34,60 , $91 *$
we? e^{3} house. p. 25
we ${ }^{3} \mathrm{Pe}^{2}$ good, fine 184. Pp. 25, 90, 112*
$w^{*} e^{3}$ fierce. formidable 187.
$w^{\prime} e^{2} h$ to jump 154. Pp. 38, 112*
$w^{\cdot} \cdot{ }^{5}$ hidden 65.
w. ${ }^{5}{ }^{5}$ two 42. pp. 42, 43
ya ${ }^{3-4}$ tongue 189. p. 42
ya 3 h ashes 191. p. 108
ya ${ }^{3}{ }^{\mathrm{h}} \mathrm{zi}^{3}{ }_{\mathrm{nga}}{ }^{2}$ nasturtiums. p. 77
yaha ${ }^{3}$ flower. p. 77
ya 3 tą $^{4}{ }^{4} /$ wa 3 tą $^{4}{ }^{4}$ six more 173. p. 66
yawi (Co) head 41. p, 65
$\mathrm{ya}^{3}{ }^{2} \mathrm{wi}^{3}$ boil, carbuncle 39, p. 55*
yą ${ }^{3-4}$ face of, surface of, in front of, place where, time when, 166.
Pp. $50,69,108$
yą ${ }^{3-4}$? u^{1-2} coarse galt. p. 78
yą $^{3-4}$? teeth 221. pp. 52, 108
yą ${ }^{37}{ }^{2}{\underset{q}{2}}^{5-3}$ twing 161 . pp. 40, 51, 55, 86
yą ${ }_{3}^{2}$? ąhą ${ }_{4-3}^{5-4}$ musical instrument 192. p. 91*
yą ${ }^{3}$? ${ }^{2}$ hą ${ }^{4-3}$ saint, god, sacred personage 193. pp. 51, 91, 108*
yo ${ }^{3}$ g $^{3}{ }^{3} \mathrm{x}_{\mathrm{z}}^{2-3}$ the past year 12. pp. 77, 111*
yo ${ }^{3}{ }^{3}$ year 260 . pp. 46, 77, 78
$\mathrm{yo}_{3}^{3} 70^{2-1}$ zu ${ }^{4}$ sand 264. p. 33
yo^{3} 20 5-3 the gummy deposit made by smoke from a wood fire 157.
pp. 65, 73, 85, 109
yuwe (I) century-plant 66. p. 55*
yuwi (Co) century-plant 66. pp. 55*, 72
yuwi (Co) rain 45. p. 92
yuwi (Co) straw mat 68. pp. 55*, 65
yuwi (Co) people 94. F. 73
yu?-a (Co) year. p. 78
yu^{3} ? uhu^{4-3} hole 279.
yu? we (1) market place 69. p. 55*
yu? weh (I) thread 180. p. 45
yu?we? (I) ice, frost 179.
yu Pwi (Co) market place 69. pp, 55*, 65
yu? wih (Co) thread 180. pp. 45, 73
yu? wi? (Co) ice, frost 179.
yy^{2} another occasion, another time 255.
$y^{5}{ }^{5}$ an occasion 255.
$\mathrm{y}^{\cdot} \mathrm{a}^{3-4}$ tongue (see ya${ }^{3-4}$)
ząhą̣ ${ }^{3}$ bit $\frac{23}{3}$. Pp. 48, 71, 82*
zą̧ ${ }^{3}$? ${ }^{2}$ ha ${ }^{4-3}$ money 23. pp. 48, 62, 71, 82*, 86
$z^{21}{ }^{3}{ }^{2} \mathrm{~m}^{5-3}$ supper 29. pp. 86, 109
$z^{2}{ }^{3} \mathrm{ku}^{4-3}$ necklace 271. pp. 33, 70
$z \mathrm{du}^{3} \mathrm{ky}{ }^{4-5}$? nephew 244. pp. 52, 70
$z^{2 d u}{ }^{3}$ waha ${ }^{4-3}$ witcheraft 101. pp. 42, 44, 55, 73
$\mathrm{zdu}^{3}{ }^{2}$ wi $^{5-3}$ Indian, non-Spanish-speaking 46. p. 86
z_{i}^{2-1} xu 3 a negro 235 .
$z^{3}{ }^{3}-\mathrm{ga}^{5} \mathrm{ka}^{5}$? певя 118 . pp. 33, 88
$\mathrm{zi}^{3}-\mathrm{g}{\underset{\mathrm{q}}{ }}^{4-5}$ throat 203. p. 52
${ }_{z i}{ }^{3}$-gwa $4 x_{i}{ }^{3}$ wing 10 .
$\mathrm{zi}^{3}-\mathrm{ka}^{3}-4 \mathrm{~h}$ rattle of (rattlesnake) 124.
$\mathrm{zi}^{3}{ }^{3}$-ko $4-5$ stomach 237 . p. 46
$\mathrm{zi}^{3}-\mathrm{ko}^{3}-4 \mathrm{~h}$ gtomach 237. pp. 62, 108

