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COMPUTATIONAL TOOLS FOR ENDANGERED LANGUAGE DOCUMENTATION

Abstract

by

Antonios Anastasopoulos

The traditional method for documenting a language involves the collection of audio

or video sources, which are then annotated at multiple granularity levels by trained lin-

guists. This is a painstaking and time-consuming process, which could benefit from ma-

chine learning techniques at almost all stages. However, most existing machine learning

methods are being developed for high-resource languages and rely on abundant data, ren-

dering them unsuitable for such applications.

At the same time, for many low-resource and endangered languages speech data is

easier to obtain than textual data, particularly since most of the world’s languages are

unwritten. Nevertheless, it is relatively easy to provide written or spoken translations for

audio sources, as speakers of a minority language are often bilingual and literate in a high-

resource language.

This work is aimed at solving certain problems that arise in the documentation process

of an endangered language, due to the minimal annotated resources that are available at this

stage. This dissertation mainly focuses on spoken corpora of endangered and low-resource

languages with limited translation annotations, tackling problems that cover every layer of

linguistic annotation:

• speech-to-translation alignment: we present an unsupervised method for discovering
word or phrase boundaries in the audio signal and aligning the discovered segments
with translation words.



Antonios Anastasopoulos

• speech transcription: we developed two novel neural methods for creating a phoneme
or grapheme level transcription of the audio, also utilizing any available translations.

• speech translation: our novel multitask neural model jointly produces a transcription
and a (free) translation of an audio segment.

• morphological analysis: producing a layer of annotation that provides word-level or
morpheme-level information. In this work we focus on grammatical (part-of-speech)
tagging on an endangered language.

Building off limited or no annotations, our methods are capable of producing helpful

suggestions for word or phrase boundaries, as well as transcriptions, translations, or gram-

matical tags. As a result, our work provides the machine learning methods that could form

the backbone of a modern linguistic annotation toolkit, one that could have the potential to

significantly accelerate the language documentation process.
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CHAPTER 1

INTRODUCTION

Throughout human history, knowledge and culture have, for the most part, been passed

from generation to generation through oral tradition. In fact, language and culture are so

inseparably connected, that the loss of the former often marks the end of the latter. Accord-

ing to recent conservative estimates from UNESCO’s Atlas Of The World’s Languages In

Danger” (UNESCO, 2010), more than 43% of the world’s languages are endangered or

vulnerable to extinction.

The loss of a language is deemed to have a staggering number of negative conse-

quences. Importantly, according to Lee and Van Way (2016), it leads the loss of cultural

or ethnic identity (Tsunoda, 2017), the loss of knowledge of prehistory by losing the only

means of reconstructing words about a culture’s past (Evans, 2011), the loss of linguis-

tic diversity (Hale, 1992) and of part of the sum of human knowledge (Crystal, 2000),

including traditional ecological knowledge. Estimates of the rate of language extinctions

vary from the worst-case scenario of about 90% of the world’s languages disappearing

within 100 years (Krauss, 2007), to the more moderate, but not less catastrophic rate of

a language disappearing very three months (Campbell et al., 2013). Acknowledging the

value and importance of these languages, not only to their respective communities, but to

humanity as a whole, significant efforts have been channelled towards their documentation

and preservation.

Language preservation can be loosely defined as all efforts aimed towards maintain-

ing or creating a pool of active, native speakers of a language, such that it will ensure the

continuing usage of the language. A language starts to become endangered when transgen-
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erational transmission starts to decrease, i.e. the language is not passed down to the young

generations. Other factors that lead to endangerment can be the lack of official (state) sup-

port for the language, political turmoil, or association of the language with a lower so-

cial class. Naturally, in the majority of cases, preservation efforts consist of collecting the

knowledge of –typically– elder fluent speakers and teaching the language to children, in

order to create a new generation of fluent speakers.

Systematic language documentation, on the other hand, aims to codify the rules that

describe a language, that is, its grammar, as well as to study its use among a speech com-

munity. Himmelmann (1998) defines language documentation as “a comprehensive and

representative sample of communicative events as natural as possible,” which is geared

more towards the scientific understanding of the language. However, despite their funda-

mentally different goals, documentation can be and often is an integral part of the process

of language preservation; if anything, a proper codification of the language is crucial for

creating educational material.

In order to achieve proper documentation, however, a comprehensive record of the lan-

guage is needed, which can be then used to not only study and preserve the language, but

also to aid any revitalization efforts. Traditionally, this record is collected by field linguists

who study the phonetics, phonology, morphology, syntax, and so forth, of the language.

In order to make a collection of speech data usable for future studies of the language, the

minimum requirement is something resembling Interlinear Glossed Text (IGT), which in-

cludes a transcription with a phonetic or standard orthography, morphological analysis and

glosses which provide sub-word and word-level information, and finally a free translation

in a more high-resource language, which captures the semantics of an utterance. An exam-

ple from Russian, that follows the Leipzig Glossing Rules (Bickel et al., 2008) is shown

here:

In the recent decades, modern technology in the form of tools, webpages, and apps

is also increasingly used in the documentation process. In Chapter 2, we provide an in-

2



My s Marko poexa-l-i avtobus-om v Peredelkino

1PL COM Marko go-PST-PL bus-INS All Peredelkino

we with Marko go-PST-PL bus-by to Peredelkino

“Marko and I went to Perdelkino by bus ”

depth discussion of the involvement of technology and computational methods in language

documentation.

The traditional paradigm of a linguist working manually, or with minimal computa-

tional assistance, is still the prevalent one. However, our modern, data-driven era opens

up the path to an alternative paradigm, originally proposed by Liberman (2006) and Bird

(2010). In the traditional documentation scenario, a linguist can ask questions aimed at

clarifying a specific phenomenon of a language. In our “alternative” documentation sce-

nario, the assumption is that the answers to such questions will arise from the volume of

the data and can be discovered by combining statistical methods with linguistic knowledge.

Although somewhat unorthodox, this “quantity over quality” approach will be our gen-

eral pre-supposed framework throughout this dissertation, for two main reasons. First,

abundance of data in a language could lead to the development of technologies that in

turn could be combined with the traditional approach, allowing a linguist to produce larger

quantities of high quality annotations. Second, this scenario is applicable in the case of

severely endangered languages that stand little chance of preservation. Instead of lamentably

futile attempts in revitalization or preservation, one could focus instead on collecting as

(ideally interpretable) data as possible. Unfortunately, the case for severely endangered

languages, i.e. with a handful of elderly native speakers, is that there is simply not enough

time left to take the “traditional” documentation approach. Instead the linguist could first

ensure that enough data are collected, and only later analyze them.

The first aspect of documentation that can be significantly scaled using modern tech-

nologies is data collection. In fact, new mobile and web-based technologies are being de-
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veloped to facilitate collection of spoken samples in endangered languages, as well as

translations (Bird et al., 2014a). The collection of translations ensures the interpretability

of the resource even if the language eventually falls out of use, and the quantity of the data

collected aims to counter the loss of quality that stems from the lack of a specific elicitation

process with the linguist’s participation. Recent examples of such parallel speech collec-

tion efforts focused on endangered languages are already underway (Adda et al., 2016;

Blachon et al., 2016).

After data collection, the next step of the documentation process, and the most time

consuming one, is analysis. For example, it is estimated that it takes a trained linguist about

an hour to phonetically transcribe a minute of speech (Thi-Ngoc-Diep Do and Castelli,

2014). Therefore, we propose to develop computational methods that could automate parts

of the documentation process. Since the aforementioned data collection scenario provides

not only speech in an endangered language, but also translations in a high-resource lan-

guage, we propose computational methods that combine approaches from the fields of

automatic speech recognition and machine translation.

The reason that our approach requires techniques from the speech processing field is

non-trivial. Out of the 7,097 living languages currently listed in Ethnologue (Lewis et al.,

2009), only 3,909 have a developed writing system. In many of these instances, it might still

be the case that a writing system exists but is not widely adopted by the community. The

remaining 3,188 languages most likely exist only in spoken form without a standardized

writing system. This presents further obstacles to the systematic documentation of these

languages.

In this dissertation, I describe our research efforts towards the goal of enhancing the

language documentation pipeline with machine learning. The main theme of this work is

that the techniques take advantage of translations in a higher-resource language. Overall,

this work provides a set of computational methods that could be employed at each sub-task

of a language documentation pipeline, potentially speeding up the entire process.
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1.1 Document Structure

This dissertation contains the following chapters:

• In Chapter 2 we provide a description of the language documentation process and
an overview of the current state of relevant computational methods. We also summa-
rize our contributions and briefly introduce the language corpora that we have used
throughout this work.

• In Chapter 3 we present a novel unsupervised method for speech-to-translation align-
ment, and show how such alignments can be used for spoken term discovery in
unannotated corpora. We also present a case study showing that a transcription in-
terface that provides speech-to-translation alignments leads to better crowdsourced
mismatched transcriptions. This chapter is based on an EMNLP’16, a Comput-EL 2,
and a SCNLP’17 paper (Anastasopoulos et al., 2017; Anastasopoulos and Chiang,
2017; Anastasopoulos et al., 2016).

• In Chapter 4 we present three neural architectures that leverage translations for
speech transcriptions. Multi-source models can be used when translations are avail-
able at test time. DLUPI models that learn using translations as privileged informa-
tion, could be used when translations are only available during training, achieving
comparable performance. Tied multitask models, finally, train a transcription and a
translation model jointly and are able to produce both at test time. This chapter is
based on a NAACL’18 and an Interspeech’18 paper (Anastasopoulos and Chiang,
2018a,b), as well as unpublished ongoing work.

• In Chapter 5 we describe how we collected a new resource on Griko, an endan-
gered language, along with Italian translations. Furthermore, we combined a semi-
supervised part-of-speech tagging method with cross lingual projections in order to
provide word-level grammatical tags for our corpus. We also discuss how we em-
ployed active learning to facilitate faster annotation of the test set by our linguist
collaborators.

• In Chapter 6 we summarize our contributions, and discuss possible directions for
future work, in light of the needs of the linguistics community for computational
assistance in the documentation process.
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1.2 Thesis Statement

Annotation of linguistic resources is done in multiple layers and in several annotating

passes. An example of tiered annotation is shown in Figure 1.1, where each tier provides

different information. We expand the standard IGT formulation to include the correspond-

ing audio, also time-aligning it with the corresponding annotation tiers. The different tiers

include transcription (in a working orthography, or a phonetic-level International Phonetic

Alphabet one), glossing, morphological analysis, and a free translation.

Since the data collection framework under which we operate provides audio in an en-

dangered language and its translation in a high-resource one, the main thesis of this work

can be summarized as follows:

Thesis: Machine learning techniques that leverage translations can be

applied in every layer of tiered linguistic annotation, accelerat-

ing the language documentation process.

6



el Ga.to se ’sjen.to en la a.’fo.BRa

el gato se sientò en la afobra

the.Masc cat.Masc 3SG sit.3SG.PST on the.F mat

‘The cat sat on the mat’

Figure 1.1. Visualization of tiered annotation of a speech utterance, equivalent to
Interlinear Gloss Text. The alignments with the speech utterance are often
annotated through a tool like PRAAT or ELAN. The tiers of this example

correspond to phonetic transcription, orthographic transcription, glossing with
morphological information, and a free translation.
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CHAPTER 2

TECHNOLOGY IN LANGUAGE DOCUMENTATION

This chapter focuses on the ways that Natural Language Processing techniques have

been used as part of the language documentation pipeline. We break down the pipeline into

discrete subtasks, providing a concrete formulation whenever possible. We also attempt to

provide a cohesive overview of the previous work on each subtask, with a particular focus

on low-resource language or language documentation scenarios.

Woodbury (2003) defines language documentation as “comprehensive and transparent

records supporting wide ranging scientific investigations of the language.” Although the

specific process of documenting a language is neither rigid nor clearly defined, common

practice nonetheless follows a sequence of the following general steps, as outlined by Bird

and Chiang (2012):

1. Collect (record) data, as in a series of communicative events.

2. Transcribe and translate (as much as possible of) the recordings.

3. Perform basic morphosyntactic analysis in order to create morphological glosses
and/or a lexicon.

4. Elicit further paradigms that will allow the study of specific phenomena and/or reveal
underlying patterns.

5. Prepare a grammar of the language i.e. descriptive reports that outline how the lan-
guage is structured.

2.1 Data Collection

Even at the early stages of descriptive linguistics in the 19th century, text collection was

the first major component of the documentation process. With the development of digital
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Figure 2.1. Screenshots of the LIG-Aikuma app taken from (Gauthier et al.,
2016), showing the home view, summary view, and elicitation mode view.

tools in the 20th century, the process evolved to recording of audio, which allows for further

study of the phonology of the language. Recording of videos is a newer trend, better situ-

ating the discourse and physical context, while enabling the combination of documentary

linguistics with fields such as sociology and anthropology.

With the explosion of digital and mobile technologies in the 21st century, there has been

a further shift in the data collection process as well as the general practice of documentary

linguistics (Birch et al., 2013). For example, even cheap smartphones allow for much easier

collection of audio and video than the heavy specialised equipment that was needed in the

previous decades.

With the primary examples of SayMore (Hatton, 2013) and Aikuma (Bird et al., 2014b),

academics have developed mobile apps that facilitate easy collection of audio, as well as

recordings of oral re-speaking and translation. Furthermore, they allow for basic metadata

collection and management. Aikuma has already been used to collect bilingual audio in

remote indigenous communities, from Papua New Guinea (Bird et al., 2013) to Brazil and

Nepal (Bird et al., 2014a), working on the Tembé, Nhengatu, and Kagate languages among

9



others. An extension of Aikuma, LIG-Aikuma (Gauthier et al., 2016), was also used in the

field, collecting over 80 hours of speech on three languages from the Congo-Brazzaville

area. Examples of the interface of LIG-Aikuma app are displayed in Figure 2.1.

2.2 Transcription and Annotation Tools

After data collection, linguists typically use a dedicated annotation software to aid

the annotation process. Popular examples are ELAN1 (Wittenburg et al., 2006), PRAAT2

(Boersma et al., 2002), or FLEx.3 ELAN is widely used for annotation of multimodal data,

such as data that include video recordings. PRAAT is geared more towards phonetics and

fine-grained annotation of audio, while FLEx focuses more on building lexica and interlin-

earized texts. Examples of the ELAN and Praat interfaces are shown in Figure 2.2.

Although still very popular among the linguistics community, the aforementioned tools

require specialized training and are often platform specific. Web-based tools, instead, could

avoid any platform-specific restrictions. One such prototype is Aikuma-NG (Bettinson and

Bird, 2017), which was developed to work in conjunction with the Aikuma mobile app. It

delivers a feature set similar to the desktop software, allowing for the annotation of audio

collected with the Aikuma app.

