The Phonology of Tenango Otomi

(${ }^{1}$

Richard C. Blight; Eunice V. Pike
International Journal of American Linguistics, Vol. 42, No. 1. (Jan., 1976), pp. 51-57.

Stable URL:
http://links.jstor.org/sici?sici=0020-7071\(197601\)42\%3A1\<51\%3ATPOTO\>2.0.CO\%3B2-P

International Journal of American Linguistics is currently published by The University of Chicago Press.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@ jstor.org.

THE PHONOLOGY OF TENANGO OTOMI

Richard C. Blight and Eunice V. Pike

Summer Institute of Linguistics
0. Introduction

1. Consonant contrasts
2. Consonant variants
3. Vowels
4. Distribution
5. Tone
6. Intonation
7. Syllable
8. Phonological word
9. The phonology of Tenango Otomi ${ }^{1}$ includes three contrastive lexical tones, ${ }^{2}$ and a prepause syllable which is the domain of intonation. There are nine oral vowels,

[^0]four nasal vowels, and many consonant clusters. The sets of consonant clusters differ in accordance with their distribution in reference to their place in the word: prestress, the stressed syllable, poststress, or at the fusion of stem with a following morpheme.

1. There are eighteen consonants: ${ }^{3}$ voiceless fortis stops $/ \mathrm{p}, \mathrm{t}, \mathrm{k}, ~ ? /$, voiced lenis stops /b, d, g/, voiceless spirants /f (bilab$i a l$), s, š, $x, h /$, voiced fricative $/ z /$, voiced nasals $/ \mathrm{m}$, $\mathrm{n} /$, flap $/ \mathrm{r} /$, and voiced semivowels $/ \mathrm{w}, \mathrm{y} /$. A voiced lateral $/ \mathrm{l} /$ and a voiceless alveopalatal affricate /č/ occur in Spanish loan words: lápi pencil, lčíbo goat.

The bilabials /p, f, b, m, w/ contrast: dá'pą̌dí I knew, dà'bą̆di he will know, dà 'fą̆dị it will be known, dą̀'mą̀dị I loved, dálwąhị I plowed, bị'mpǒhə he was saved, bì!mbǒkwæ he was angry. The phoneme /f/ also contrasts with /ph/: ${ }^{1 ?}$ ǒphî̉nị giving off heavy smoke, 'wąfánị driver of oxen.

The alveolars /t, d, s, z, n, r/ and alveopalatals /š, y/ contrast: dá ltógi Ifell, dà 'dógi he will fall, dá'sògi I jumped, dá 'šòdi I studied, dà'zògi he will jump, dà̀'nòki he will fatten it, dályògi I was tired; dálš̀̀ki I got scraped, rà lšăbu his soap, ná'má I am going, rà̀lmássæ the worm. The phoneme /t/ also contrasts with /th/: Itěde adopted child, 'thèbe necklace.

The flap /r/ occurs in a few morphemes

[^1]only, but it occurs frequently because of the morphemes rą̀- the, rą́- his, grą́- you are (grą́'su you are a grandmother), drạ́- I am (drą́'su I am a grandmother). The /r/ also occurs in a few other morphemes, for example: ${ }^{1 ?}$ bórga lizard, Inèrbe partridge, 'bórto button, 'párdo reddish brown mixture, dì l? bòrpi he changes it, ’ì lsǒrbī it is in vain, bì lgórbï it's laying inside.

The velars $/ \mathrm{k}, \mathrm{g}, ` \mathrm{x} /$ and the laryngeals p, h/ contrast: ’ì 'ką̌s? he carries, bì lgą s? ì he carried, bì 'xąss? it was carried away,
 he carries; mą̀ 'ko my brother-in-law, mą̀ xo my mushroom, dá 'ho I killed, dá ${ }^{\prime}$? I was inside. The phoneme /x/ also contrasts with $/ \mathrm{kh} /$: Imòkhą priest, Itǎxą godfather. Glottal stop contrasts with the lack of glottal stop, as in: dil? bòt? i it is turning around versus di ${ }^{1}$ bbò ${ }^{2}{ }^{2} \mathrm{i}$ he is turning it around; bì 'hyù̀s'i he placed it on (something) versus bì 'hyừ's? i he increased (something).