$z_{i}{ }^{3}-n^{4}{ }^{4}$ aha $^{4-3}$ shame of 163 .
$\mathrm{zi}^{3}-\mathrm{ru}^{4} \mathrm{ne}^{4}$ kidneys 17 .
$\mathrm{zi}^{3}-\mathrm{tą}^{3-5}$, ear of corn 98.
$\mathrm{zi}^{3}{ }_{\mathrm{ci}}{ }^{2} \mathrm{il}^{4-3}$ candy 5. pp. 35, 83
$\mathrm{zi}^{3} \mathrm{~g}^{1} \mathrm{rl}^{3}$ chicle 88. p. 49
$\mathrm{zi}^{3}{ }^{3} \mathrm{k}^{2} \mathrm{~h}$ shell (of egg) 74. pp. 33, 44, 55*, 70, 91*, 111*
$\mathrm{zi}^{3}{ }^{3}{ }^{2}{ }^{2}$ corner 270. pp. 46, 55*, 91*
$z_{1}{ }^{3} \mathrm{u}^{3-4}$ anus, rulva 279.
$z_{i}{ }^{3} u^{3-4} \mathrm{da}^{3}{ }^{\mathrm{kww}}{ }^{2} \mathrm{~h}$ vulva 127 . pp. 55*, 83, 107
ma $^{3} \mathrm{~h}$ language 22. p. 70
$\mathrm{zną}^{3}{ }^{2}$ ąhą ${ }^{4-3}$ conversation 22. p. 70
$z^{3}{ }^{\text {gwe }}{ }^{3 \%}$ ehe ${ }^{4-3}$ mattery eyes 142.
za $^{3}{ }^{3}{ }^{3}$ mosguito 49. p. 25
$\mathrm{za}^{3} \mathrm{ka}^{4-3}$ crow 120 .
Za ${ }^{3} \mathrm{ka}^{3}-4_{\mathrm{h}}$ to take, to get, to fetch 116 . pp. 59*, 71, 88
$\mathrm{za}^{5}{ }_{\mathrm{kqz}}{ }^{5-3}$ ta11 202. pp, 52, 56
そ. ${ }^{3}$ ko 3 honey-bee, honey-comb 240. pp. 54*, 72, 107
za ${ }^{5}$ nga 5 ? truly 152. Pp. 38, 44, $91 *$
$z_{a^{3}} \mathrm{ta}^{2} \mathrm{~h}$ to sting (of acorpion, wasp, bee) 208. pp. 72, 91, 112*
za 3 taha $^{4-3}$ bixd 135 . pp. 35, 54*, 88
$\mathrm{za}^{3} \mathrm{wi}^{2}$ to lick (with the tongue) 187 .
za $^{3}{ }_{\text {wi }} 5-3$ butterfly 185. p. 92
亡a ${ }^{3}$? a 3 flea 229. p. 54*
za 3 ? we ${ }^{1-2}$ lice eggs 70. p. 54
2a ${ }^{3}$? wi ${ }^{3-5}$? to rub (of clothes on the rocks) 61. p. 109
za ${ }^{3}{ }^{\text {P }}$ yą 3 h doyote 176 . pp. 41, 51, 108*
žą ${ }^{5} \mathrm{gwi}^{3}$ eleven days. p. 78
zag $^{3}{ }^{7}$ a 3 skunk 95. p. 40
$z_{i}{ }^{3} a^{2}$ neck 232. p. 112*
$z ̌ i^{3}{ }_{9}{ }^{2}$ village 170. pp, 41, 51, 72
$x_{i}{ }^{3}{ }^{3}{ }^{3}$ crab. p. 25
$\mathrm{zi}^{3}{ }^{3} \mathrm{ca}^{2-1}$ back of, roof of, 107. pp. 54*, 56*, 61, 72
zi $^{3} \mathrm{ra}^{2}-1$ we $^{2} \mathrm{e}^{3}$ roof of house 107 .
$i_{i}{ }^{3} \varepsilon_{a}{ }^{4-5} n i^{4} t^{4-3}$ hunch-backed 107 .
$\Sigma_{i}{ }^{3} \gamma_{i}{ }^{3}-5$; intestines 71. pp. 44, 54*, 109
$z_{i}{ }^{3} \Sigma_{0} \%_{0}^{4-3}$ the little straw -mat on the tump -line 234. pp. 32, 46, 54*, 73, 109
$\check{z}_{i}{ }^{3} \mathrm{ru}^{2}-1$ egg, fruit 266. pp. 54*, 69, 70
ži ${ }^{3}$ ̣̌̌ $^{2}-1$ stick, wood, frewood, tree 110 . pp. $40,51,54 *, 61,68,69$, 80, 82*
${ }_{2 i}{ }^{3} x_{4}^{2-1}$ box, barbecue-pit 111. pp. 40, 111 *
$\mathrm{zi}^{3} \mathrm{gi}^{3}{ }^{3-5}$ to dawn 86. pp. 54*, 110^{*}
${ }_{2 i} 3 \mathrm{kt}_{2}^{2-1}$ a loan 126 .
$z_{i}{ }^{3}{ }^{2}{ }^{1-2}$ worm 273. pp. 39, 46, 91*
$x_{i}{ }^{3} \mathrm{lu}^{3}$ cat 272. Pp. 39, 46, 70
zui ${ }^{3}$ ną ${ }^{1-2}$ loom 222. pp. $57 *$, 60, 63, 111*
$z_{1}^{3} n{\underset{c}{c}}^{2} h$ crop (of a bird) 167. pp. 72, 83, 107
$\sum_{i}{ }^{3} \mathrm{nga}^{2}$ fence 213. p. 112*
${ }_{21} 1^{3} 0^{4-3}$ comal (the clay griddle on which tortillas are cooked) 262.
pp. 25, 108*
$x_{i}{ }^{3}{ }^{4} y^{3}{ }^{3} h$ the circle of 3 stones on which the comal is placed 262.
$\mathrm{z}_{\mathrm{i}}{ }^{3} \mathrm{ra}^{3}{ }^{3} \mathrm{kaha}{ }^{4-3}$ lizard 201. p. 69*
$\mathrm{zi}^{3} \mathrm{ri}^{3}{ }_{\mathrm{ki}}{ }^{1-2}$ grasshopper 130 . pp. 69, 69*, 112*
$\chi_{i}{ }^{3}-{ }^{3} u^{4}{ }_{\text {kwa }}{ }^{4}$ rib 129. pp. 34, 69
$\mathrm{z}_{\mathrm{i}}{ }^{3} \mathrm{ru}^{3}$? we ${ }^{4-3}$ tich man, catrin 69. p. 69*
$x_{i}{ }^{3}{ }_{7}{ }_{i} 2$ foot 141 . pp. 35, 89
$\mathrm{z}_{1} 3$ คn! PI^{4-3} group. herd 32 . p. 110^{*}