2.2.1 Transcription

The transcription of the collected audio is both essential and one of the most time-

consuming processes of the documentation pipeline. However, even for a single endan-

gered language, the volume of the data would be prohibitive of simply manual annotation:

it is estimated that the equivalent of 10 million words, or 1, 000 hours of speech should

1https://tla.mpi.nl/tools/tla-tools/elan/

2http://www.fon.hum.uva.nl/praat/

3https://software.sil.org/fieldworks/
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Figure 2.2. The annotation interfaces of the ELAN (top) and PRAAT (bottom)
toolkits.

11



be transcribed and translated, in order to support extensive investigations of the language

(Liberman, 2006).

An additional hurdle arises from the lack of official orthography for several of the en-

dangered languages, or even just from the plain need to study the phonology of a language.

In both cases, a phonemic transcription is needed. When no standard or working orthogra-

phy is available, the International Phonetic Alphabet (IPA) is usually used. However, some

estimates (Thi-Ngoc-Diep Do and Castelli, 2014) claim that it could take up to one hour

for a trained linguist to transcribe the phonemes of one minute of speech.

Clearly, as noted by Thieberger (2017), automatic speech transcription systems have

the potential to greatly aid the “time-intensive task of transcription [...] building transcripts

for many more hours of recordings than has previously been possible.”

Automatic Speech Recognition (ASR) emerged very early as one of the first tasks that

could be performed by computers. Initially, HMM-based methods with limited vocabu-

laries were developed (Jelinek, 1976; Rabiner and Juang, 1993). Large-vocabulary speech

recognition was enabled by the collection of larger annotated datasets and by the develop-

ment of toolkits such as htk (Woodland et al., 1994) and kaldi (Povey et al., 2011). Such

models rely on vast amounts of data in order to train an acoustic model, which produces a

phone lattice from the audio signal. Then, large phonetic dictionaries and language mod-

els are combined, in order to score the paths of the phone lattice and produce the final

word-level transcription.

More recently, end-to-end neural models have been proposed, that alleviate the depen-

dence on phonetic dictionaries and thus the need for separate components. The most popu-

lar approaches (Amodei et al., 2016; Graves et al., 2013; Hannun et al., 2014; Maas et al.,

2015) rely either on Connectionist Temporal Classification (CTC) (Graves et al., 2006) or

on attention-based models (Bahdanau et al., 2015b; Chan et al., 2016; Chorowski et al.,

2014). Recently, such deep neural systems have achieved state-of-the-art results (Amodei

et al., 2016; Hannun et al., 2014). However, training such systems requires orders-of-
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magnitude more data (thousands of transcribed hours of speech) than what is available for

a language documentation setting, where often less than 10 transcribed hours are available.

In fact, it is not unlikely that no transcribed data are available in the language. In this

zero-resource setting, the goal is to recognize phoneme-like units in the audio, assuming

no prior knowledge of the phonology of the language. Originally centered around the tasks

of phonetic and lexical discovery, the field of zero-resource speech was framed as the

study of models of early language acquisition. Nevertheless, it is well suited for the case

of endangered language documentation where no data might be available.

The field was pioneered by Roy et al. (2006); Roy and Pentland (2002), and it eventu-

ally evolved around Dynamic Time Warping (DTW) based methods (Jansen et al., 2010;

Kamper et al., 2015, 2016). Several unsupervised techniques were initially proposed (McInnes

and Goldwater, 2011; Park and Glass, 2008; Siu et al., 2011; Varadarajan et al., 2008),

and the field was furthered by the Zero-Resource speech challenges (Dunbar et al., 2017;

Jansen et al., 2013; Versteegh et al., 2015). Recently though, new methods that use vari-

ational inference (Ondel et al., 2016), variational autoencoders (Ebbers et al., 2017), or

language grounding on images (Harwath and Glass, 2017; Harwath et al., 2018) have

been shown to outperform the DTW-based approaches. The zero-resource systems produce

crude transcriptions, which in turn could be used for other downstream tasks. Examples in-

clude speech topic identification (Kesiraju et al., 2017; Liu et al., 2017), situation frame

detection (Wiesner et al., 2018), word discovery and segmentation (Boito et al., 2018,

2017; Glarner et al., 2017), or even building speech recognition systems from completely

untranscribed data (Burget et al., 2016; Scharenborg et al., 2018b), also using multimodal

signals like images (Scharenborg et al., 2018a).

Endangered language data fall well within the realm of low-resource settings, so any

work on low-resource speech recognition indirectly tackles the same problem. This in-

cludes, for example, the recent Interspeech 2018 Low Resource Automatic Speech Recog-

nition Challenge for Indian Languages (Srivastava et al., 2018). A common approach is
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pre-training the system on a high-resource language and fine-tuning it to the low-resource

one (Bansal et al., 2018b; Dalmia et al., 2018a; Scharenborg et al., 2017), as well as using

multilingual or universal models (Dalmia et al., 2018b; Li et al., 2018).

Work that specifically focuses on the applications of speech recognition technology for

language documentation is more sparse. Adams et al. (2018) trained systems for the tonal

languages Yongning Na and Chatino, using up to 224 and 50 minutes of training data,

respectively. Jimerson et al. (2018); Jimerson and Prud’hommeaux (2018) built systems

for North American indigenous languages like Seneca, while Scharenborg et al. (2018b)

built systems for the central African language Mboshi. Finally, a big collaborative project

by CoEDL and Google built systems for 16 endangered languages from the Asia-Pacific

region (Foley et al., 2018), creating a pipeline of tools named ELPIS.

Our work explores whether automatic speech transcription in language documentation

scenarios can be aided by the availability of translations. We investigated low-resource

speech transcription scenarios on Spanish, Ainu, and Mboshi. We showed that when tran-

scriptions are available during both training and inference time, our proposed multisource

models can produce more accurate character or phoneme-level transcriptions (Anasta-

sopoulos and Chiang, 2018a). Furthermore, we showed that even if we only have trans-

lations at training time but not at test time, we can still take advantage of them during

training (using the learning under privileged information paradigm) and achieve compara-

ble performance.

Automatic phonemic or character transcription models could be integrated with doc-

umentation tools in order to provide, if not completely accurate transcriptions, a “rough

draft” that the user could edit, speeding up the process. It is worth noting that tools like

Praat are usually equipped with some basic functionalities designed to aid the documen-

tation process, such as voice activity detection. However, none of the existing tools take

advantage of recent advances in statistical speech and language processing which could

further enhance the documentation process, hence updated tools are much needed. A re-
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cent example of such a prototype toolkit is Persephone (Michaud et al., 2018), an offline

tool that incorporates models for automatic phonemic transcription with a linguistic anno-

tation back-end (Neubig et al., 2018).

2.2.2 Speech Translation

In language documentation, data is really usable only if it is interpretable. The inter-

pretability of any transcribed data collections is ensured by providing free or word-level

translations in a more high-resource language. Again, the sheer volume of the data that

needs to be translated requires automatic solutions, rather than relying on a bilingual com-

munity member or the linguist to produce manual translations.

Similar with speech recognition, Machine Translation (MT) was one of the first ap-

plications envisioned for computers. The first statistical attempts at IBM (Brown et al.,

1988, 1990) were followed by statistical phrase-based (Chiang, 2005; Koehn et al., 2003)

and syntax-based systems (Yamada and Knight, 2001), which have now been surpassed

by neural systems (Vaswani et al., 2017; Wu et al., 2016) that take advantage of massive

amounts of parallel text data, as well as monolingual data with techniques such as back-

translation (Sennrich et al., 2016).

In documentation scenarios, however, we deal with the more nuanced problem of

speech translation. A linguist can and does produce translations of spoken utterances, even

if a standardized orthographic transcription of these utterances does not exist.

The speech translation problem has been traditionally approached by using the out-

put of an ASR system as input to a MT system. For example, Ney (1999) and Matusov

et al. (2005) use ASR output lattices as input to translation models, integrating speech

recognition uncertainty into the translation model. Recent work has focused more on mod-

elling speech translation without explicit access to transcriptions. Duong et al. (2016) in-

troduced a sequence-to-sequence model for speech translation without transcriptions but

only evaluated on alignment, while one of our own contributions (Anastasopoulos et al.,
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2016) presented an unsupervised alignment method for speech-to-translation alignment.

In another of our contributions, Bansal et al. (2017) used an unsupervised term discov-

ery system (Jansen et al., 2010) to cluster recurring audio segments into pseudowords and

translate speech using a bag-of-words model. Bérard et al. (2016) translated synthesized

speech data using a model similar to the Listen Attend and Spell speech recognition model

(Chan et al., 2016). A larger-scale study (Bérard et al., 2018) used an end-to-end neural

system system for translating audio books between French and English. On a different line

of work, Boito et al. (2017) used the attentions of a sequence-to-sequence model for word

discovery.

Weiss et al. (2017) used sequence-to-sequence models to transcribe Spanish speech

and translate it in English, by jointly training the two tasks in a multitask scenario where

the decoders share the encoder. They use a large corpus for training an 8-layer-deep model

on roughly 163 hours of data, using the Spanish Fisher and CALLHOME conversational

speech corpora. However, training such a large model on endangered language datasets

would be infeasible.

Our contribution is inspired by the work of Weiss et al. (2017), but it adapts the model

to our extremely low-resource settings and further expands it to incorporate “common

sense” notions. Our tied multitask models are able to produce both the transcription and

the translation of a speech utterance, while they are encouraged to obey the notion of

transitivity, leading to better performance.

The subsequent IWSLT shared task on end-to-end speech translation (Jan et al., 2018)

further explored the field with architecture search and comparing end-to-end models to

pipeline approaches (Inaguma et al., 2018; Liu et al., 2018; Matusov et al., 2018; Sulubacak

et al., 2018; Zenkel et al., 2018). Another notable submission focused on data filtering for

the task (Di Gangi et al., 2018) leading to further improvements.

Furthermore, Bansal et al. (2018a,b) found that pre-training a speech translation system

on a high-resource language and fine-tuning in the low-resource language of interest results
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in improved performance. Kano et al. (2018) explored curriculum learning, while Jia et al.

(2018) used speech synthesis systems to fully take advantage of monolingual data, in a

back-translation-inspired semi-supervised approach.

2.2.3 Morphosyntactic Analysis

The previous subsections dealt with the basic set of annotations that render a collected

data collection interpretable: transcriptions, and translations. After collecting these, lin-

guistic research requires additional levels of annotation that highlight specific phenomena.

One of the hardest and most important tasks that the linguist has to complete is the mor-

phological analysis of the language. That is, discovering the basic units that form words

and influence meaning, and possibly glossing and assigning grammatical categories to

them. Syntax, studying and discovering the rules the govern the structure and formation

of sentences, is the next step. The computational linguistics field has thoroughly studied

the potential of automating these tasks, leading to subfields that study (automatic) mor-

phological segmentation, (automatic) Part-of-Speech tagging, and (automatic) syntactic or

dependency parsing.

Naturally, most of the breakthroughs in those subfields have taken place in high-resource

settings and languages with millions of speakers.

Segmentation Word segmentation is the task of segmenting an unsegmented stream of

symbols, such as phonemes or characters, into delimited sequences corresponding to ac-

tual words or word-like units in the language. For a significant number of languages (e.g.

those without an established orthography, or for languages with orthography that does not

include explicit word boundaries like Chinese) this low-level task is non-trivial. “Words”

can be generally defined as basic syntactic units that do not always coincide with phono-

logical or orthographic words, as per the Universal Dependencies project (Kirov et al.,

2018; Nivre et al., 2016).
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The task is is often framed as the task that children implicitly solve, in an unsupervised

way, when learning a language. Thus, unsupervised Bayesian approaches using Dirichlet

Processes (Goldwater et al., 2009) or Pitman-Yor Processes (Mochihashi et al., 2009) have

been exceptional baselines and the state-of-the-art for many years. Extending these ap-

proaches with external linguistic knowledge using Adaptor Grammars and annotated parse

trees (Sirts and Goldwater, 2013) or small dictionaries (Eskander et al., 2016) leads to bet-

ter performance, but of course requires the involvement of the linguist in a semi-supervised

way.

Recently proposed segmentation models use neural encoder-decoder models as autoen-

coders (Chung et al., 2016), also enforcing memory limitations on the model (Elsner and

Shain, 2017), in order to match the way that human memory limitations guide lexical acqui-

sition, by applying pressure to discover compressed representations (i.e. words). Another

recently proposed segmentation approach uses segmental language models (Kawakami

et al., 2018) providing a neural “equivalent” to the Bayesian approaches. Previously, the

attention weights of encoder-decoder translation models had been used to inform the word

segmentation (Boito et al., 2018; Duong et al., 2016).

Godard et al. (2018) built word segmentation models with adaptor grammars with a

specific focus on rendering useful for a linguist during the documentation process. They

performed experiments on Myene and Mboshi, two Bantu languages. Kann et al. (2018)

focused on neural segmentation approaches for indigenous Mexican polysynthetic lan-

guages.

It is worth noting that despite all the advances on the segmentation task, simple models

like the HMM-based Morfessor FlatCat (Grönroos et al., 2014) or Byte-Pair Encoding

(Sennrich et al., 2016) are often preferred, especially when word segmentation is merely

a preprocessing step for another downstream task, or if large amount of monolingual data

are available.
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Tagging and Parsing Part-of-Speech (POS) tagging is a very well studied problem;

probabilistic models like Hidden Markov Models and Conditional Random Fields (CRF)

were initially proposed (Lafferty et al., 2001; Toutanova et al., 2003), with neural network

approaches taking over in recent years (Huang et al., 2015; Mikolov et al., 2010).

The use of parallel data for projecting POS tag information across languages was in-

troduced by Yarowsky and Ngai (2001), and further improved at a large scale by Das and

Petrov (2011) who used graph-based label propagation to expand the coverage of labeled

tokens. Täckström et al. (2013) used high-quality alignments to construct type and token

level dictionaries. In the neural realm, Zhang et al. (2016) used only a few word trans-

lations in order to train cross-lingual word embeddings, using them in an unsupervised

setting. Fang and Cohn (2017), on the other hand, used parallel dictionaries of 20k entries

along with 20 annotated sentences. Plank and Agić (2018), finally, utilized joint training

on the high and low resource datasets.

Most of the previous approaches are rarely tested on under-represented languages, with

research on POS tagging for endangered languages being sporadic. In Ptaszynski and Mo-

mouchi (2012), for example, an HMM-based POS tagger for the extremely endangered

Ainu language was presented, based on dictionaries, 12 narratives (yukar), using one an-

notated story (200 words) for evaluation. To our knowledge, no other previous work has

extensively tested several approaches on an actual endangered language.