There is also contrast between the single consonants $/ \mathrm{s}, \mathrm{m}, \mathrm{n} /$ and the clusters $/ \mathrm{ss}$, $\mathrm{mm}, \mathrm{nn} /:$ rą̀ se the stars, rà̀ $\mathrm{sasæ}$ the frost; rą̀'mǽti the beggar, rą́'mmǽti his possession, díl'ònị I hoo, díl? ${ }^{\text {ºnnil I } I \text { ask. }}$
2. The consonant variants are, for the most part, conditioned by their occurrence in relation to the stressed syllable, to / $/$ /, and to other contiguous consonants.

The voiceless fortis stops $/ \mathrm{p}, \mathrm{t}, \mathrm{k} /$ are frequently preaspirated when, as a single consonant, they are initial in a stressed syllable: rą̀ '[hp]àda the buzzard, rą̀ [ht] zrme the butterfly, dí'[hk]ót?i I lock up. In other environments, they are not preaspirated, except that when following a vowel, they may be preaspirated in slow speech: Inzï̀pa monkey, Imphìnị cuff of a shirt, rà 'thò? t' i the cornhusk, 'míštu milkweed silk, rą̀'t’àbi the shovel, Iš̀nbą́te teacher. When two voiceless stops occur in sequence, there may be voiceless open transition between the two: I? ${ }^{\text {olk to cave. }}$

A sequence in which a consonant is followed by a glottal stop is actualized as a voiceless glottalized contoid: bàl mǎp? ̂̀ya he went then, 't'áfi syrup, 's'ว̆ye a jar, dílk? $\mathrm{i} k i \operatorname{I~pull~apart.~}$

A sequence in which glottal stop precedes a voiced lenis stop $/ \mathrm{b}$, $\mathrm{d} /$ is frequently actualized as a voiced implosive: dì ${ }^{1}{ }^{\prime}$ bò ${ }^{2} t{ }^{2} \mathrm{i}$ he turns around, rą̀ ${ }^{1 ?}$ bìda the guitar, rą̀? děde the ladder. (In our data, we have no sequence $/ \mathrm{Pg} /$.)

The voiced lenis stops $/ \mathrm{b}, \mathrm{d}, \mathrm{g} /$ have stop allophones when following nasals: Imbáre compadre, Indo hail, Ingo fiesta. In other environments, /b, d, g/ vary freely from a lenis stop to a fricative, but the stop is the more frequent: $1 \mathfrak{l}$ bórga lizard, ráldógwa his ankle bone, rá 'zàgų his ear, rą́'bàyą his brain.

When a voiced stop precedes another voiced stop, or $/ \mathrm{z} /$, there is voiced open transition between them: Inzì[bd]e supper, lší $\left[g^{\circ} z\right]$ ç coward.

The voiceless alveolar and alveopalatal spirants /s, š/ have stop onsets when preceding $/ P /$, unless the $/ P /$, in turn, precedes a voiced continuant: 'hmilt's' $]$ front teeth, 'zí[ť̌?]ï little; but ’ìlpá[s?]yźss they are ashamed, dílpæ̌[s?]màso I am ashamed.

The voiceless glottal spirant /h/ has numerous allophones. It is a voiceless nasal of the same point of articulation as a following nasal: 'hmị face, 'hnị̆nị town. It is a voiceless bilabial when preceding /w/ ('hwàda box) and voiceless alveopalatal when preceding /y/ ('hyádi sun). When /h/ occurs between a nasal and a vowel, it alternates between a voiceless nasal and a voiceless vocoid of the same quality as the following vocoid: Inho good, Inèmhyą slanderer. In other environments, /h/ has the quality of a following vowel: 'fǒho stomach, dí'hą̆nị I buy.

The voiced alveolar nasal / $\mathrm{n} /$ has a velar allophone when preceding $/ \mathrm{k}, \mathrm{g}, \mathrm{h}, \mathrm{w} /$ and when preceding the sequences $/ \mathrm{p} / \mathrm{w} /$ or $/ \mathrm{P} /$
plus vowel: 'nkhąpi blessing, 'ngų house, Inho good, Inwądànị garden, In? wági a broken bone, $\mathrm{n}^{\text {Pài }}$ skunk.