$x_{i}{ }^{3}$? yo ${ }^{1-2}$ mud hole 261. pp. 42, 72
$\tilde{z u}^{3}$ - animal 268 .
$\sum_{z^{3}} \varepsilon_{\mathrm{e}}{ }^{4-3}$ hens, domestic fowl 53 .
$x^{3} u^{3} \mathrm{gw}^{3}{ }^{3} \mathrm{q}^{3} \mathrm{~h}$ grandmother 156. P. 91*
$\chi^{3} \mathrm{gwe}^{3-4} \mathrm{~h}$ brother of a wornan, sister of a man 182. Pp. 86, 108
$\sum_{z^{3}}{ }^{3} \mathrm{gwi}^{3}$ name of 93. p. 71
$z_{u^{3}} \mathrm{gwi}^{3}{ }^{3} \mathrm{~h}_{\mathrm{h}}$ gister of a woman 38. pp. 42, 86, 108
$z^{3}{ }^{3} \mathrm{ku}^{3}$ animal, insect 245. p. 52
zu ${ }^{3}$ kwal-2 snake 201. p. 45
$z^{3}{ }^{3}$ kwa $2-1$ gal-2 rattle-snake 124.
$z_{u} 3_{k w a}{ }^{3}$ ant 200. pp. 33, 45, 54*, 73, 88
zu ${ }^{3}$ kwaha ${ }^{3}$ fish 122. p. 33
$x^{3}{ }^{3}$ mą ${ }^{7} z^{4-3}$ village 170 .
$\mathrm{zu}^{3} \mathrm{mi}^{3} \mathrm{gwi}^{5-3}$ world 94.
$\mathrm{zu}^{3} \mathrm{ne}^{3}$ fox 165. pp. 31*, 40, 45, 86, 108
$\mathrm{zu}^{3} \mathrm{ta}^{3} \mathrm{~h}$ deex 209. pp. $54 *, 73,88,108$
yu ${ }^{3}$ tą ${ }^{3}$ honey-bee, honey-comb 175 .
$\mathrm{Eu}^{3} \mathrm{tu}^{4-3}$ mouse 277 . pp. 41, 46, 55, 92, 109
$\Sigma u^{3} \mathrm{tu}^{4-5}$ gwi5-3 rat 277. p. 109
zu $^{3}{ }^{3} \mathrm{wa}^{2}$ squirrel 225. p. 111*
zu 5 wi 5 h twelve $42 . \quad$ p. 42
Zu?ma (I) skunk 95 . p. 40
$z^{3}{ }^{3}$? wa 3 flea 229. p. 54*
${ }^{7}$ ngo 4 one 253. pp. 38, 46
${ }^{7} 7^{4}$ nine 104. Pp. 49, 77
? ${ }^{2} \mathrm{if} 5 \mathrm{~h}$ inside of 30 . pp. $55 \%, 65$
${ }^{7}{ }^{7}$ (Co) mine 104. pp. 49, 77
${ }^{?} y^{5}{ }^{5} \mathrm{y}^{5}$ five 263. pp. 53, 90
? we ${ }^{3-4-3}$ market place 69. p. 65
? we? e^{3} ice, frost 179. p. 109
Index of Amuzgo forms
aum five 263. p. 53
-ha (-tha, -wha, nkha) to go 133.
hmąi? hot, angry 21.
hnam loome 222. p. 52
hnam (pl) cigarettes 223. p. 52
hndai/hndse to be bigger, to be stronger 275 .
hnde wind 58.
kaa to walk 123.
-kaa (tkaa, 1kaa) to sweep 121.
kalka (pl) fish 122 .
kalko (pl) lizard 201.
kalue (pl) Mixtec Lndians 46.
kal ? 2 (pl) fleas 229.
kandze? to chew 56 .
kaniam? (pl) bee 175.
kantkya (pl) nests 118.
kantsa (pl) birds 135.