The lack of high quality annotated data led to approaches that attempt to use monolin-

gual resources in a semi-supervised setting. Notably, Garrette and Baldridge (2013) used

about 200 annotated sentences along with monolingual corpora improving the accuracy of

an HMM-based model. They tested their model on two low-resource African languages,

Kinyarwanda and Malagasy and they found that in this time-constrained scenario type-level

annotation leads to slightly higher improvements than token-level annotation, increasing

the accuracy of their taggers to slightly less than 80%. Similar conclusions were reached in

Garrette et al. (2013): 4 hours of annotation are more wisely spent if annotating at the type-
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level, provided there exist additional raw monolingual data. This line of work adequately

addressed the question of what labeled data are preferable when there is (exceptionally)

restricted access to annotators.

Our contribution (Anastasopoulos et al., 2018) corroborated the evidence from the Gar-

rette and Baldridge (2013) work, but extended it to take advantage of cross-lingual informa-

tion. In particular, since the resource we collected included translations of the endangered

language text, we were able to use cross-lingual projection a la Täckström et al. (2013) and

include them in the training data. We also explored active learning and managed to speed

up the process of annotating the test set of our corpus.

Syntactic or Dependency Parsing is the task of analyzing a sentence into its constituen-

cies, resulting into a structure (a parse tree) that describes the syntactic or semantic relation

among the words. Research on this field has been primarily driven by the Universal Depen-

dencies project (Nivre et al., 2016) and the associated CoNLL shared tasks on dependency

parsing (Zeman et al., 2018). The Universal Dependencies project has collected treebanks

from several languages, while using consistent syntactic representations across them. As a

result, it currently includes more than 100 treebanks on more than 70 languages. Naturally,

very few of them are endangered or in the process of documentation.

Our work does not delve into parsing. Nonetheless, the Universal Dependencies project

provides an invaluable resource, which has been used to investigate low-resource pars-

ing. A common approach is knowledge transfer from a high-resource language to a low-

resource one (Cotterell and Heigold, 2017; Malaviya et al., 2018). This can be achieved by

joint training (Ammar et al., 2016), annotation projection (Agić et al., 2016; Ponti et al.,

2018; Täckström et al., 2012), or zero-shot transfer (Ahmad et al., 2018).

Similar approaches could in theory be employed at the last step of the documentation

process, but they would have to be further extended to handle the extreme scarcity and

noise of documentation data.
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2.3 Contributions Summary

This work assumes that we are provided with audio resources in an unknown language,

along with translations, similar to the data collected through apps like Aikuma. We aim

to provide automated solutions for each of the steps that are crucial to understanding an

unknown language.

A first step towards this goal would be to automatically align spoken segments with

their translations at the word or phrase level. This task has been implicitly or explicitly

performed by the linguists using traditional tools like Praat, whenever they create phrase-,

word-, or phoneme-level annotation boundaries.

Our work in this area is collected in Chapter 3. Our first contribution, detailed in §3.2,

produces such speech-to-translation alignments. Furthermore, in two more contributions,

we evaluated whether such alignments are potentially useful for other downstream tasks.

We investigated the use of alignment information for collecting mismatched transcriptions

(§3.3), showing that they are indeed beneficial. Also, as we discuss in §3.4, we leveraged

speech-to-translation alignments for keyword spotting on unannotated resources. A synop-

sis of these works is outlined here:

• An Unsupervised Probability Model for Speech-to-Translation Alignment of
Low-Resource Languages (Anastasopoulos et al., 2016) : We presented a speech-
to-translation alignment model that combines Dyer et al.’s reparameterization of
IBM Model 2 (fast_align) and k-means clustering using Dynamic Time Warping
as a distance measure. The two components are trained jointly using expectation-
maximization. In extremely low-resource scenarios, this model performs signifi-
cantly better than both a strong naive baseline as well as our previous approach
based on the attentions of a neural model.

• A case study on using speech-to-translation alignments for language documen-
tation (Anastasopoulos and Chiang, 2017): We investigated whether augmenting
an utterance with a translation and speech-to-translation alignment information can
aid in producing better crowdsourced mismatched transcriptions, that is, transcrip-
tions by speakers who do not speak the language. These transcriptions could in turn
be valuable for training speech recognition systems. We showed that they can in-
deed be beneficial through a small-scale case study as a proof-of-concept. We also
presented a simple phonetically aware string averaging technique that combines the
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collected mismatched transcriptions into a transcription of higher quality.

• Spoken Term Discovery for Language Documentation using Translations (Anas-
tasopoulos et al., 2017): We presented a method for partially labeling unannotated
speech with translations in a scenario where we have access to limited translated
speech. We modified an unsupervised speech-to-translation alignment model and
obtained prototype speech segments that match the translation words, which were
in turn used to discover terms in the unlabelled data. We evaluated our method on
a Spanish-English speech translation corpus and on two endangered languages cor-
pora, Arapaho and Ainu, demonstrating its appropriateness and applicability in an
actual very-low-resource scenario.

Other than alignment, proper documentation needs to include a transcription of the speech

utterance. Moreover, in order for the meaning of a segment to be understandable, it is

usually followed by a free translation. Thus, producing these two layers of annotation is the

natural next step of our work. We list our contributions on the transcription and translation

tasks here, and they are laid out in detail in Chapter 4:

• Leveraging translations for speech transcription in low-resource settings (Anas-
tasopoulos and Chiang, 2018a): We explored whether having access to translations
allows us to improve transcription accuracy in extremely low-resource scenarios.
This scenario is applicable to the data collection process that we described earlier,
and improving the transcription quality has the potential to significantly reduce the
time required for fully annotating the collected resources. We find that in most cases
the multi-source approach combined with a shared attention mechanism significantly
reduces the Character Error Rate of the transcriptions.

• Translations as Privileged Information for Low-Resource Speech Transcription
(unpublished): We explore the recently proposed Learning Under Privileged Infor-
mation for deep neural models (DLUPI) framework (Lambert et al., 2018). We adapt
it to the speech transcription task and enhance it with attention mechanism in order to
receive fine-grained privileged information from translations. We show that in low-
resource settings we can achieve performance comparable to the best multi-source
models, despite not having access to translations at inference time. At the same time
the DLUPI models surpass single-source baselines that do not use translations at all.

• Tied Multitask Learning for Neural Speech Translation (Anastasopoulos and
Chiang, 2018b): We explored multitask models for neural translation of speech, aug-
menting them in order to reflect two intuitive notions. First, we introduced a model
where the second task decoder receives information from the decoder of the first
task, since higher-level intermediate representations should provide useful informa-
tion. Second, we applied regularization that encourages transitivity and invertibility.
We show that the application of these notions on jointly trained models improves
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performance on the tasks of low-resource speech transcription and translation. It
also leads to better performance when using attention information for word discov-
ery over unsegmented input.

The final layers of annotation usually analyze more complex phenomena, like syntax and

morphology, building upon the previous annotation layers. Towards this end, we collected

a new parallel corpus for an endangered language, Griko, and developed a Part-of-Speech

(POS) tagger that takes advantage of cross-lingual information. This work is presented in

Chapter 5:

• POS-tagging on an Endangered Language: a parallel Griko-Italian resource
(Anastasopoulos et al., 2018): Most work on part-of-speech (POS) tagging is fo-
cused on high resource languages, or examines low-resource and active learning set-
tings through simulated studies. We evaluated POS tagging techniques on an actual
endangered language, Griko. We collected and released a resource that contains 114
narratives in Griko, along with sentence-level translations in Italian. The resource
also provides gold POS annotations for the test set. Based on a previously collected
small corpus, we investigated several traditional methods, as well as methods that
take advantage of monolingual data or project cross-lingual POS tags. We showed
that the combination of a semi-supervised method with cross-lingual transfer is more
appropriate for this extremely challenging setting, with the best tagger achieving an
accuracy of 72.9%. With an applied active learning scheme, which we used to col-
lect sentence-level annotations over the test set, we achieved improvements of more
than 21 percentage points on POS-tagging accuracy.

2.4 Datasets

This section describes the corpora on which we have evaluated our contributions. We

particularly focus on the endangered or extremely low-resource language corpora that we

used, providing a brief overview of these languages.

Spanish-English Spanish is obviously neither an endangered nor a low-resource lan-

guage, but we pretend that it is one, by not making use of any Spanish resources like addi-

tional transcribed speech or pronunciation lexicons. We use the Spanish CALLHOME cor-

pus (LDC96S35) and the Fisher corpus (LDC2010T04), which consist of telephone con-
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versations between Spanish native speakers based in the US and their relatives abroad, to-

gether with English translations produced by Post et al. (2013) and silver standard speech-

to-translation alignments the we produced (Duong et al., 2016). Both datasets are split into

utterances based on the dialogue turns. This results in 17,532 Spanish utterances for the

CALLHOME corpus, and 143,355 utterances for the Fisher corpus.

Mboshi-French Mboshi (Bantu C25 in the Guthrie classification) is a language spo-

ken in Congo-Brazzaville by about 110,000 speakers, without standard orthography. We

use a corpus (Godard et al., 2017) of 5,517 parallel utterances (about 4.4 hours of au-

dio) collected from three native speakers using the LIG-Aikuma app for the BULB project

(Adda et al., 2016). The corpus provides non-standard grapheme transcriptions (close to

the language phonology) and word segmentation produced by linguists, as well as French

translations.

Ainu-English Hokkaido Ainu is the sole surviving member of the Ainu language family

and is generally considered a language isolate. As of 2007, only ten native speakers were

alive. The Glossed Audio Corpus of Ainu Folklore provides 24 narratives (about 5 hours of

audio), transcribed at the utterance level, glossed, and translated in Japanese and English.4

Arapaho-English Arapaho is an Algonquian language with about 1,000 native speakers,

mostly in Wyoming. We use 8 narratives published at The Arapaho Language Project,5

which provides the narratives’ audio along with English translations, among other language

learning resources. This is a corpus that is not aligned at the utterance level, but only at the

narrative level.

4http://ainucorpus.ninjal.ac.jp/corpus/en/

5http://www.colorado.edu/csilw/alp/index.html
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Griko-Italian Griko is a Greek dialect spoken in south Italy, believed to be the last living

trace of the ancient Greek elements that once formed Magna Graecia. It is only partially

intelligible with modern Greek. In 2010, less than 20,000 people were registered as na-

tive speakers, and about 50,000 were registered as L2 speakers. The Griko-Italian corpus6

consists of about 20 minutes of speech in Griko, an endangered minority dialect of Greek

spoken in south Italy, along with text translations into Italian (Lekakou et al., 2013). The

corpus consists of 330 mostly prompted utterances by nine native speakers. All utterances

were manually annotated and transcribed by a trained linguist and bilingual speaker of

both languages, who produced the Griko transcriptions and Italian glosses. We created full

translations into Italian and manually aligned the translations with the Griko transcrip-

tions. We then combined the two alignments (speech-to-transcription and transcription-to-

translation) to produce speech-to-translation alignments.

Furthermore, we compiled an additional parallel text resource of 114 Griko narratives

(along with Italian translations), taken from a website.7 We further elaborate on this work

in section §5.1.

6http://griko.project.uoi.gr

7http://wwww.ciuricepedi.it
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CHAPTER 3

SPEECH-TO-TRANSLATION ALIGNMENT AND WORD DISCOVERY

In this chapter we focus on the problem of aligning speech segments to translation

words. After briefly providing the necessary background, we describe a generative align-

ment model trained with expectation-maximization (§3.2). In addition, we show that such

alignments can be useful for two tasks related to language documentation: collecting mis-

matched transcriptions (§3.3), and keyword spotting for labelling untranscribed data (§3.4).

3.1 Background

In this section, we present an overview of several influential publications which pre-

sented the basis of research on Alignment for Machine Translation, as well as Term Dis-

covery.

3.1.1 Word Alignment

Given a set of parallel sentences in two languages, the task of finding a correspondence

between the words of each language is the task of word alignment (Brown et al., 1993;

Koehn, 2010). Word alignments have been traditionally used as a tool for phrase extraction,

a crucial preprocessing step for phrase-based MT models.

IBM Models The IBM translation models (Brown et al., 1993) are the most commonly

used word alignment models, aiming to model the distribution p(e | f) for an English

sentence e = e1 · · · el, given a French sentence f = f1 · · · em. They all introduce a hidden
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variable a = a1 · · · al that gives the position of the French word to which each English

word is aligned.

The general form of IBM Models 1 and 2 is

p(e, a | f) = p(l)
l∏

i=1

t(ei | fai) δ(ai | i, l,m)

where t(e | f ) is the probability of translating French word f to English word e, and

δ(ai = j | i, l,m) is the probability of aligning the i-th English word with the j-th French

word (also often referred to as distortion).

In Model 1, δ is uniform; in Model 2, it is a categorical distribution. Dyer et al. (2013)

proposed a reparameterization of Model 2, known as fast_align:

h(i, j, l,m) = −

∣∣∣∣∣ il − j
m

∣∣∣∣∣
δ(ai | i, l,m) =


p0 ai = 0

(1 − p0) exp λh(i,ai,l,m)
Zλ(i,l,m) ai > 0

where the null alignment probability p0 and precision λ ≥ 0 are hyperparameters optimized

by grid search. As λ → 0, the distribution gets closer to the distribution of IBM Model 1,

and as λ gets larger, the model prefers monotone word alignments more strongly.

IBM Models 3-5 are more complex, also introducing the notion of fertility, excplicitly

modelling the probability of many-to-one target-to-source alignments.

Other Alignment Models Stahlberg et al. (2012) presented a modification of IBM Model

3, named Model 3P, designed specifically for phone-to-word alignment. They introduced

an intermediate step so that the generative process of the model model incorporates the

length (in phonemes) of the target phonetic sequence. They tested it on Spanish phones to

English words alignments on the BTEC corpus improving over GIZA++ on both Align-

ment Error Rates as well on the extrinsic task of word segmentation.
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In addition, pialign (Neubig et al., 2011) is an unsupervised model for joint phrase

alignment and extraction, based on inversion transduction grammars. It has been shown to

work well at the character level (Neubig et al., 2012), and it extends naturally to work on

phones.

Alignment Evaluation Given a collection of annotated parallel sentences with gold

alignments, the performance of an alignment method can be evaluated by computing Pre-

cision (P), Recall (R), and F-score (Fs) over the gold alignments. If a∗ are the gold align-

ments, and a are produced alignments, then:

P =
|a∗ ∩ a|
|a|

R =
|a∗ ∩ a|
|a∗|

Fs = 2
P × R
P + R

Another metric that is used in the literature is Alignment Error Rate (AER) (Mihal-

cea and Pedersen, 2003) which incorporates uncertainty over both the gold standard and

the produced alignments, such that aS denote certain alignments and aP denote probable

alignments, is computed as:

AER = 1 −
|aP ∩ a∗S | + |aP ∩ a∗P|

|aP| + |a∗S |
.

3.1.2 Forced Alignment

Given an audio file containing speech, and the corresponding transcript, computing a

forced alignment is the process of determining, for each fragment of the transcript, the time

interval (in the audio file) containing the spoken text of the fragment. It can be performed

at either phoneme level, word level, utterance or dialogue turn level, or even at a document

level.