When preceding oral vowels, the bilabial nasal $/ \mathrm{m} /$ has an allophone with a stop release [m^{b}], and the alveolar nasal / $\mathrm{n} /$ has [n^{d}]. These allophones with a stop release contrast with a consonant cluster composed of nasal plus stop, in that the stop phoneme which is a part of a consonant cluster is of longer duration than the stop which is a part of a complex allophone [m^{b}] or [$\left.\mathrm{n}^{\mathrm{d}}\right]$: ${ }^{\text {[}} \mathrm{m}^{\mathrm{b}}$]óhi plate versus Imbòšita great-grandfather versus ’ịlmpa he goes habitually; nè̀'[$\left.\mathrm{n}^{\mathrm{d}}\right] \mathrm{e}$ your mouth versus nìl 'nde in the afternoon.
3. There are nine oral vowels $/ \mathrm{i}, \mathrm{e}, \mathfrak{x}, \mathrm{a}$,
 $u /$. Of the oral vowels, three are front unrounded: /i/ (high), /e/ (mid), /æ/ (low); three are central-back unrounded: /i/ (high), /a/ (mid), /a/ (low); three are back rounded:/u/ (high), /o/(mid), /o/ (low). Examples of the oral vowels in contrast are: ${ }^{1}$ bíte stinger, ${ }^{12}$ bèt'e roof, ${ }^{12}$ bǽto grandchild, ${ }^{1 P}$ báfi nest, I? b̌̌ši mucus, 'bòsæ a certain tree, Ibǔši chicken, I? bî̀s'i rafter, ${ }^{1 ?}$ bát'? offering; rą̀ 1? ye the rain, rą̀ 1? yæ the hand, rą̀l? ya the infection, rą̀ l’yóho the nausea, rà̀l? yo the dog, rą̀l? yo the ghost, rą̀l’yï the root; rą̀'sə the star, rą̀'su the grandmother, ? ìlso it falls; 'góne a dumb person, 'gą́nị bumblebee, 'gónị it thunders; 'bázu old clothes, 'bàši carrying cloth.

The four nasal vowels are: /i/ (high front unrounded), /æ/ (low front unrounded), /a/ (low central unrounded), and /u/ (high back rounded). Examples of the nasal vowels contrasting with each other and with oral vowels: rą̀ 1? yæ̀hæ the servant, rà̀l? yą the raw (thing) rą̀ 1 'yų the road, rą̀ $\operatorname{šiffíl}$ the straw mat, rà̀ 'sìtha the edible leaf, 1 'yą́ši scissors, 1 ' yáši cornerpost, rą̀'su the grandmother, ’ì 'sų he fears, ${ }^{1 ?}$ wæ insect, ${ }^{1 ?}$ wæ frog, lyą head, lya liver.

In a vowel cluster, each vowel is the nucleus of a syllable. Vowel clusters composed of oral vowels end in $/ \mathrm{i}$ /, whereas those composed of nasal vowels end in $/ \mathrm{i} /$. In our data, there are only eight different clusters, namely: æi, ai, oi, əi, ii, æí, aí, ui. Examples: 'hwài lightning, 'xwài knife, Ixìpòi purple, 'hòi dirt, Ifîi hat, n’àì skunk, tæ̀̀i corn gruel, Igùi cloud.
4. There are many consonant clusters in Tenango Otomi, but the distribution is distinctive in that, except for /št/, none of the clusters which occur in syllables between pause and the first stressed syllable occurs in a stressed syllable. In the same way, only three of the twelve clusters which occur as a result of fusion between a verb stem and a following morpheme occur elsewhere.

Syllables which precede the stressed syllable (that is, those which occur in verb prefixes) have either $/ \mathrm{b}, \mathrm{d}, \mathrm{g} /$ or $/ \mathrm{s} /$. The clusters are: /br, dr, dy; gd, gm, gn, gw, gy, gr; šp, št, šk, škw/. In addition, there is the cluster $/ \mathrm{nm} /$. Examples with clusters which occur prestress: brą̀ 'xǎp'ī it is (distant location), drą̀ 'mæ̀fi I am a worker, dyálmæ̀fíhe we are workers; gdą́lmàgòp?i I am going there, gmílnxàp? īya you were like that, gnílma you are going, gwí'xápi you do that, gyá'mmnæ̆ngųhî́p?̀i you (pl.) are citizens there, grą́lmæ̀fi you are a worker; špíl?yæ̌p?i he came from there, štą́lma I went, šką'lma you went, škwíl? yǎhæ you have come far; nmí'nkhàgòp? ìva I was like that.