kants? ęiz (pl) skunks 95.
kantu (pl) snakes 273.
kantya? back 107.
kasa (sg) bird 135.
kaso (sg) mule 209. p. 88
kaso hndai (sg) deer 209. p. 88
katkya (sg) nest 118 .
katgeit (gg) skunk 95 .
katsiam? (gg) bee 175.
kataka (sg) figh 122.
katsko (sg) lizard 201.
katso (pl) mules 209.
katsu (sg) snake 273.
kat sue (sg) a Mixtec Indian $\mathbf{4 6}$.
kats?s (sg) flea 229.
kin? aum fifteen. p. 53
k_{z} (tkz, Ikz, t_{2}) to afk a loan 126 .
kwa? to strike 181.
tho (pl) surar cane 249.
liaso (eg) blanket 246 .
liatso (pl) blankets 246.
lka (pl) candle 121.
1 kam (pl) standals 140 .
$1 \mathrm{keg}(\mathrm{pl})$ squashes 76.
1ker rice 75.
1ko (pl) leaves 236.
lku (pl) hornet's pests, honey-combs 240.
1 kwa (pl) lanita de agya (river algae) 128.
Iua (pl) century-plant 66.
-lua (-t? ua, nk?ua) to drink 241.
lue? (pl) holes 67.
lue? (pl) straw mats 68.
lui? (pl) holes 279.
lui? to blink to flash lightning 45.
1? ua (pl) corde 231.
nam to gun 222. p. 52
nam (sg) face, edge 166 . p. 50
nam (pl) fires 172. p. 51
nam? to send word 22.
nda (pl) to sleep 248.
nda liquid, water 144 .
nda kwe glue 117.

```
nda sua?, nda lua? rain-water 45.
ndme (pl) faces, edgen 166..
ndua (pl) clay pots 242.
nham (pl) villages 170. p. 51
nhe nine 104.
niam (pl) ears of corn 98.
niam (pl) thorns 171. p. }5
niam? blood 258.
nko to laugh 214.
nkue (pl) days, light, fiestas, names 93.
nkui to give birth to 215.
nk?e (pl) feet 96.
ntam? oven 111.
ntse beans 17.
ntre kidneys }17
ntiam smoke 157.
ntkam to turn by itself 116.
ntkyu twenty 238.
nto (pl) handleless basket 251.
ntska cloudy, drizzly 219.
ntski (pl) wings 10.
nts ?ąiz (pl) skunks 95.
ntu cane leaveg 249.
ntue (pl) lightninge 45.
nt?% (pl) gods, saints 193.
n?am word 22.
n?am (pl) sticks, wood 110. p. 51
fram six 173.
rkam to revolve 116.
sam music, song, dance 192.
se (sg) roasting-ear 82.
sho high mountain 205.
ska (sg) candle 121.
so wool 246.
Sua (sg) clay pot 242.
Yue (sg) day, light, fiesta, name 93.
F? (sg) foot 96.
s?ia (sg) companion, friend 161.
-ta to sing 105,
tai ntes avocado 16.
tiam Plua pay, will fight 69.
tko long 202.
tma to talk over 160.
taah tongue 189.
```