Training an acoustic model traditionally required training examples often annotated at

the phonetic level, or at the level of context-dependent subphones. Manually annotating

examples at that level is an incredibly time consuming task, although it was done for a few
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corpora like TIMIT (Garofolo et al., 1993). Traditionally, for larger speech collections,

and also given a lexicon with phonetic pronunciations of words, the transcription word

sequence is used to constrain an optimal alignment between an existing speech model and

the new speech data, providing labels that are then used for training the acoustic model.

3.1.3 Term Discovery, DTW, and DBA

Spoken Term Discovery is the task of finding spoken terms (words, phrases) in a col-

lection of audio resources, usually in an unsupervised setting, where we have no access to

transcriptions. Unsupervised Term Discovery (UTD) or keyword spotting has been studied

extensively through the Zero-Resource Speech Challenges (Dunbar et al., 2017; Versteegh

et al., 2015), and various approaches (Jansen et al., 2010; Muscariello et al., 2009; Park

and Glass, 2008; Ten Bosch and Cranen, 2007; Zhang and Glass, 2010) have been tried.

Most of them rely on segmental DTW (described below) to identify repeated trajectories

in the speech signal.

Other approaches have been recently proposed too; Kamper et al. (2016) try to discover

word segmentation and a pronunciation lexicon in a zero-resource setting, combining DTW

with acoustic embeddings; their methods operate in a very low-vocabulary setting. Finally,

Ondel et al. (2016) proposed a bayesian approach for acoustic unit discovery, using varia-

tional inference.

DTW and DBA Dynamic Time Warping (DTW) (Berndt and Clifford, 1994) is a dy-

namic programming method for measuring distance between two temporal sequences of

variable length, as well as computing an alignment based on this distance. Given two se-

quences φ, φ′ of length m and m′ respectively, DTW constructs an m × m′ matrix w. The

warping path can be found by evaluating the following recurrence:

wi, j = d(φi, φ
′
j) + min{wi−1, j,wi−1, j−1,wi, j−1}
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where d is a distance measure. The cost of the warping path is often length-normalized so

that it lies between zero and one:

DTW(φ, φ′) =
wm,m′

m + m′
.

DTW Barycenter Averaging (DBA) (Petitjean et al., 2011) is an iterative approximate

method that attempts to find a centroid of a set of sequences, minimizing the sum of squared

DTW distances.

In the original definition, given a set of sequences, DBA chooses one sequence ran-

domly to be a “skeleton.” Then, at each iteration, DBA computes the DTW between the

skeleton and every sequence in the set, aligning each of the skeleton’s points with points

in all the sequences. The skeleton is then refined using the found alignments, by updating

each frame in the skeleton to the mean of all the frames aligned to it. Note that, in our

implementation of DBA, in order to avoid picking a skeleton that is too short or too long,

we randomly choose one of the sequences with median (or close to median) length.
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3.2 An Unsupervised Probability Model for Speech-to-Translation Alignments

Abstract: We proposed a generative model for alignment between
speech frames and translation words, that combines Dyer et al.’s repa-
rameterization of IBM Model 2 (fast_align) and k-means clustering
using Dynamic Time Warping as a distance measure. The two com-
ponents are trained jointly using expectation-maximization. In an ex-
tremely low-resource scenario, our model performs significantly better
than both a neural model and a strong baseline.

3.2.1 Introduction

IBM alignment models have been very popular for aligning parallel corpora in Machine

Translation. We combine IBM Model 2 with a k-means clustering approach in order to

allow alignment between speech frames and translation words. The clustering component

uses Dynamic Time Warping as a distance measure, and the whole generative model is

trained using hard expectation-maximization. Our model outperforms two strong baselines

on all datasets, particularly improving precision.

3.2.2 Model

We use a generative model from a source-language speech segment consisting of fea-

ture frames φ = φ1 · · · φm to a target-language segment consisting of words e = e1 . . . el.

We chose to model p(e | φ) rather than p(φ | e) because it makes it easier to incorpo-

rate DTW. In addition to the target-language sentence e, our model hypothesizes a se-

quence f = f1 · · · fl of source-language clusters (intuitively, source-language words), and

spans (ai, bi) of the source signal that each target word ei is aligned to. Thus, the clusters

f = f1 · · · fl and the spans a = a1, . . . , al and b = b1, . . . , bl are the hidden variables of the

model:

p(e | φ) =
∑
a,b,f

p(e, a,b, f | φ).

The model generates e, a,b, and f from φ as follows.
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1. Choose l, the number of target words, with uniform probability. (Technically, this
assumes a maximum target sentence length, which we can just set to be very high.)

2. For each target word position i = 1, . . . , l:

(a) Choose a cluster fi.

(b) Choose a span of source frames (ai, bi) for ei to be aligned to.

(c) Generate a target word ei from fi.

Accordingly, we decompose p(e, a,b, f | φ) into several submodels:

p(e, a,b, f | φ) = p(l)
l∏

i=1

u( fi) × s(ai, bi | fi,φ) ×

δ(ai, bi | i, l, |φ|) ×

t(ei | fi).

Note that submodels δ and s both generate spans (corresponding to step 2b), making

the model deficient. We could make the model sum to one by replacing u( fi)s(ai, bi | fi,φ)

with s( fi | ai, bi,φ), and this was in fact our original idea, but the model as defined above

works much better. We describe both δ and s in detail below.

Clustering model The probability over clusters, u( f ), is just a categorical distribution.

The submodel s assumes that, for each cluster f , there is a “prototype” signal φ f (Ristad

and Yianilos, 1998). Technically, the φ f are parameters of the model, and will be recom-

puted during the M step. Then we can define:

s(a, b | f ,φ) =
exp(−DTW(φ f , φa · · · φb)2)∑m

a,b=1 exp(−DTW(φ f , φa · · · φb)2)

where DTW is the distance between the prototype and the segment computed using Dy-

namic Time Warping. Thus s assigns highest probability to spans of φ that are most similar

to the prototype φ f .
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Distortion model The submodel δ controls the reordering of the target words relative to

the source frames. It is an adaptation of fast_align to our setting, where there is not a

single source word position ai, but a span (ai, bi). We want the model to prefer the middle

of the word to be close to the diagonal, so we need the variable a to be somewhat to the left

and b to be somewhat to the right. Therefore, we introduce an additional hyperparameter µ

which is intuitively the number of frames in a word. Then we define:

ha(i, j, l,m, µ) = −

∣∣∣∣∣ il − j
m − µ

∣∣∣∣∣ so that δa(ai | i, l,m) =


p0 ai = 0

(1 − p0) exp λha(i,ai,l,m)
Zλ(i,l,m) ai > 0

hb(i, j, l,m, µ) = −

∣∣∣∣∣ il − j − µ
m − µ

∣∣∣∣∣ so that δb(bi | i, l,m) =


p0 bi = 0

(1 − p0) exp λhb(i,bi,l,m)
Zλ(i,l,m) bi > 0

δ(ai, bi | i, l,m) = δa(ai | i, l,m) δb(bi | i, l,m)

where the Zλ(i, l,m) are set so that all distributions sum to one. Figure 3.1 shows an example

visualisation of the the resulting distributions for the two variables of our model. We set

µ differently for each word. For each i, we set µi to be proportional to the number of

characters in ei, such that
∑

i µi = m.

Translation model The translation model t(e | f ) is just a categorical distribution, in

principle allowing a many-to-many relation between source clusters and target words. To

speed up training (with nearly no change in accuracy, in our experiments), we restrict

this relation so that there are k source clusters for each target word, and a source cluster

uniquely determines its target word. Thus, t(e | f ) is fixed to either zero or one, and does

not need to be re-estimated. In our experiments, we set k = 2, allowing each target word

to have up to two source-language translations/pronunciations. (If a source word has more

than one target translation, they are treated as distinct clusters with distinct prototypes.)
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Figure 3.1. Sample distributions for the alignment variables a and b for m = 100,
l = 5, p0 = 0, λ = 0.5, and µ = 20.

3.2.3 Training

We use the hard (Viterbi) version of the Expectation-Maximization (EM) algorithm

to estimate the parameters of our model, because calculating expected counts in full EM

would be prohibitively expensive, requiring summations over all possible alignments.

Recall that the hidden variables of the model are the alignments (ai, bi) and the source

words ( fi). The parameters are the translation probabilities t(ei | f ) and the prototypes (φ f ).

The (hard) E step uses the current model and prototypes to find, for each target word,

the best source segment to align it to and the best source word. The M step reestimates the

probabilities t(e | f ) and the prototypes φ f . We describe each of these steps in more detail

below.

Initialization Initialization is especially important since we are using hard EM. To ini-

tialize the parameters, we initialize the hidden variables and then perform an M step. We

associate each target word type e with k = 2 source clusters, and for each occurrence of
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e, we randomly assign it one of the k source clusters. The alignment variables ai, bi are

initialized to

ai, bi = arg max
a,b

δ(a, b | i, l,m).

M step The M step reestimates the probabilities t(e | f ) using relative-frequency estima-

tion. The prototypes φ f are more complicated. Theoretically, the M step should recompute

each φ f so as to maximize that part of the log-likelihood that depends on φ f :

Lφ f =
∑
φ

∑
i| fi= f

log s(ai, bi | f ,φ)

=
∑
φ

∑
i| fi= f

log
exp(−DTW(φ f , φai · · · φbi)

2)
Z( f ,φ)

=
∑
φ

∑
i| fi= f

−DTW(φ f , φai · · · φbi)
2 − log Z( f ,φ)

where the summation over φ is over all source signals in the training data. This is a hard

problem, but note that the first term is just the sum-of-squares of the DTW distance be-

tween φ f and all source segments that are classified as f . This is what DBA is supposed to

approximately minimize, so we simply set φ f using DBA, ignoring the denominator.

E step The (hard) E step uses the current model and prototypes to find, for each target

word, the best source segment to align it to and the best source cluster. In order to reduce

the search space for a and b, we use the unsupervised phonetic boundary detection method

of (Khanagha et al., 2014). This method operates directly on the speech signal and provides

us with candidate phone boundaries, on which we restrict the possible values for a and b,

creating a list of candidate utterance spans.

Furthermore, we use a simple silence detection method. We pass the envelope of the

signal through a low-pass filter, and then mark as “silence” time spans of 50ms or longer

in which the magnitude is below a threshold of 5% relative to the maximum of the whole
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signal. This method is able to detect about 80% of the total pauses, with a 90% precision

in a 50ms window around the correct silence boundary. We can then remove from the

candidate list the utterance spans that include silence, on the assumption that a word should

not include silences. Finally, in case one of the span’s boundaries happens to be within a

silence span, we also move it so as to not include the silence.

Hyperparameter tuning The hyperparameters p0, λ, and µ are not learned. We simply

set p0 to zero (disallowing unaligned target words) and set µ as described above. For λ

we perform a grid search over candidate values to maximize the alignment F-score on the

development set. We obtain the best scores with λ = 0.5.

3.2.4 Experiments and Results

We evaluate our method on two language pairs, Spanish-English and Griko-Italian.

For Spanish-English we report results on both the CALLHOME and the Fisher dataset,

comparing against two baselines.

The first is a naive baseline which assumes no reordering between the source and tar-

get language, and aligns each target word ei to a source span whose length in frames is

proportional to the length of ei in characters. This actually performs very well on language

pairs that show minimal or no reordering, and language pairs that have shared or related

vocabularies.

The other baseline that we compare against is the neural network attentional model of

Duong et al. (2016), which extends the attentional model of Bahdanau et al. (2015a) to

be used for aligning and translating speech, and, along with several modifications, achieve

good results on the phone-to-word alignment task, and almost match the baseline perfor-

mance on the speech-to-word alignment task.

In both data settings, we treat the speech data as a sequence of 39-dimensional Per-

ceptual Linear Prediction (PLP) vectors encoding the power spectrum of the speech sig-
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nal (Hermansky, 1990), computed at 10ms intervals. We also normalize the features at the

utterance level, shifting and scaling them to have zero mean and unit variance.

We find that our model improves upon both the baselines on all datasets. The results are

summarized in Table 3.1. Our model, when compared to the baselines, improves greatly

on precision, while slightly underperforming the naive baseline on recall. We note that

in all cases the naive baseline is quite strong, outperforming the neural model. This is

due to the minimal reordering between our tested language pairs. Our proposed model,

however, builds upon the naive baseline and especially improves on precision. In certain

applications, higher precision may be desirable: for example, in language documentation,

it’s probably better to err on the side of precision; in phrase-based translation, higher-

precision alignments lead to more extracted phrases.

3.2.5 Analysis

Speaker robustness Figure 3.2 shows the alignments produced by our model for three

utterances of the same sentence from the Griko-Italian dataset by three different speak-

ers. Our model’s performance is roughly consistent across these utterances. In general,

the model does not seem significantly affected by speaker-specific variations, as shown in

Table 3.2.

We do find, however, that the performance on male speakers is slightly higher compared

to the female speakers. This might be because the female speakers’ utterances are, on

average, longer by about 2 words than the ones uttered by males.

Word level analysis We also compute F-scores for each Italian word type. As shown

in Figure 3.3, the longer the word’s utterance, the easier it is for our model to correctly

align it. Longer utterances seem to carry enough information for our DTW-based measure

to function properly. On the other hand, shorter utterances are harder to align. The vast

majority of Griko utterances that have less than 20 frames and are less accurately aligned
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TABLE 3.1

OUR ALIGNMENT MODEL ACHIEVES HIGHER PRECISION AND

F-SCORE THAN BOTH THE NAIVE BASELINE AND THE NEURAL

MODEL ON ALL DATASETS

method precision recall F-score

C
A

L
L

H
O

M
E

sp
a-

en
g

2k
sents

ours 38.8 38.9 38.8

naive 31.9 40.8 35.8

neural 23.8 29.8 26.4

17k
sents

ours 38.4 38.8 38.6

naive 31.8 40.7 35.7

neural 26.1 32.9 29.1

Fi
sh

er
sp

a-
en

g

143k
sents

ours 33.3 28.7 30.8

naive 24.0 33.2 27.8

neural 24.7 27.9 26.2

gr
i-

ita 300
sents

ours 56.6 51.2 53.8

naive 42.2 52.2 46.7

neural 24.6 30.0 27.0
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TABLE 3.2

MODEL PERFORMANCE (F-SCORE) IS GENERALLY CONSISTENT

ACROSS SPEAKERS

speaker #utterances average length F-score

female 1 55 9.0 49.4

female 2 61 8.1 55.0

female 3 41 9.6 51.0

female 4 23 7.3 54.4

female 5 21 6.1 56.6

male 1 35 5.9 59.5

male 2 32 6.0 61.9

male 3 34 6.7 60.2

male 4 23 6.4 64.0
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Male 1: F-score
devo comprare il pane ogni giorno

Model: 54.3
devo comprare il pane ogni giorno

Woman 2: F-score
devo comprare il pane ogni giorno

Model: 62.1
devo

comprare
il pane ogni giorno

Male 4: F-score
devo comprare il pane ogni ogni giorno

Model: 70.9
devo comprare il pane ogni ogni giorno

Figure 3.2: Alignments produced for the Italian sentence devo comprare il pane ogni 
giorno as uttered by three different Griko speakers.

correspond to monosyllabic determiners (o, i,a, to, ta) or conjunctions and prepositions 

(ka, ce, en, na, an). For such short utterances, there could be several parts of the signal 

that possibly match the prototype, leading the clustering component to prefer to align to 

wrong spans.