Most consonant clusters which occur in stressed syllables have either $/ \mathrm{m}, \mathrm{n}, \mathrm{h} /$ or $/ \mathrm{P} /$. In addition, the clusters $/ \mathrm{kw}$, gw, ss, stt, $\mathrm{xw} /$ also occur. The clusters with $/ \mathrm{m}, \mathrm{n}, \mathrm{h}$, ?/ are: /mb, mm; nd, ng, $\mathrm{n}^{\text {? }}$, ns, nš, nh, nz, nn, nw; hm, hn, hw, hy, th; ?b, ?d, ?w, ?y, s?, $\mathrm{t}^{2}, \mathrm{k}^{2} /$. Examples with stem-initial clusters: Imbáre compadre, Immìi heart; Indąnị cow, Ingə meat, In’à̀ skunk, Insógi key, Inšú
arrow, Inho good, Inzăfi rifle, 'nnìi a drip, Inwą́xï beanfield; 'hmæ tortilla, 'hnịnṇ town, 'hwą fish, 'hyádi sun, 'thą dried corn-on-the-cob, ${ }^{12}$ bàši broom, ${ }^{12}$ dăní bridge, ${ }^{1 ?}$ wæ frog, I? yų road, Is?ï tail, It'?áfi brown sugar, ${ }^{1} \mathrm{k}$ ’æ̀yą snake; ' $\mathrm{kwæ}$ anger, 'gwæ a small one, Issæ frost, 'štą hair, 'xwài machete.

Stem-initial clusters with three or four consonants all have a nasal, namely: /m? m , mhm, $n^{?} n, n^{?} w, n^{?} y, m p h, n t h, n k h, n t ?$, $\mathrm{ns}^{\text {? }}$, $\mathrm{nk}^{\text {? }}$, $n k$? $\mathrm{w} /$. Examples: $\mathrm{Im}^{\text {P }}$ màs? i strainer, Imhmát ${ }^{1}$ an argument, In? nášte contagious, In? wági a broken bone, In? yógi tomb, Imphò? yæ ring, Inthŭs'i chair, Inkhų sister (man's), 'nt?o a cradle, 'ns? o evil, ? $\mathrm{i}!n k$? wás? i it is boiling, šą'nk? a it is wet.

Many of the stem-medial clusters of two consonants are the same as those which occur in stem-initial position. In addition, there are other clusters beginning with $/ \mathrm{s}$, s., m, n, ?/ which do not occur in steminitial position. Examples: Idæ̀spi ember, ${ }^{1}$ Pbíska chicken dropping, 1 'ásmínyo police; Immóške blister, 'fášmi bald person, 'dàmšášnị rose, Indǽšfànị reins, Igwášxo pant leg, 'síšwi you (dual) carry it, 'dòšyo caterpillar, Insòxtéhe ${ }^{\prime} \mathrm{k}$ ’àmdą̀po green foliage, 'š̌̌mhòi world; 'šònbąte teacher, Inkhừ?mị a cover, 'Idǒ?nị egg.

Still other clusters which, in our data, occur in stem-medial position, but which do not occur stem-initially are: /bd, gz, pš, ph, py, kt, ks, kš, kh/. Examples: ' $\mathrm{nzíbde}$ supper, 'šígzų coward, 'šípšą́hị a water plant, ${ }^{1}{ }^{1 ?}$ óphínị giving out heavy smoke, 'hmépya sign, IPòkto cave, Išáksa sliver, I?òkstíyų nostril, 'mòkhą priest.

Stem-medial clusters of more than two consonants which do not appear in steminitial position are: /mph, nhn, nk^{2}, sth, shn, š? y, št?, šxw, xhm, nskw, nshm,
 'thứnhni bench, 'š̌̀nk? ${ }^{\text {玉̀y yą a fern, } 1 \mathrm{k} \text { 'ăsthą }}$ green cornfield, Izèshnị a certain tree, 'záš' yo cornstalk, It’àšt? àfi sugar, 1?òšxwa
devil, 'záxhmị napkin, 'dę̌nskwa rabbit, Indą̀nshmị cheek, 1 k ? ǒnt' yą back of neck,
 husk.