tsam (sg) to sleep 248 .
teeqi? a drop 7.
tshaa'? ashes 191.
tsham (sg) village 170. p. 51
tsham nangue world 94.
trhą salt 99.
tsho (sg) sugar cane 249.
tsho? su grind stone 247 .
tsiam (sg) ear of corn 98 .
tsiam (sg) thorn 171 . p. 51
tskam (sg) sandal 140. p. 28*
tskę (sg) squash 76. p. $28 *$
tskę dough 85 .
tski (eg) wing 10 .
tsko (sg) leaf 236.
tsku (sg) hornet's nest, honey-comb 240.
tskwa (sg) lanita de agua (river algae) 128.
tso (sg) handleless basket 251 .
tsua (sg) century-plant 66.
tsue (sg) lightning 45.
tsue (sg) straw mat 68 .
tsue? (ag) hole 67.
tsui? (sg) hole 279.
ts ? am (sg) stick, wood 110 . p. 51
ts? am tsho cornstalk 259.
ts 7 a (PI) companions, friends 161 .
ts ? ${ }_{\text {ait }}$ (sg) skunk 95.
ts P_{o} soil 159.
ts? ta (sg) cord 231 .
ţam (sg) fire 172. p. 51
tram? foam, suds 174.
t符i sweet 5 .
t? 5 (sg) god, saint 193 .
-walho/-talho to be on top of 205.
we two 42.
? m z to teach 160 .
?nę to dig (in wood, earth, rock) 146.