Furthermore, we note that rare word types tend to be correctly aligned. The average 

F-score for hapax legomena (on the Italian side) is 63.2, with 53% of them being aligned 

with an F-score higher than 70.0.

Comparison with proper model As mentioned in Section 3.2.2, our model is deficient, 

but it performs much better than the model that sums to one (henceforth, the “proper” 

model): In the Spanish-English dataset (2000 sentences sample) the proper model yields 

an F-score of 32.1, performing worse than the naive baseline; in the Griko-Italian dataset, 

it achieves an F-score of 44.3, which is better than the baselines, but still worse than our 

model.
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Figure 3.3. There is a positive correlation between average word-level F-score
and average word utterance length (in frames).

In order to further examine why this happens, we performed three EM iterations on the

Griko-Italian dataset with our model (in our experience, three iterations are usually enough

for convergence), and then computed one more E step with both our model and the proper

model, so as to ensure that the two models would align the dataset using the exact same

prototypes and that their outputs will be comparable.

In this case, the proper model achieved an overall F-score of 44.0, whereas our model

achieved an F-score of 53.6. Figures 3.4 and 3.5 show the resulting alignments for two

sentences. In both of these examples, it is clear that the proper model prefers extreme

spans: the selected spans are either much too short or (less frequently) much too long. This

is further verified by examining the statistics of the alignments: the average span selected

by the proper model has a length of about 30 ± 39 frames whereas the average span of

the alignments produced by our deficient model is 37 ± 24 frames. This means that the

alignments of the deficient model are much closer to the gold ones, whose average span

is 42 ± 26 frames.

We think that this is analogous to the “garbage collection” problem in word alignment.
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Griko: ı̀cha na aforàso to tsomı̀

Gold: F-score
dovevo comprare il pane

Ours: 82.3
dovevo comprare il pane

Naive: 72.4
dovevo comprare il pane

Attention: 38.3dovevo
comprare

il
pane

Figure 3.4: The deficient model performs very well, whereas the proper and the attentional 
model prefer extreme alignment spans. For example, the proper model’s alignment for the 

words dovevo and pane are much too short.

Griko: è Valèria meletà ò giornàli

Gold: F-score
Valeria legge il giornale

Ours: 67.8
Valeria legge il giornale

Proper: 75.2Valeria
legge ilgiornale

Attention: 6.0il
legge

il
giornale

Valeria
giornale

Figure 3.5: One of the rare examples where the proper model performs better than the 
deficient one. The hapax legomena Valeria and giornali are not properly handled by 

the attentional model.
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In the IBM word alignment models, if a source word f occurs in only one sentence, then

EM can align many target words to f and learn a very peaked distribution t(e | f ). This

can happen in our model and the proper model as well, of course, since IBM Model 2

is embedded in them. But in the proper model, something similar can also happen with

s( f | a, b): EM can make the span (a, b) large or small, and evidently making the span

small allows it to learn a very peaked distribution s( f | a, b). By contrast, our model has

s(a, b | f ), which seems less susceptible to this kind of effect.
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3.3 A Case Study on Using Speech-to-Translation Alignments for Language Documen-

tation

Abstract: We investigated whether providing translation and speech-
to-translation alignment information can aid in producing better (mis-
matched) crowdsourced transcriptions from non-speakers of a language,
which in turn could be valuable for training speech recognition systems.
We showed that they can indeed be beneficial, through a small-scale case
study on our Griko-Italian dataset, as a proof-of-concept. We also pre-
sented a simple phonetically aware string averaging technique based on
DTW and DBA, that produces transcriptions of higher quality than the
originally collected ones.

3.3.1 Introduction

A recent line of work (Das et al., 2016; Jyothi and Hasegawa-Johnson, 2015; Liu et al.,

2016) focuses on training speech recognition systems for low-resource settings using mis-

matched crowdsoursed transcriptions. These are transcriptions that include some level of

noise, as they are crowdsourced from workers unfamiliar with the language being spoken.

We aim to explore whether the quality of crowdsourced transcriptions could benefit

from providing transcribers with speech-to-translation word-level alignments. That way,

speech recognition systems trained on the higher-quality probabilistic transcriptions (of at

least a sample of the collected data) could be used as part of the pipeline to document an

endangered language.

3.3.2 Methodology

We randomly sampled 30 utterances from the Griko-Italian corpus and collected tran-

scriptions through a simple online interface from 12 different participants. None of the

participants spoke or had any familiarity with Griko or its directly related language, Greek.

Six of the participants were native speakers of Italian, the language in which the transla-

tions are provided. Three of them did not speak Italian, but were native Spanish speakers,

and the last 3 were native English speakers who also did not speak Italian but had some

44



level of familiarity with Spanish.

The utterances were presented to the participants in three different modes:

1. no mode: Only providing the translation text.

2. automode: Providing the translation text and the potentially noisy speech-to-translation
alignments produced by our EM-based method (§3.2).

3. goldmode: Providing the translation text and the gold-standard speech-to-translation
alignments.

The utterances were presented to the participants in the exact same order but under

a rotation scheme that ensured that the utterances were effectively split into 3 subsets,

each of which was transcribed exactly 4 times in each mode, with 2 of them by an Italian

speaker, 1 time by a Spanish speaker, and 1 time by an English speaker. This enables

a direct comparison of the three modes, and, hopefully, an explanation of the effect of

providing the alignments. The modes under which each participant had to transcribe the

utterances changed from one utterance to another, in order to minimize the potential effect

of the participants’ learning of the task and the language better.

The participants were asked to produce a transcription of the given speech segment,

using the Latin alphabet and any pronunciation conventions they wanted. The result in

almost all cases is entirely comprised of nonsense syllables. It is safe to assume, though,

that the participants would use the pronunciation conventions of their native language.

Interface A simple tool for collecting transcriptions first needs to provide the user with

the audio to be transcribed. The (Italian) translation of the (Griko) spoken utterance is also

provided. In a real scenario, this translation would correspond to the output of a Speech

Recognition system for the parallel speech, so it could potentially be somewhat noisy.For

the purposes of this case study, though, we used the gold standard translations of the utter-

ances.
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Figure 3.6: Screenshot of the interface that provides the translation non deve mangiare 
la sera [he/she shouldn’t eat at night], along with speech-to-translation alignment infor-
mation. Clicking on a translation word would play the corresponding aligned part of the 

speech segment.

Our interface1 also provides speech-to-translation alignment information as shown in 

Figure 3.6. Each word in the translation has been aligned to some part of the spoken ut-

terance. Apart from listening to the whole utterance at once, the user can also click on the 

individual translation words and listen to the corresponding speech segment.

For the purposes of our case study, our tool collected additional information about its 

usage. It logged the amount of time each participant spent transcribing each utterance, as 

well as the amount of times that they clicked the respective buttons in order to listen to 

either the whole utterance or word-aligned speech segments.

Averaging the acoustic transcriptions A fairly simple way to merge several transcrip-

tions into one is to obtain first alignments between the set of strings to be averaged by treat-

ing each substitution, insertion, deletion, or match, as an alignment. Then, we can leverage 

the alignments in order to create an “average” string, through an averaging scheme.

We propose a method that can be roughly described as similar to using Dynamic Time 

Warping (DTW) (Berndt and Clifford, 1994) for obtaining alignments between two speech

signals, and using DTW Barycenter Averaging (DBA) (Petitjean et al., 2011) for approx-

1Available online at https://bitbucket.org/antonis/online-annotation-tools/src
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imating the average of a set of sequences. Instead of time series or speech utterances,

however, we apply these methods on sequences of phone embeddings.

We map each IPA phone into a feature embedding, with boolean features corresponding

to linguistic features.2 Then, each acoustic transcription can be represented as a sequence

of vectors, and we can use DBA in order to obtain an “average” sequence, out of a set

of sequences. This “average” sequence is then mapped back to phones, by mapping each

vector to the phone that has the closest phone embedding in our space.

The standard method, ROVER (Fiscus, 1997), uses an alignment module and then ma-

jority voting to produce a probabilistic final transcription. The string averaging method

that we propose here is quite similar, with the exception that our alignment method and

the averaging method are tied together through the iterative procedure of DBA. Another

difference is that our method operates on phone embeddings and not on phones. That way,

it is more phonologically informed, so that the distance between two phones that are often

confused because they have similar characteristics, such as /p/ and /b/, is smaller than

the distance between a pair of more distant phones such as eg. /p/ and /a/. In addition,

the averaging scheme that we employ actually produces an average of the aligned phone

embeddings, which in theory could result in a different output compared to simple majority

voting.

3.3.3 Results

The orthography of Griko is phonetic, and therefore it is easy, using simple rules, to

produce the phonetic sequences in IPA that correspond to the transcriptions. We can also

use standard rules for Spanish (LDC96S35) and Italian,3 depending on the native language

of the participants, in order to produce phonetic sequences of the crowdsourced transcrip-

tions in IPA.

2The features were taken from the inventories of http://phoible.org/

3Creating the rules based on (Comrie, 2009)
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TABLE 3.3

BREAKDOWN OF THE QUALITY OF THE TRANSCRIPTIONS PER

UTTERANCE SET

utterance Levenshtein distance

set no auto gold all modes

set 1 14.1 13.5 13.9 13.8

set 2 10.0 10.6 8.7 9.8

set 3 11.8 10.1 10.5 10.8

average 12.0 11.4 11.0 11.5

For simplicity reasons, we merge the vowel oppositions /e∼E/ and /o∼O/ into just /e/ and

/o/ for both the Italian and Griko phonetic transcriptions, as neither of the two languages

makes an orthographic distinction between the two.

For the transcriptions created by the English-speaking participants, and since most of

the word-like units of the transcriptions do not exist in any English pronunciations lexicon,

we use the LOGIOS Lexicon Tool (SpeechLab, 2007) that uses some simple letter-to-sound

rules to produce a phonetic transcription in the ARPAbet symbol set. We map several of

the English vowel oppositions to a single IPA vowel; for example, IH and IY both become

/i/, while UH and UW become /u/. Phonemes AY, EY, and OY become /ai/, /ei/, and /oi/

respectively. This enables a direct comparison of all the transcriptions, although it might

add extra noise, especially in the case of transcriptions produced by English-speaking par-

ticipants.

Two examples of the resulting phonetic transcriptions as produced by the participants’

transcriptions can be found in Tables 3.7 and 3.8.

We observe that the acoustic transcriptions are generally better when alignments are
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TABLE 3.4

PHONE ERROR RATE (PER) OF THE PHONETIC TRANSCRIPTIONS

PRODUCED BY THE ITALIAN-SPEAKING PARTICIPANTS PER

UTTERANCE SET

utterance Phone Error Rate (PER)

set no auto gold all modes

set 1 23.0 25.1 23.8 24.0

set 2 25.8 26.0 23.3 25.0

set 3 32.1 26.0 24.5 28.1

avg 27.0 25.7 24.5 25.7

provided, as reported in Table 3.4 that shows the average Phone Error Rate (PER) of these

phonetic sequences. The gold alignments provide more accurate information, resulting in

higher quality transcriptions. However, even using the noisy alignments leads to better

transcriptions in most cases.

Furthermore, using the string averaging method we combine the mismatched transcrip-

tions into an “average” one. We can then compute the Levenshtein distance and PER be-

tween the “average” and the gold transcription in order to evaluate them. In almost all cases

the “average” transcription is closer to the gold one than each of the individual transcrip-

tions. Table 3.6 provides a more detailed analysis of the quality of the “average” transcrip-

tions per mode and per group of participants.

We first use the transcriptions as produced by all participants, and report the errors of

the averaged outputs under all modes. Again, when alignments are provided, the averaged

transcriptions have lower error rates. However, the gold mode corresponds to an ideal sce-

nario, which will hardly ever occur. Thus, we focus more on the combination of the no
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TABLE 3.5

BREAKDOWN OF THE QUALITY OF THE TRANSCRIPTIONS PER

PARTICIPANT GROUP

participants PER

Italian 25.7

Spanish 28.3

English 34.3

all 28.5

best 22.8

worst 37.0

and auto modes, which will very likely occur in our collection efforts, as the alignments

we will produce will be noisy, or we might only have translations without alignments. We

also limit the input to only include the transcriptions produced by the Italian and Spanish

speaking participants, as we found that the transcriptions produced by English speaking

participants added more noise instead of helping. As the results in Table 3.6 show, using

our averaging method we obtain better transcriptions on average, even if we limit our-

selves to the more realistic scenario of not having gold alignments. The best result with an

average PER of 23.2 is achieved using all the transcriptions produced by Italian and Span-

ish speaking participants. Even without gold alignments, however, the averaging method

produces transcriptions with average PER of 24.0, which is a clear improvement over the

average PER of the individual transcriptions (25.7).

Transcription quality As a first test, we compare the Levenshtein distances of the pro-

duced transcriptions to the gold ones. For fairness, we remove the accents from the gold
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TABLE 3.6

AVERAGE LEVENSHTEIN DISTANCE AND PER OF THE “AVERAGE”

TRANSCRIPTIONS OBTAINED WITH OUR STRING AVERAGING

METHOD FOR DIFFERENT SUBSETS OF THE CROWDSOURCED

TRANSCRIPTIONS

transcriptions used avg. distance

to create average to gold

mode
participants’

Lev/tein PER
native language

no all 8.41 27.0

auto all 7.82 25.9

gold all 7.58 24.3

all Ita+Spa 7.21 23.2

gold Ita+Spa 7.55 23.6

no+auto Ita+Spa 7.62 24.0

Griko transcriptions, as well as any accents added by the Italian speaking participants.

The results averaged per utterance set and per mode are shown in Table 3.3. We first

note that the three utterance sets are not equally hard: the first one is the hardest, with the

second one being the easiest one to transcribe, as it included slightly shorter sentences.

However, in most cases, as well as in the average case (last row of Table 3.3) providing

the alignments improves the transcription quality. In addition, the gold standard alignments

provide more accurate information that is also reflected in higher quality transcriptions.