When a verb stem is followed by a nonstressed morpheme, there may be fusion of the verb stem with morphemes, such as a following article or possessive pronoun. (The final vowel of the verb stem may be lost and the final consonant of the stem may or may not be changed.) This fusion results in the following consonant clusters: /hm, hn, hy, hr, rk, šr, šy, kr, ky, $\mathrm{xm}, \mathrm{rp}, \mathrm{rb} /$. In our data, this is the only environment in which the last nine of these clusters occur. Examples: bì ltěde she raised, bì ltěhrà 'bą̀sí she raised the child, bì 'těhyá 'bą̀si she raised their child, bì Iterrkąmą̀ 'bą̀sí she raised my child; bì hóki he fixed, bì 'hókrá Indæ he fixed his yoke, bì 'hókỳ̀ Indæ he fixed the yokes, dá 'hóxmą̀ Indæ I fixed my yoke; bì 'zăhə he arrived, bì 'zǒhrą̀ 'bàsí the child arrived, bì 'zǒhyò 'bąsị the children arrived, bì 'zăhmą 'bą̀sị my child arrived, bì 'zǒhnı̀̀ 'bąsì your child arrived; bì 'hyăšỳ̀ I mánša he baked the ears of corn, bì 'hyą̌̌̌rà 'mánša he baked the ear of corn; dìl? bòrpi he changes it; bì lgórbï it's laying inside.

There is a restriction in the distribution of consonants in relation to vowels. That is, in our data, not all consonants precede all vowels. Specifically, in native words, there are the following restrictions: (1) There is no contrast between vowels following $/ \mathrm{r} /$. The vocoid is low central and is more nasalized when preceding $/ \mathrm{m} /$ and $/ \mathrm{n} /$ than in other environments. We have arbitrarily written it as $/ \mathrm{a} /$. (2) $/ \mathrm{w} /$ does not precede $/ u, u, o, ~ o, ~ i, ~ ə / . ~(3) / m, ~ g, ~ x, ~ h / ~ d o ~ n o t ~ p r e-~$ cede $/ \mathrm{u} /$. (4) $/ \mathrm{f} / \mathrm{does}$ not precede $/ \mathrm{u}, \mathrm{u} /$. (5) $\mid n /$ does not precede $/ \mathfrak{x}, \mathrm{u} /$. (6) $/ \mathrm{y} /$ does not precede $/ \mathrm{i}, \mathrm{i} / \cdot(7) / \mathrm{z} /$ does not precede $/ \mathrm{e}, \mathfrak{æ} / .(8) / \mathrm{k} /$ does not precede $/ \mathfrak{x}, \mathrm{i} /$. (9) $/ \mathrm{x} /$ does not precede $/ æ, \partial, \mathrm{u} /$.

There seems to be lack of contrast of
oral versus nasal vowels in the verb prefixes and the proclitics which precede a noun stem. Some of the verb prefixes are nasalized when preceding $/ \mathrm{m} /, / \mathrm{n} /$, and nasal vowels, but are oral when preceding nonnasal phonemes. For example: dílpède I count versus dị'mìt? i I grab; ? ìlsóya he rests versus ’l̀ linúhų he wakes up; dà lfòdi he will take care of versus dą̀'mị̀t? \mathfrak{i} he will grab; gà 'xòhi I will sweep versus gà 'nųhuc I will wake up.
5. Lexical tone contrasts on all syllables except the prepause syllable, and the final syllable of a multisyllable stem. (Intonation is contrastive on the prepause syllable, see 6 , and unless modified by intonation, a stem-final syllable has high tone.)

There are three tonemes: high /'/, low Γ, and upglide $/ \%$. These contrastive tones cause a difference in meaning of lexical items, as in: dí'tứhų I sing, dí'tư̆hų I plant, dí'tụ̀t? I swallow; dílhụ́mbị I hurry him, dí 'hừmbị I point out, díl'ą̌mbị I say it to him; gá 'sógi you left (it), dá 'sŏgi I left (it), dá 'sògi I spit; dí 'hą́kị I am taking, dí'hòni I am hunting for, dílhąní I am receiving.