ERRATA

1. The Cuicatec phoneme $k^{\mathbf{w}}$ is with some frequency transcribed erroneously as kw . Similarly the Cuicatec cluster nd is sometimes transcribed erroneously as the unit symbol ${ }^{n} d$.
2. Page 37, second paragraph from the bottom. In the citation of set 145 the Cuicatec forms have been omitted. See set 145 in the array of cognates (section 7).
3. Page 43, center paragraph. In the citation of set 27 grandson is given as the meaning of the Cuicatec form rather than the correct meaning granddaughter.
4. Page 56. The first sentence of 4.1.1.6. should read as follows: . . . M typically preserves $* y$ - and $* \tilde{n}$ - forms of the above paradigms...
5. Page 68. The first sentence of 4.2.6.0. should be modified to read as follows: There are some twenty-six instances in our cognate sets of $T r$ in penultimate syllables. (The six additional instances of T penultimate r that are not discussed in 4.2.6. in no way modify the conclusions of that section.)
6. Page 71, statement (2) of first paragraph of $4,3,1,2$. The following sentence should be added at the conclusion of this statement: Reflex e also occurs after M-SE \mathbf{k}^{W} when any consonant except glottal stop initiates the following syllable.
7. Page 118 , set 20 , The formula ($* 23 ; C * 11$) should read as follows: (*23, *24; $C * 11)$.
8. Page 122, set 45. The formula (*33) should read as follows: (*24, *33).
9. Page 124, set 67. Add the meaning hole after the Amuzgo forms.

INDIANA UNIVERSITY PUBLICATIONS IN ANTHROPOLOGY AND LINGUSTICS

I. Paul Radin, Winnebago Hero Cycles: A Study in Aboriginal Literature (168 pp ., 1948) \$2.00
2. Paul Radin, The Culture of the Winnebago: As Described by Themselves (119 pp., 1949) \$2.00
3. Paul Radin, The Origin Myth of the Medicine Rite: Three Versions. The Historical Origins of the Medicine Rite ($7^{8} \mathrm{pp}$., 1950) $\$ 2.00$
-5. Harold E. Driver and S. H. Riesenberg, Hoof Rattles and Girls' Puberty Rites in North and South America (33 pp., 1950); and Hilda J. Curry, Negative Painted Pottery of Angel Mounds Site and its Distribution in the New World ($57 \mathrm{pp} ., 1950$) $\$ 1.00$
6. L. S. Freeland, Language of Sierra Miwok (205 Pp., 1951) $\$ 3.00$
8. Claude Levi-Strauss, Roman Jakobson, C. F. Voegelin and Thomas A. Sebeok, Results of the Conference of Anthropologists and Linguists (67 pp., 19.53) \$1.00
9. Harold E. Driver, John M. Cooper, Paul Kirchhoff, Dorothy Rainier Libby, William C. Massey, and Leslie Spier, Indian Tribes of North America (Map $+30 \mathrm{pp} . ;$ 1953) $\$ 1.00$. Outline maps 15×17 inches may be purchased separately
11. Charles F. Hockett, A Manual of Phonology (246 pp., 1955) \$3.50
12. Harold E. Driver, An Integration of Functional, Evolutionary, and Historical Theory by Means of Correlations; Bjarne Ulvestad, An Approach to Describing Usage of Variants in Language (59 Pp ., 1956) \$r.50
13. Eric H. Lenneberg and John M. Roberts, The Language of Experience, A Study in Methodology (33 Pp., 1956) \$1.00
14. Charles F. Voegelin and Florence M. Voegelin, Hopi Domains: A Lexical Approach to the Problem of Selection (82 pp ., 1957) $\$ 2.00$

Orders for Memoirs may be sent to International Journal of American Linguistics, Department of Anthropology, Indiana University, Bloomington, Indiana

PUBLICATIONS OF THE RESEARCH CENTER IN ANTHROPOLOGY, FOLKLORE, AND LINGUISTICS

I. Edward Sapir and Morris Swadesh, Native Accounts of Nootka Ethnography
$(457$ Pp., 1955) $\$ 5.00$.
2. Eeva K. Minn, Studies in Cheremis, Volume 4 , Derivation (viii + 99 pp ., 1956) $\$ 2.00$
3. Robert N. Pehrson, The Bilateral Network of Social Relations in Könkämä Lapp District (xiv + 128 pp., 1957) $\$ 2.50$
4. Leonard Newmark, Structural Grammar of Albanian (vi $+130 \mathrm{Pp} ., 1957$) $\$ 2.50$
5. Robert E. Longacre, Proto-Mixtecan (viii + 195 pp., 1957) \$3.50

Orders will be received by Thomas A. Sebeok, Director of Publications of the Research Center in Anthropology, Folklore, and Linguistics, Indiana University, Bloomington, Indiana