We also evaluate the precision and recall of the word boundaries (spaces) that the tran-

scriptions denote. We count a discovered word boundary as a correct one only if the word

51



TABLE 3.7

TRANSCRIPTIONS FOR THE UTTERANCE O LÀDRO ÌSOZE ÈMBI

APO-TTÙ [THE THIEF MUST HAVE ENTERED FROM HERE] AND THEIR

LEVENSHTEIN DISTANCE TO THE GOLD TRANSCRIPTION

transcription distance

it1 o ladro isodzeem biabiddu 5

it2 o ladro isodZenti dabol tu 6

it3 o ladro i so ndze mia buttu 5

it4 o ladro isodzeembia po tu 2

it5 o ladroi isodZe enbi a buttu 4

it6 o ladro idZo dzembia a buttu 7

es1 o la vro ipsa ziem biabotu 9

es2 ola avro isonse embia butu 7

es3 o ladro isosen be abuto 9

en1 o labro ebzozaim bellato 13

en2 o laha dro iso dzenne da to 12

en3 o ladro i dzo ze en habito 11

average o ladro isodZe mbia buttu 3

correct o ladro isodZe embi apo ttu

boundary in the transcription is matched with a boundary marker in the gold transcription,

when we compute the Levenshtein distance.

Under no mode (without alignments), the transcribers achieve 58% recall and 70%

precision on correct word boundaries. However, when provided with alignments, they

achieve 66% recall and 77% precision; in fact, when provided with gold alignments (un-
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TABLE 3.8

TRANSCRIPTIONS FOR THE UTTERANCE PÀO CERKÈONTA ÈNA FÙRNO

KA KÀNNI RÙSTIKU [I’M LOOKING FOR A BAKERY THAT MAKES RUSTIC

(BREAD)] AND THEIR LEVENSHTEIN DISTANCE TO THE GOLD

TRANSCRIPTION

participant acoustic transcription distance

it1 bau tSerkianta ena furno e tranni e rustiku 9

it2 pau tSerkianta ena furna kanni e rustiku 7

it3 pau tSerkianta na furno kakanni rustiko 5

it4 po Serkieunta na furna ka kanni rustiku 6

it5 pau tSerkeunta en furno ganni rustiku 6

it6 pa u tSerkionta en na furno kahanni rustiko 5

es1 pogurSe kiunta en a furna e kakani e rustiku 12

es2 pao Serkeonta ena furna ka kani rustigo 5

es3 bao tSerke on ta e na furno e kagani e rustiko 6

en1 paoje kallonta e un forno e grane e rustiko 15

en2 pao tSerkeota eno furno e kakarni e rustiko 5

en3 pouSa kianta e a forno e tagani e rustiko 14

average pao tSerkionta ena furno kaanni e rustiku 3

correct pao tSerkeonta ena furno ka kanni rustiku

der gold mode) recall increases to 70% and precision to 81%. Therefore, the speech-to-

translation alignments seem to provide information that helped the transcribers to better

identify word boundaries, which is arguably hard to achieve from just continuous speech.
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Phonetic transcription quality We observe the same pattern when evaluating using the

average PER of these phonetic sequences, as reported in Table 3.4: the acoustic transcrip-

tions are generally better when alignments are provided. Also, the gold alignments provide

more accurate information, resulting in higher quality transcriptions. However, even using

the noisy alignments leads to better transcriptions in most cases.

It is worth noting that out of the 30 utterances, only 4 included words that are shared

between Italian and Griko (ancora [yet], ladro [thief], giornale [newspaper], and

subito [immediately] ) and only 2 of them included common proper names (Valeria

and Anna). The effect of having those common words, therefore, is minimal.

Non-Italian speaking participants The scenario where the crowdsourcers do not even

speak the language of the translations is possibly too extreme. It still could be applicable,

though, in the case where the language of the translations is not endangered but still low-

resource (Tok Pisin, for example) and it’s hard to find annotators that speak the language.

In any case, we show that if the participants speak a language related to the translations

(and with a similar phonetic inventory, like Spanish in our case) they can still produce

decent transcriptions.

Table 3.5 shows the average on the performance of the different groups of partici-

pants. As expected, the Italian-speaking participants produced higher quality transcrip-

tions, but the Spanish-speaking participants did not perform much worse. Also in the case

of non-Italian speaking participants, we found that providing speech-to-translation align-

ments (under auto and gold modes) improves the quality of the transcriptions, as we

observed a similar trend as the ones shown in Tables 3.3 and 3.4.

The noise in the non-Italian speaker annotations, and especially the ones produced by

English speakers, can be explained in two ways. One, it could be caused by annotation

scheme employed by the English speakers, which must be more complicated and noisy, as

English does not have a concrete letter-to-sound system. Or two, it could be explained by
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the fact that English is much more typologically distant from Griko, meaning, possibly, that

some of the sounds in Griko just weren’t accessible to English speakers. The latter effect

could indeed be real, as it has been shown that a language’s phonotactics can affect what

sounds a speaker is actually able to perceive (Dupoux et al., 2008; Peperkamp et al., 1999).

The perceptual “illusions” created by one’s language can be quite difficult to overcome.
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3.4 Spoken Term Discovery for Language Documentation using Translations

Abstract: We presented a method for partially labeling unlabelled
speech with translation labels in a scenario where only a small amount
of data is translated. We modified an unsupervised speech-to-translation
alignment model and obtained prototype speech segments that match the
translation words, which are in turn used to discover terms in the un-
labelled data. We evaluated our method on a Spanish-English speech
translation corpus and on two corpora of endangered languages, Ara-
paho and Ainu, demonstrating its appropriateness and applicability in an
actual very-low-resource scenario.

3.4.1 Introduction

Vast amounts of speech data collected for language documentation and research remain

untranscribed and unsearchable, but often a small amount of speech may have text transla-

tions available. We focused on this scenario, and explored whether we can partially label

additional speech with translation keywords. We used our EM-based alignment method

(§3.2, henceforth s2t) to obtain labeled “prototypical” speech segments, which we use for

term discovery. Hopefully, those translation keywords could render the unlabeled linguistic

archives more searchable.

Background The only previous system we know of to address the same very-low-resource

scenario and provide translation terms for unlabeled audio is that of Bansal et al. (2017)

(henceforth UTD-align), who used an unsupervised term discovery system (Jansen et al.,

2010) to cluster recurring audio segments into pseudowords. The pseudowords occurring

in the parallel section of the corpus were then aligned to the translation text using IBM

Model 1, and used to translate instances occurring in the test (audio-only) section.

3.4.2 Method

The main difference between our method and UTD-align is that UTD-align clusters

the audio prior to aligning with the translations, whereas we start by performing joint align-
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ment and clustering using an improved version of the s2t method. The resulting aligned

clusters are represented by one or more prototype speech segments. We extended s2t to

identify new instances of those prototypes in the unlabeled speech, using a modified ver-

sion of ZRTools, the same UTD toolkit used by UTD-align.4 (Jansen et al., 2010)

We first modified s2t so that, before the M-step, each cluster’s segments are grouped

into sub-clusters using connected components clustering with a similarity threshold d, fol-

lowing Park and Glass (2008). That way, the number of sub-clusters and prototypes for

each translation word is determined automatically based on the acoustic similarity of the

segments.

Our preliminary analysis showed that shorter alignments tend to introduce significantly

more noise than longer ones. Therefore, in the final M-step of s2t, we also discard all

segments shorter than a length threshold t before computing the prototypes. We used the

default values for the rest of the s2t parameters, and obtained speech-to-translation align-

ments, as a first step.

Another pragmatic choice we made based on the performance of our method was to

remove the stopwords from the translations, following Bansal et al. (2017). The rationale

is that translation stopwords would not be particularly useful for labelling speech in our

envisioned use cases.

In the second stage, we use the approximate DTW-based pattern matching method

of ZRTools to search for the obtained prototypes in the test data. We require that each

discovered term matches at least k% of a prototype’s length and that its DTW similarity

score is higher than a threshold s. By varying s we can control the number of discovered

terms, trading off precision and recall. Also, we do not allow overlapping matches; in the

case of an overlap, we output the match with the higher score.

4https://github.com/arenjansen/ZRTools
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TABLE 3.9

RESULTS OF OUR KEYWORD-SPOTTING METHOD AND BASELINE

WORK ON THE CALLHOME DATASET

Method Precision Recall F-score Coverage

UTD-align 5.1 2.1 3.0 27%

ours 4.2 3.5 3.8 59%

ours (oracle) 5.3 4.9 5.1 65%

3.4.3 Experiments and Results

We evaluated our spoken term discovery method on CALLHOME and on the Arapaho

and Ainu datasets. We first evaluated the effect of our modifications to the s2t method, by

calculating alignment F-score on links between speech frames and translation words. The

intermediate sub-clustering step between the E- and M-steps results in a more informed

selection of the number of sub-clusters that increases the alignment F-score by 1.5%. Also,

removing translation stopwords further leads to higher alignment precision by +4%. Align-

ment recall is lower since it’s computed over the alignments of both content and stopwords.

Although both improvements are small, the higher alignment precision leads to better pro-

totypes.

Out of the eight Arapaho narratives, we select the longest (18 minutes of audio, 233

English word types) for training, using the other seven (32 minutes total) for evaluation.

The Ainu collection provides ten narratives, so we use the first two for training (24 minutes

of audio, 494 English word types) and the rest (133 minutes total) as test data.

Treating each narrative as a bag of words, the precision and recall results at the token

level are shown in Tables 3.10 and 3.11. The last columns of these Tables correspond to
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TABLE 3.10

KEYWORD SPOTTING RESULTS ON ARAPAHO TEST NARRATIVES

Arapaho Terms Prec Rec Oracle

narrative found (%) (%) Recall

1 29 31.0 4.7 32.3

2 65 21.5 8.0 44.3

3 91 7.7 6.4 54.5

4 158 13.9 8.4 53.4

6 1 100.0 0.7 41.4

7 104 7.7 7.1 44.6

8 10 30.0 4.5 65.2

average-ours 65 14.0 6.0

UTD-align 2 26.7 0.4

the highest possible recall that we could get if we discovered all the training terms that also

appear in the test set. Precision-recall curves can be seen in Figure 3.7.

On both corpora, UTD-align identifies hardly any translation terms, with recall scores

below 1% and average F-scores of 0.8% and 0.2% for Arapaho and Ainu, respectively. Our

method, instead, outputs several terms per narrative without the need to readjust prepro-

cessing decisions, with F-scores of 8.4% (Arapaho) and 7.2% (Ainu). Two exceptions are

Arapaho narratives #6 and #8, which, unlike our training data, are narrated by a woman.

Although there is clearly room for improvement in terms of recall, as shown by the last

columns of Table2 3.10 and 3.11, we are generally able to identify meaningful terms.
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TABLE 3.11

KEYWORD SPOTTING RESULTS ON AINU TEST NARRATIVES

Ainu Terms Prec Rec Oracle

narrative found (%) (%) Recall

3 80 50.0 3.8 63.0

4 73 49.3 4.5 67.1

5 199 49.7 5.1 61.8

6 174 22.4 9.0 65.0

7 123 19.5 8.9 56.1

8 122 57.4 3.9 67.8

9 59 62.7 1.5 63.0

10 149 46.3 6.6 69.7

average-ours 122 42.3 4.2

UTD-align 4 24.2 0.1
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Figure 3.7. Average precision and recall curve for our discovered matches in
CALLHOME and the Arapaho and Ainu test narratives (varying the output

threshold s between 0.90 and 0.94).
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CHAPTER 4

NEURAL SPEECH TRANSCRIPTION AND TRANSLATION

This chapter describes our contributions that use translations in order to produce higher-

quality transcriptions in an endangered language. Our extremely low-resource setting re-

quires that we explore methods that take full advantage of the available signals.

In Section §4.1 we focus on the scenario where translations are available both at train-

ing and inference time, and show that indeed access to translations can lead to better per-

formance, especially in noisy audio scenarios. Then, in §4.2 we explore scenarios where

translations are not available at inference time, but can be used at training time as privileged

information. We extend the Learning Under Privileged Information paradigm and achieve

improvements comparable to the §4.1 models, which however, use translations at test time.

Finally, Section §4.3 presents a multitask setting where we train a neural model to produce

both transcriptions and translations. Training jointly for the two tasks, and encouraging the

model to obey the notion of transititivity, we attain further improvements in performance.
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4.1 Leveraging Translations for Speech Transcription in Low-Resource Settings

Abstract: In our data collection framework, we end up with a signif-
icant amount of parallel speech in a low-resource and a high-resource
language. We explore whether we can leverage these translations, in or-
der to improve the quality of the endangered language transcriptions. We
find that sharing the parameters of the attention mechanisms improves
the performance of the multi-source models, in most cases outperform-
ing the single-source baselines.

4.1.1 Introduction

We focus on the language documentation scenario where we already have translations

for speech utterances (e.g. through a parallel data collection pipeline like Aikuma). The

goal is to produce transcriptions for these utterances. Therefore, we explore methods that

learn from a small number of transcribed speech utterances along with their translations.

We use the neural attentional model (Bahdanau et al., 2015a) and experiment with ex-

tensions that take both speech utterances and their translations as input sources. We assume

that the translations are in a high-resource language that can be automatically transcribed;

therefore, in our experiments, the translation input is text instead of speech. We also ex-

plore different parameter-sharing methods across the attention mechanisms.

We experiment on three diverse low-resource language pairs. One is Ainu, a severely

endangered language, with translations in English. We also experiment on a recently col-

lected speech corpus of Mboshi (Godard et al., 2017), with translations in French. Lastly,

we evaluate our models on Spanish-English, using the CALLHOME dataset.

Our proposed multi-source model that employs a shared attention mechanism outper-

forms the baselines in almost all cases. In Mboshi, we find that our model reduces character

error rates (CER) by 1.2 points. In Spanish, we observe a reduction of 4.6 points in CER

over the strongest baseline, and more than 14.4 points over a speech-only baseline. In Ainu,

although our multi-source model doesn’t reduce the overall CER, we show that it actually

is beneficial in the cases where the single-source speech transcription model has greatest
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difficulty.

4.1.2 Model

Unlike the traditional attentional model (see Figure 4.1a), in a multi-source model we

have two encoders (Figure 4.1b); one that transforms the input sequence of speech frames

f1, . . . , fN into a sequence of input states h1
1 . . . h

1
N , and one that transforms an input se-

quence of translation words x1, . . . , xM into another sequence of input states h2
1 . . . h

2
M:

h1
n = enc1(h1

n−1, fn)

h2
m = enc2(h2

m−1, xm)

An attention mechanism transforms the two sequences of input states into a sequence

of context vectors via two matrices of attention weights:

ck =

[∑
n α

1
knh1

n
∑

m α
2
kmh2

m

]
.

Finally, the decoder computes a sequence of output states from which a probability

distribution over output words can be computed.

sk = dec(sk−1, ck, yk−1)

P(ym) = softmax(sm).

The attention mechanisms produce the attention weights with the following computa-

tions, as in (Luong et al., 2015), with v1, v2,Ws
α1 ,Ws

α2 ,Wh
α1 , and Wh

α2 being parameters to
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be learnt:

α1
kn = softmax(v1 tanh(

[
Ws

α1sk−1; Wh
α1h1

n

]
))

α2
km = softmax(v2 tanh(

[
Ws

α2sk−1; Wh
α2h2

m

]
)).