A few examples of minimal tone pairs are: Imųza banana, Imừza papaya, 'thứhų a growing cornstalk, 'thư้hų name, dílhés?e I sneeze, dí'hěs? I cover; 'dó? yo bone, 'dò? yo comal; rą'ndéhe his fontanel, rą̀ n něhe the swamp.

The contrast between two sets of verb prefixes and two sets of noun proclitics is carried by tone: dą́'mị̀t? I grabbed, dą̀'mì̀t’i he will grab; gá'kót'i you enclosed (it), gà ${ }^{k}$ kót? $\mathrm{i} I$ will enclose (it); rą́'nthụ̆s'i his chair, rą̀'nthư̆s?i the chair; yált’̨̀šų their daughter, y⿱̀ 't'pišų the daughters.

On the nonstressed syllables, only the contrast of high versus low tone occurs. That is, the upglide occurs only on stressed syllables: rą́'nzăfi his gun, rą́t’ǒs? his bed, rą́l?děde his ladder. There is no con-
trast of tone on a syllable which is preceding pause, since that environment is the domain of contrastive intonation (see 6).

Except for one-syllable stems, a stemfinal syllable has a high tone when followed by another morpheme within the word, or when followed by another word: mą̀'tǎmágo my butterfly, mą̀ šìtógo my bottle, mą̀móhígo my plate, rą̀ 'nzăfí bì 'dógi the rifle fell.

A one-syllable stem when it occurs prepause does not have contrastive tone, but in other environments some onesyllable stems have low tone, and some have upgliding tone: 'šo fingernail, 'hyæ mirror, Ingų house, lyo candle, 'štą hair. When followed by another morpheme, the above words have contrastive tone: mą̀lšògo my fingernail, mạ̀'hyæ̀go my mirror, mą̀ 'ngų̀ngo my house, mą̀'yǒgc my candle, mą̀'štặgo my hair.

In three-syllable stems, there are the following tone sequences: 'kî́są́sì measles, Išímòza bowl, Idąyą́mo big toe, Igǐšànị a slingshot, Itə̌kángu a two-story house, ${ }^{\prime} \mathrm{k}$ 'îthèhe whooping cough.

There are a few four-syllable stems: Idąfànzàte lion, 'gónèdə̀nị flower bud.

When high tone is on a syllable with /i/, it has a slightly higher allotone than when it is with other vowels: Itíškwa top of foot versus 'fódi jail, 'šíthæ plank versus Indéhe fontanel. A stressed high usually has a slight downgliding allotone when the vowel is between voiced consonants: 'xwąngwa shin versus 'thą́hí thread, rạ́ldógwa his ankle versus ráa'nt? ${ }^{\prime}$?s? i is spoon.

A low tone in a stressed syllable is slightly lower than a nonstressed low. That is, in the following examples, the second syllable is lower than the first: gà l'ą̀mbị I will replant, rà̀'sàha the finger, dà l'y yòdi he will ask for.

An upgliding tone is occasionally actualized as a level pitch which is slightly higher than a low tone: bìlmĕ?s? he guarded
versus bì 'mæ̀'s? ${ }^{\prime}$ he warded off. The upglide is more perceptible in syllables which are closed with $/ \mathrm{m}, \mathrm{n} /$ than in open syllables: gì l’ yǎmbi you will say to him versus rą̀ 'bæ̌šu the peso.

When in otherwise analogous environments, a vowel with a low tone is longer than a vowel with high tone: rá 'şíthị his sandal versus rą́ 'şìthị his bamboo; dálhąkị I took away versus dá 'hạ̀kị I copied.
6. Contrastive intonation, signaling the attitude of the speaker, is carried in part by voice quality and by raising or lowering the general pitch with which an utterance, or part of an utterance, is spoken.

Contrastive intonation also occurs on a prepause syllable: (1) A sequence intonation used, for example, when items are listed, glides upward from a pitch about the level of lexical high. (2) A terminal intonation used, for example, at the end of a list, glides downward from midway between lexical high and low. (3) A level pitch (about the same height as lexical high) is used on the prepause syllables much of the time, for example, in a monologue. (4) A raise in key of the last part of a sentence, with upglide on the last syllable to extra-high, indicates surprise. (In the following examples, $/ 1 /$ is extrahigh and $/ 3 /$ is low.) ?wà 'hịngè Ipàki ${ }^{2-1}$ don't you know me? (5) When signaling emphasis or correction, the prepause syllable has extra stress and length, and it falls from the height of a lexical high to low: gò Inùgge ${ }^{2-3}$ it's me! (6) A fall from extra-high to low, with added length and stress, is used when calling: Išúwa ${ }^{1-3}$ John! (7) A fast fall from extra-high is attention getting: 'šúwa ${ }^{1-2}$, bíl? yæ̀ kwa ${ }^{2}$ John, come here!