Since both attention mechanisms, though, provide context to the same decoder, we

can tie the computation of the weights so that the two mechanisms share the v and Ws
a

parameters. We refer to them as tied attention mechanisms:

α1
kn = softmax(v tanh(

[
Ws

αsk−1; Wh
α1h1

n

]
))

α2
km = softmax(v tanh(

[
Ws

αsk−1; Wh
α2h2

m

]
)).

If the two encoders share the same output size for their h1 and h2 vectors, then the

two attentions could further share the Wh
α parameters, effectively merging into one, shared

attention mechanism.

A baseline that has to be compared with our work is ensembling. Traditionally, en-

sembles refer to models that have been trained on similar data for the similar task, with

their predictions only combined at inference time. In our case, we explore an ensemble of

a transcription and a translation model. In the simple ensemble case, the two models are

trained separately. Recently, coupled ensembles were shown to outperform simple ensem-

bles (Dutt et al., 2017). In the coupled ensemble setting (see Figure 4.1c), the two models

are trained jointly, albeit they don’t share any parameters. The two decoder outputs are

averaged right before the softmax layer, in order to produce a single output probability dis-

tribution. It was shown (Dutt et al., 2017) that this approach works better than combining

the two predictions after the softmax layer:
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(a) single-source (b) multi-source (c) coupled ensemble

Figure 4.1: Source-side variations on the standard attentional model. In the standard 
single-source model, the decoder attends to a single encoder’s states. In our multi-source 

setup, we have two input sequences encoded by two different encoders, and attention 
mechanisms provide two context to the decoder. Note that for clarity’s sake there are 

dependencies not shown.

s1
k = dec1(s1

k−1, c
1
k , yk−1)

s2
k = dec2(s2

k−1, c
2
k , yk−1)

P(yk) = softmax(
s1

k + s2
k

2
).

4.1.3 Experiments and Results

We evaluate our models on three datasets: Ainu-English, Mboshi-French, and the CALL-

HOME Spanish-English dataset. The results on Ainu are calculated over the concatenated

outputs of 10 cross-validation folds, in each of which each narrative becomes the test set.

The results on Mboshi are the outputs of the best model (selected from dev performance)

of 10 restarts.

Table 4.1 summarizes the outcome of some initial experiments. We find that the best

models (with the lower Character Error Rates and higher BLEU) in our endangered lan-

guages are the ones that take advantage of both the spoken speech and the translations,

and combine them with a parameter sharing mechanism for attention. In the CALLHOME
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TABLE 4.1

BOTH CHARACTER ERROR RATES (CER) AND WORD-LEVEL BLEU OF

OUR BEST MULTI-SOURCE MODELS ON MBOSHI AND SPANISH

OUTPERFORM THE SINGLE-SOURCE BASELINES

Source
Target CER Target BLEU

Ainu Mboshi Spanish Ainu Spanish

speech 40.7 29.8 52.0 28.92 9.41

translation 74.9 68.2 44.6 5.89 14.73

coupled ensemble 40.6 36.8 42.2 26.99 16.94

speech+translation 46.0 37.5 41.6 24.03 17.59

+tied 41.4 32.6 37.6 26.95 20.82

+shared 40.6 28.6 38.7 28.57 19.47

dataset, both the tied and the shared attention mechanisms significantly outperform the

baselines, with the tied attention mechanism producing slightly better results. It is also

worth noting that the coupled ensemble model also outperforms the single-source base-

lines. However, they only perform en par with our proposed multi-source models with

parameter sharing mechanisms for attention in the case of Ainu.

4.1.4 Analysis

The performance of each fold of cross-validation for Ainu is shown in Figure 4.2. For

each narrative, it compares the speech-only baseline system with our best multi-source sys-

tem. The overall performance of the speech-only single-source model and our best model

is similar with a CER of 40.7 and 40.6 respectively. A possible reason is that all the Ainu

stories are narrated by the same speaker, making it a generally easier task for a speech
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Figure 4.2. Character Error Rates of the best baseline system and our best
multisource system for each Ainu narrative. The gains of using the translations
are apparent in the cases that are harder for a speech-only system: narratives 6

and 7 are more sung than narrated, rendering them harder to transcribe.

recognition system. But we also see that in the cases where speech transcription is harder,

translation information does help. Namely, narratives 6 and 7 are sung, making them harder

to transcribe with a speech-only system trained on spoken data, as indicated by the higher

error rates: 91.2 and 67.0, respectively. The multi-source models achieve noticeable im-

provements of 9.9 and 4.3 points on these narratives.

We further quantify the effect of the different sharing mechanisms for the attentions.

Using word-level forced alignments on the CALLHOME dataset (Duong et al., 2016) we

can evaluate the accuracy of the attention. Treating the forced alignments as reference,

we compute the percentage of the weights of the attention over the speech source that

fall within the boundaries of the forced alignment spans. Note that the forced alignments

naturally include noise, so they should be treated as a “silver standard.” However, they can

still provide indications that could reveal the effect of parameter sharing.

We computed the average sum of this attention accuracy by forced decoding on the

CALLHOME development set. We find that the average sum for the speech single-source

model is almost 71%, a value similar to the average sums of the attention accuracy of
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(a) speech-source (b) multi-source: speech (c) multi-source: translation

Figure 4.3: Attentions on a speech sample from the dev set, that includes a proper name 
(“Mechita”) unseen during training. The multi-source model (using a shared attention 
mechanism) receives informative context from the translation so as to produce the output.

the coupled ensemble and the multi-source model that employs no sharing mechanism. 

Instead, the attention accuracy of the model with the shared mechanism is almost 75%. 

The model with tied attentions, which achieves the best results on CALLHOME, has an 

attention accuracy of 76%.

Figure 4.3 presents the attention weights over a sample taken from the development set, 

produced by forced decoding. The segment includes an out-of-vocabulary word, the name 

Mechita, never seen during training. The attention weights over the speech source with the 

single-source model (3a) are not too different from the weights of the multi-source model 

with tied attentions (3b). However, the multi-source model in this case takes advantage of 

the translation and receives most of its context from the text source (3c), as the attention 

weights over the characters of the name are quite high (albeit, off-by-one, as often is the 

case in neural attention-based translation).
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4.2 Translations as Privileged Information for Low-Resource Speech Transcription

Abstract: We explore the recently proposed Learning Under Privileged
Information for deep neural models (DLUPI) framework (Lambert et al.,
2018). We adapt it to the speech transcription task and enhance it with
attention mechanism in order to receive fine-grained privileged infor-
mation from translations. We show that in low-resource settings we can
achieve performance comparable to the best multi-source models, de-
spite not having access to translations at inference time. At the same
time the DLUPI models surpass single-source baselines that do not use
translations at all.

4.2.1 Introduction

Learning Under Privileged Information (LUPI) is a novel machine learning paradigm,

which attempts to imitate the role of a teacher that provides intuitive comments or compar-

isons, rather than just right or wrong answers. Originally introduced by Vapnik and Vashist

(2009), it addresses an important shortcoming of typical supervised learning: in addition

to the correct answer, the teacher also supplies the student with an “explanation”.

More formally, a standard machine learning setup the model is trained using tuples

{x, y} of input x and desired outputs y. Under the LUPI paradigm, the model is trained using

triplets {x, x∗, y}, where x∗ denotes some sort of privileged information that the teacher has.

Note that inference is still performed only on the standard input x, without access to the

privileged information (as the “student” operates without the assistance of the “teacher”).

Originally applied on Support Vector Machines, the LUPI paradigm has been extended

to several models; importantly, it is theoretically proven that this algorithm accelerates the

rate at which the upper bound of the error drops, from O(
√

1
n ) to O(1

n ), effectively leading

to a steeper learning curve (Vapnik and Vashist, 2009).

Since then, LUPI has been applied to several problems in computer vision (Moti-

ian et al., 2016; Sharmanska et al., 2014), ranking (Sharmanska et al., 2013), or cluster-

ing problems (Feyereisl et al., 2014). Hernández-Lobato et al. (2014) extended the LUPI

framework to Gaussian Processes, while Lopez-Paz et al. (2015) showed that LUPI and
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knowledge distillation are closely related.

Lambert et al. (2018) recently extended the LUPI framework to deep neural models

(henceforth DLUPI), by using the privileged information to inform the variance of het-

eroscedastic dropout. We explain this method in the next section, applying it on the task of

speech transcription and extending it to use more fine-grained privileged information.

4.2.2 Method

For the speech transcription task, the input x is a sequence of audio feature frames f,

and the desired output y is a sequence of the transcription characters or words. We will

use the translations of the speech utterances as the privileged information x∗. We describe

our encoder-decoder attentional model using our previously introduced notation, with the

encoder producing an intermediate representation of the input:

hn = enc(hn−1, fn)

Following Lambert et al. (2018), we apply heteroscedastic dropout (that is, dropout with

varying variance)1 on this representation such that:

h′n = hn � N(1,h∗(x∗)).

Effectively, the privileged information x∗ is only used to estimate the variance h∗(x∗)

of the (Gaussian) heteroscedastic dropout of the representation of the input. In order to

compute the variances, we employ an LSTM encoder over the translation. We use the

final output state as the representation of the sentence, which is the passed through a fully

connected layer.

These additional weights for the translation encoder and the fully connected layer are

1Standard Gaussian dropout (or additive Gaussian noise) with fixed variance is homoscedastic.
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also learned. The loss includes the standard cross-entropy loss, plus regularization over the

logarithm of the computed variances of the heteroscedastic dropout:2

L(θ) = Σ log p(y|x) − β ‖ log h∗(x∗) ‖ .

Furthermore, we can extend the model to receive more fine-grained privileged infor-

mation at each time step. Instead of using the same representation of the translation x∗ at

each time step, we can employ an attention scheme.

The translation encoder encodes the translation and produces an intermediate represen-

tation h∗:

h∗(x∗m) = enc(hm−1, x∗m).

and then an attention model transforms the input states into a sequence of context vectors

via a matrix of attention weights for each of the n steps of encoded input x:

c∗n =
∑

n

αnmh∗m.

Then, the heteroscedastic dropout at time step n is computed asN(1,MLP(c∗n)) and applied

on the intermediate representations produced by the transcription encoder.

In either case, the decoder attends with another set of attention weights over the in-

termediate representations h′, receiving a context c and computing a sequence of output

states from which a probability distribution over output words can be computed.

sk = dec(sk−1, ck, yk−1)

P(ym) = softmax(sm).

A schematic representation of our proposed model is displayed in Figure 4.4.

2See (Lambert et al., 2018) for the complete derivation.
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Figure 4.4: Schematic representation of our DLUPI model that includes an attention mech-
anism for obtaining the variance of the heteroscedastic dropout.

4.2.3 Experiments and Discussion

We test our approach on the Mboshi dataset, and compare the performance of our 

DLUPI models with the performance of our single-source and multi-source transcription 

models.

Our results, shown in Table 4.2, are in line with the theoretical and empirical results of 

Lambert et al. (2018). In our low-resource setting, providing additional “explanations” in 

the form of translations is beneficial to training (28.8 CER), as we observe an improvement 

of 1% Character Error Rate over the single-source baseline (29.8CER) which does not use 

translations at all. Moreover, the performance of the DLUPI model is comparable to the 

performance of our previously discussed multi-source model (28.6 CER), despite the fact 

that our DLUPI model does not have access to the translations at inference time.

This confirms that the LUPI paradigm indeed has huge potential for low-resource ap-

plications. With a few additional annotations that could be provided as privileged informa-

tion, the model’s learning curve is steeper and likely leads to better performance, even if 

the additional annotations are not available for the test data.
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TABLE 4.2

THE PERFORMANCE OF THE DLUPI MODEL IS BETTER THAN THE

SINGLE-SOURCE MODEL AND COMPARABLE TO THE MULTI-SOURCE

MODEL

Model Mboshi CER Ainu CER

single source 29.8 40.7

multi-source 28.6 40.6

multi-task 30.2 40.1

DLUPI 28.8 40.6

4.3 Tied Multitask Models for Speech Transcription and Translation

Abstract: We explore multitask models for neural translation of speech,
augmenting them in order to reflect two intuitive notions. First, we intro-
duce a model where the second task decoder receives information from
the decoder of the first task, since higher-level intermediate representa-
tions should provide useful information. Second, we apply regularization
that encourages transitivity and invertibility. We show that the applica-
tion of these notions on jointly trained models improves performance on
the tasks of low-resource speech transcription and translation.

4.3.1 Introduction

Speech can be interpreted either by transcription in the original language or translation

to another language. Since the size of the data is extremely small, multitask models that

jointly train a model for both tasks can take advantage of both signals. Our contribution

lies in improving the sequence-to-sequence multitask learning paradigm, by drawing on

two intuitive notions: that higher-level representations are more useful than lower-level

representations, and that translation should be both transitive and invertible.
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Higher-level intermediate representations, such as transcriptions, should in principle

carry information useful for an end task like speech translation. A typical multitask setup

(Weiss et al., 2017) shares information at the level of encoded frames, but intuitively, a

human translating speech must work from a higher level of representation, at least at the

level of phonemes if not syntax or semantics. Thus, we present a novel architecture for tied

multitask learning with sequence-to-sequence models, in which the decoder of the second

task receives information not only from the encoder, but also from the decoder of the first

task.

In addition, transitivity and invertibility are two properties that should hold when map-

ping between levels of representation or across languages. We demonstrate how these two

notions can be implemented through regularization of the attention matrices, and how they

lead to further improved performance.

In the speech transcription and translation tasks, our proposed model leads to improved

performance against all baselines as well as previous multitask architectures. We observe

improvements of up to 5% character error rate in the transcription task, and up to 2.8%

character-level BLEU in the translation task.

4.3.2 Background

Multitask learning (Caruana, 1998) has found extensive use across several machine

learning and NLP fields. For example, Luong et al. (2016) and Eriguchi et al. (2017) jointly

learn to parse and translate; Kim et al. (2017) combine CTC- and attention-based models

using multitask models for speech transcription; Dong et al. (2015) use multitask learning

for multiple language translation. Toshniwal et al. (2017) apply multitask learning to neural

speech recognition in a less traditional fashion: the lower-level outputs of the speech en-

coder are used for fine-grained auxiliary tasks such as predicting HMM states or phonemes,

while the final output of the encoder is passed to a character-level decoder.

Our work is most similar to the work of Weiss et al. (2017). They used sequence-to-
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sequence models to transcribe Spanish speech and translate it in English, by jointly training

the two tasks in a multitask scenario where the decoders share the encoder. In contrast to

our work, they use a large corpus for training the model on roughly 163 hours of data,

using the Spanish Fisher and CALLHOME conversational speech corpora. The parameter

number of their model is significantly larger than ours, as they use 8 encoder layers, and

4 layers for each decoder. This allows their model to adequately learn from such a large

amount of data and deal well with speaker variation. However, training such a large model

on endangered language datasets would be infeasible.