In a sequence of more than one word, even in an unemotional utterance, the prepause syllable frequently is louder than the other syllables. Thus, the prepause
syllable, marked by loudness, is the domain of sentence stress, even while word-stress, marked by length (and occurring on the first syllable of the stem) is retained.
7. Each syllable has one vowel. Even when two vowels occur in sequence, both are syllable nuclei, as in: If îi hat.

There may be one, two, or three consonants between pause and the first vowel. That is, the postpause syllable may be CV, CCV , or CCCV. For example: 'hą he has, 'thą corn, Inthąhị rope.

No consonants precede pause; only vowels occur prepause. The syllable preceding pause may consist of a single vowel, or the final vowel may be preceded by one, two, three, or in a few words, four consonants. For example: Inặni lime, Idǒ? nị egg, 'tǔnhnị war, Idĭnskwa rabbit. The division between word-medial syllables is often indeterminate.
8. The syllable with primary stress is the nucleus of the phonological word. It is the first syllable of a stem: 'pǎhnị shirt, rà̀'pǎhnị the shirt, ną̀rà̀'pǎhnị this the shirt, 'thèbe beads, mą̀'thèbe my beads, mązí'thè̀be my little beads, 'zàààni cornstalk, rą̀'zàfàní the cornstalk, 'kî̉są́sí measles, dí 'pède I am counting.

There are a few four-syllable stems. With these words, primary stress occurs on the first syllable and a secondary stress (unmarked) on the third: ľààk' ${ }^{\text {? ànděhe }}$ mint herb, 'pàšmàhás'i a swallow, Ingų̀nzàfànị house with a cornstalk roof, 'gónèdànị flower bud.

A stressed syllable is perceived as slightly louder and slightly longer than other syllables: gą̀ 'pąhą I will smell (it). Stress may also be marked by the allotones of low tone (see 5) and by allophones of the voiceless stops (see 2).

The borders between words are frequently indefinite. For example, the article
or possessive pronoun of a noun phrase when it follows another noun, or a verb, usually (except in slow speech) clusters with the preceding phonological word: ?il'sa he eats + rą̀'dą̀po the grass + nąrą̀ lfánị this the mule becomes \mathfrak{i} ilsàrà̀ Idạ̀póną̀rą̀ 'fáni this the mule eats the grass; ? i lsi he has + rą'fánị his mule + rą̀'bą̀sị the child becomes ${ }^{1}$ ì sírá 'fánírą̀ 'bą̀sị the child has his mule.

Borders between words may also be
indefinite when a verb with a stem-final $/ \mathrm{i}, \mathrm{i}, \mathrm{e} /$ is followed by a noun phrase beginning with morphemes such as rạ́- his, rà̀the, yó- their, or y⿱̀̀- plural. The stem-final vowel of the verb may drop: bì 'hyăǎi he baked + rą̀'mąnša the ear of corn becomes bì 'hyǎšrà Imą́nša he baked the ear of corn; bì 'hyąšyò Imąnša he baked ears of corn; bì 'hyą́ki he took (it) + rállápi his pencil becomes bì lhyákráa llápi he took his pencil.
http://www.jstor.org

LINKED CITATIONS
 - Page 1 of 2 -

You have printed the following article:

The Phonology of Tenango Otomi
Richard C. Blight; Eunice V. Pike International Journal of American Linguistics, Vol. 42, No. 1. (Jan., 1976), pp. 51-57. Stable URL:
http://links.jstor.org/sici?sici=0020-7071\%28197601\%2942\%3A1\%3C51\%3ATPOTO\%3E2.0.CO 3B32-P

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Footnotes]

${ }^{2}$ The Tonemes of Mesquital Otomi

Donald E. Sinclair; Kenneth L. Pike
International Journal of American Linguistics, Vol. 14, No. 2. (Apr., 1948), pp. 91-98.
Stable URL:
http://links.jstor.org/sici?sici=0020-7071\(194804\)14\%3A2\<91\%3ATTOMO\>2.0.CO\%3B2-I

${ }^{2}$ Phonemes and Morphophonemes of Temoayan Otomi

Henrietta Andrews
International Journal of American Linguistics, Vol. 15, No. 4. (Oct., 1949), pp. 213-222.
Stable URL:
http://links.jstor.org/sici?sici=0020-7071\(194910\)15\%3A4\<213\%3APAMOTO\>2.0.CO\%3B2-O
${ }^{2}$ Tonemic-Intonemic Correlation in Mazahua (Otomi)
Eunice V. Pike
International Journal of American Linguistics, Vol. 17, No. 1. (Jan., 1951), pp. 37-41.
Stable URL:
http://links.jstor.org/sici?sici=0020-7071\(195101\)17\%3A1\<37\%3ATCIM\(\>2.0.CO\%3B2-W

${ }^{2}$ The Word and the Phonological Hierarchy of Mezquital Otomi
Ethel E. Wallis
Language, Vol. 44, No. 1. (Mar., 1968), pp. 76-90.
Stable URL:
http://links.jstor.org/sici?sici=0097-8507\%28196803\%2944\%3A1\%3C76\%3ATWATPH\%3E2.0.CO\%3B2-8

NOTE: The reference numbering from the original has been maintained in this citation list.

LINKED CITATIONS

- Page 2 of 2 -

${ }^{3}$ Central Otomian I: Proto-Otomi Reconstructions

Stanley Newman; Robert Weitlaner
International Journal of American Linguistics, Vol. 16, No. 1. (Jan., 1950), pp. 1-19.
Stable URL:
http://links.jstor.org/sici?sici=0020-7071\(195001\)16\%3A1\<1\%3ACOIPR\>2.0.CO\%3B2-P
${ }^{3}$ Some Revisions of Proto-Otomi Consonants
Doris Bartholomew
International Journal of American Linguistics, Vol. 26, No. 4. (Oct., 1960), pp. 317-329.
Stable URL:
http://links.jstor.org/sici?sici=0020-7071\(196010\)26\%3A4\<317\%3ASROPC\>2.0.CO\%3B2-W

[^0]: ${ }^{1}$ There are more than 7,000 speakers of Tenango Otomi centering around the town of Tenango de Doria, Hidalgo, Mexico. Miguel Plata P., about fifty-five years of age, was the principal informant. He is from a nearby town, San Nicolás. Richard C. Blight is responsible for the grammatical data, the vocabulary, and most of the segmental analysis in this article. Eunice V. Pike analyzed the tone and is responsible for the presentation of the materials.
 ${ }^{2}$ For a description of other Otomi languages in which contrastive tone is posited, see Donald E. Sinclair and Kenneth L. Pike, "The Tonemes of Mesquital Otomi," IJAL 14 (1948):91-98; Henrietta Andrews, "Phonemes and Morphophonemes of Temoayan Otomi," IJAL 15 (1949): 213-22; Eunice V. Pike, "Tonemic-Intonemic Correlation in Mazahua (Otomi)," IJAL 17 (1951):37-41; Joyce Jenkins, "Morphological Phoneme Sequences in Eastern Otomí," Phonetica 2 (1958):1-11; and Ethel E. Wallis, "The Word and the Phonological Hierarchy of Mezquital Otomi," Language 44 (1968):76-90. For Mezquital Otomi, described as having accent rather than tone, see Frances Lyon and Morris Swadesh, "Two Views of Otomi Prosody," IJAL 15 (1949): 100-105; and H. Russell Bernard, "Otomi Tones," Anthropological Linguistics 8, no. 9 (1966):15-19.
 [IJAL, vol. 42, no. 1, January 1976, pp. 51-57]
 © 1976 by The University of Chicago. All rights reserved.

[^1]: ${ }^{3}$ For the reconstruction of Proto-Otomi consonants, see Stanley Newman and Robert Weitlaner, "Central Otomian I: Proto-Otomi Reconstructions," IJAL 16 (1950):1-19; and Doris Bartholomew, "Some Revisions of ProtoOtomi Consonants," IJAL 26 (1960): 317-29.