Our model also bears similarities to the architecture of the model proposed by Tu et al.

(2017). They report significant gains in Chinese-English translation by adding an additional

reconstruction decoder that attends on the last states of the translation decoder, mainly

inspired by auto-encoders.

4.3.3 Model

Our models are based on a sequence-to-sequence model with attention (Bahdanau et al.,

2015a). In general, this type of model is composed of three parts: a recurrent encoder, the

attention, and a recurrent decoder (see Figure 4.5a).3

The encoder transforms an input sequence of words or feature frames x1, . . . , xN into a

sequence of input states h1, . . . ,hN:

hn = enc(hn−1, xn).

The attention transforms the input states into a sequence of context vectors via a matrix of

attention weights:

cm =
∑

n

αmnhn.

3For simplicity, we have assumed only a single layer for both the encoder and decoder. It is possible to
use multiple stacked RNNs; typically, the output of the encoder and decoder (cm and P(ym), respectively)
would be computed from the top layer only.
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Figure 4.5: Target-side variations on the standard attentional model. In the standard single-
task model, the decoder attends to the encoder’s states. In a typical multitask setup, two 

decoders attend to the encoder’s states. In the cascade (Tu et al., 2017), the second decoder 
attends to the first decoder’s states. In our proposed triangle model, the second decoder 
attends to both the encoder’s states and the first decoder’s states. Note that for clarity’s 

sake there are dependencies not shown.

Finally, the decoder computes a sequence of output states from which a probability distri-

bution over output words can be computed.

sm = dec(sm−1, cm, ym−1)

P(ym) = softmax(sm).

In a standard encoder-decoder multitask model (Figure 4.5b) (Dong et al., 2015; Weiss

et al., 2017), we jointly model two output sequences using a shared encoder, but separate

attentions and decoders:
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∑
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m).

We can also arrange the decoders in a cascade (Figure 4.5c), in which the second

decoder attends only to the output states of the first decoder:

c2
m =

∑
m′
α12

mm′s
1
m′

s2
m = dec2(s2

m−1, c
2
m, y

2
m−1)

P(y2
m) = softmax(s2

m).

Tu et al. (2017) use exactly this architecture to train on bitext by setting the second output

sequence to be equal to the input sequence (y2
i = xi).

In our proposed triangle model (Figure 4.5d), the first decoder is as above, but the

second decoder has two attentions, one for the input states of the encoder and one for the

output states of the first decoder:

c2
m =

[∑
m′ α

12
mm′s

1
m′

∑
n α

2
mnhn

]
s2

m = dec2(s2
m−1, c

2
m, y

2
m−1)

P(y2
m) = softmax(s2

m).
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4.3.4 Learning and Inference

For compactness, we will write X for the matrix whose rows are the xn, and similarly

H, C, and so on. We also write A for the matrix of attention weights: [A]i j = αi j. Let θ be

the parameters of our model, which we train on sentence triples (X,Y1,Y2).

Maximum likelihood estimation Define the score of a sentence triple to be a log-linear

interpolation of the two decoders’ probabilities:

score(Y1,Y2 | X; θ) = λ log P(Y1 | X; θ) + (1 − λ) log P(Y2 | X,S1; θ)

where λ is a parameter that controls the importance of each sub-task. In all our experiments,

we set λ to 0.5. We then train the model to maximize the score over all sentence triples in

the training data:

L(θ) =
∑

score(Y1,Y2 | X; θ).

Regularization We can optionally add a regularization term to the objective function,

in order to encourage our attention mechanisms to conform to two intuitive principles of

machine translation: transitivity and invertibility.

Transitivity attention regularizer To a first approximation, the translation relation should

be transitive (Levinboim and Chiang, 2015; Wang et al., 2006): If source word xi aligns

to target word y1
j and y1

j aligns to target word y2
k , then xi should also probably align to

y2
k . To encourage the model to preserve this relationship, we add the following transitivity

regularizer to the loss function of the triangle models with a small weight λtrans = 0.2:

Ltrans = score(Y1,Y2) − λtrans

∥∥∥A12A1 − A2
∥∥∥2

2
.
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Invertibility attention regularizer The translation relation also ought to be roughly in-

vertible (Levinboim et al., 2015): if, in the reconstruction version of the cascade model,

source word xi aligns to target word y1
j , then it stands to reason that y j is likely to align to

xi. So, whereas Tu et al. (2017) let the attentions of the translator and the reconstructor be

unrelated, we try adding the following invertibility regularizer to encourage the attentions

to each be the inverse of the other, again with a weight λinv = 0.2:

Linv = score(Y1,Y2) − λinv

∥∥∥A1A12 − I
∥∥∥2

2
.

Decoding Since we have two decoders, we now need to employ a two-phase beam

search, following Tu et al. (2017):

1. The first decoder produces, through standard beam search, a set of triples each con-
sisting of a candidate transcription Ŷ1, a score P(Ŷ1), and a hidden state sequence
Ŝ.

2. For each transcription candidate from the first decoder, the second decoder now
produces through beam search a set of candidate translations Ŷ2, each with a score
P(Ŷ2).

3. We then output the combination that yields the highest total score(Y1,Y2).

Implementation All our models are implemented in DyNet (Neubig et al., 2017).4 We

use a dropout of 0.2, and train using Adam with initial learning rate of 0.0002 for a maxi-

mum of 500 epochs. For testing, we select the model with the best performance on dev. At

inference time, we use a beam size of 4 for each decoder (due to GPU memory constraints),

and the beam scores include length normalization (Wu et al., 2016) with a weight of 0.8,

which Nguyen and Chiang (2017) found to work well for low-resource NMT.

4Available online at https://bitbucket.org/antonis/dynet-multitask-models
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TABLE 4.3

THE MULTITASK MODELS OUTPERFORM THE BASELINE

SINGLE-TASK MODEL AND THE PIVOT APPROACH (AUTO/TEXT) ON

ALL LANGUAGE PAIRS TESTED AND THE TRIANGLE MODEL ALSO

OUTPERFORMS THE SIMPLE MULTITASK MODELS ON BOTH TASKS

IN ALMOST ALL CASES

Model Search Mboshi French Ainu English Spanish English

ASR MT ASR MT CER BLEU CER BLEU CER BLEU

1 auto text 1-best 1-best 42.3 21.4 44.0 16.4 70.2 24.2

2 gold text — 1-best 0.0 31.2 0.0 19.3 0.0 51.3

3 single-task 1-best — 20.8 — 12.0 — 21.6

4 multitask 4-best 1-best 36.9 21.0 40.1 18.3 57.4 26.0

5 triangle 4-best 1-best 32.5 22.0 39.9 19.2 58.9 28.6

6 tr.+Ltrans 4-best 1-best 33.1 23.4 43.3 20.2 59.3 28.6

7 triangle 1-best 1-best 31.9 17.4 38.9 19.8 58.4 28.8

8 tr.+Ltrans 1-best 1-best 32.3 19.3 43.0 20.3 59.1 28.5

4.3.5 Experiments and Results

In Table 4.3, we present results on three small datasets that demonstrate the efficacy of

our models. We compare our proposed models against three baselines and one “skyline.”

The first baseline is a traditional pivot approach (line 1), where the ASR output, a sequence

of characters, is the input to a character-based NMT system (trained on gold transcriptions).

The “skyline” model (line 2) is the same NMT system, but tested on gold transcriptions

instead of ASR output. The second baseline is translation directly from source speech to

target text (line 3). The last baseline is the standard multitask model (line 4), which is
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similar to the model of Weiss et al. (2017).

On all three datasets, the triangle model (lines 5, 6) outperforms all baselines, includ-

ing the standard multitask model. On Ainu-English, we even obtain translations that are

comparable to the “skyline” model, which is tested on gold Ainu transcriptions.

Comparing the performance of all models across the three datasets, there are two no-

table trends that verify common intuitions regarding the speech transcription and transla-

tion tasks. First, an increase in the number of speakers hurts the performance of the speech

transcription tasks. The character error rates for Ainu are smaller than the CER in Mboshi,

which in turn are smaller than the CER in CALLHOME. Second, the character-level BLEU

scores increase as the amount of training data increases, with our smallest dataset (Ainu)

having the lowest BLEU scores, and the largest dataset (CALLHOME) having the highest

BLEU scores. This is expected, as more training data means that the translation decoder

learns a more informed character-level language model for the target language. (Note that

Weiss et al. (2017) report much higher BLEU scores on CALLHOME: our model under-

performs theirs by almost 5 word-level BLEU points. However, their model has signifi-

cantly more parameters and is trained on 10 times more data than ours. Such an amount of

data would never be available in our endangered languages scenario.)

To evaluate the effect of using the combined score from both decoders at decoding

time, we evaluated the triangle models using only the 1-best output from the speech model

(lines 7, 8). One would expect that this would favor speech at the expense of translation. In

transcription accuracy, we indeed observed improvements across the board. In translation

accuracy, we observed a surprisingly large drop on Mboshi-French, but little effect on the

other language pairs – in fact, BLEU scores tended to go up slightly, but not significantly.
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CHAPTER 5

CROSS-LINGUAL MORPHOSYNTACTIC ANALYSIS ON AN ENDANGERED

LANGUAGE

The previous sections dealt with the basic set of annotations that render a corpus in-

terpretable: alignments, transcriptions, and translations. After collecting these, linguistic

research requires additional levels of annotation that highlight specific phenomena. We

suggest that translation information can be leveraged to computationally assist this anal-

ysis. This chapter presents work that confirms this suggestion in the setting of Griko, an

endangered language spoken in South Italy.

The next section §5.1 described how we collaborated with linguists in order to collect

a new parallel resousrce in Griko and Italian. We built Part-of-Speech taggers to produce

annotations on the data, which were then updated in an active learning scenario as the

linguists corrected our automatic annotations.
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5.1 POS-tagging on an Endangered Language: a parallel Griko-Italian resource

Abstract: Most work on part-of-speech (POS) tagging is focused on
high resource languages, or examines low-resource and active learn-
ing settings through simulated studies. We evaluate POS tagging tech-
niques on an actual endangered language, Griko. We present a resource
that contains 114 narratives in Griko, along with sentence-level trans-
lations in Italian, and provides gold annotations for the test set. Based
on a previously collected small corpus, we investigate several traditional
methods, as well as methods that take advantage of monolingual data
or project cross-lingual POS tags. We show that the combination of a
semi-supervised method with cross-lingual transfer is more appropriate
for this extremely challenging setting, with the best tagger achieving an
accuracy of 72.9%. With an applied active learning scheme, which we
use to collect sentence-level annotations over the test set, we achieve
improvements of more than 21 percentage points.

5.1.1 The Griko Language

Griko is a Greek dialect spoken in southern Italy, in the Grecı̀a Salentina area southeast

of Lecce.1 There is another endangered Italo-Greek variety in southern Italy spoken in

the region of Calabria, known as Grecanico or Greco. Both languages, jointly referred

to as Italiot Greek, were included as seriously endangered in the UNESCO Red Book of

Endangered Languages in 1999.

Griko is only partially intelligible with modern Greek, and unlike other Greek dialects,

it uses the Latin alphabet. Less than 20,000 people (mostly people over 60 years old) are

believed to be native speakers (Douri and De Santis, 2015; Horrocks, 2009), a number

which is quite likely an overestimation (Chatzikyriakidis, 2010).

5.1.2 Background

Naturally, textual resources of an endangered language are very hard to find, let alone

in the form of parallel text in another language. Any available data is usually the result of

1A discussion on the possible origins of Griko can be found in the paper by Manolessou (2005).
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documentation efforts by linguists, but rarely are all collected resources properly annotated,

as we discussed earlier (§3.4).

For example, resources on Griko are very scarce. Other than the small corpus (Lekakou

et al., 2013) of 330 spoken utterances, annotated with transcriptions, morphosyntactic tags,

and glossing in Italian, no other resources exist online, at least not in a form suitable for

traditional or computational linguistics research. The digital footprint of the language only

includes a few websites. One of the websites2 presents, among others, some narratives in

Griko, also translated in Italian.

Part-of-Speech Tagging is a very well studied problem; probabilistic models like Hidde

Markov Models and Conditional Random Fields were initially proposed (Lafferty et al.,

2001), with neural network approaches taking over in the last years (Huang et al., 2015;

Mikolov et al., 2010). Rarely are such methods applied on low-resource languages, due

mostly to the lack of annotated data. To our knowledge, no other previous work has been

tested on an actual endangered language.

The lack of high quality annotated data lead to approaches that attempt to use minimal

such resources. Garrette and Baldridge (2013) used about 200 annotated sentences along

with monolingual corpora improving the accuracy of an HMM-based model.

The use of parallel data for projecting POS tag information across languages was in-

troduced by Yarowsky and Ngai (2001), and further improved at a large scale by Das and

Petrov (2011) who used graph-based label propagation to expand the coverage of labelled

tokens. Täckström et al. (2013) used high-quality alignments to construct type and token

level dictionaries. Zhang et al. (2016) used only a few word translations in order to train

cross-lingual word embeddings, using them in an unsupervised setting. Fang and Cohn

(2017), on the other hand, used parallel dictionaries of 20k entries along with 20 annotated

sentences. They use the cross-lingual embeddings when training a tagger in a high resource

language and using it to tag monolingual corpora in the low-resource language, which are

2https://www.ciuricepedi.it
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TABLE 5.1

STATISTICS ON OUR COLLECTED GRIKO-ITALIAN RESOURCE

Stories Sentences
Griko Italian

Types Tokens Types Tokens

train 104 9.2k 13.5k 197.6k 10.6k 169.7k

test 10 885 2.4k 14.0k 2.3k 13.1k

all 114 10.1k 14.1k 211.6k 11.0k 182.7k

in turn used as distant supervision for the transferred neural model.

5.1.3 Resource

Resources in Griko are very scarce. The German scholar Gerhard Rohlfs pioneered

research on Griko and composed the first grammar of the language (Rohlfs, 1977), also

heavily influencing the subsequent grammar created by Karanastasis (1997). Although the

language has been further studied, almost no corpora are available for linguistics research.

The only Griko corpus available online3 (Lekakou et al., 2013) consists of about 20

minutes of speech in Griko, along with text translations into Italian. The corpus (henceforth

UoI corpus, as it is hosted at the University of Ioannina, Greece) consists of 330 mostly

elicited utterances by nine native speakers, annotated with transcriptions, morphosyntactic

tags, and glossing in Italian.

The most noted Griko scholar is Vito Domenico Palumbo (1854–1928) who made the

first serious attempts to create a literary Griko for the dialect of Calimera (the most pop-

ulous of the nine remaining communities where Griko is still spoken), based on modified

3http://griko.project.uoi.gr
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Italian orthography. Salvatore Tommasi and Salvatore Sicuro then edited and published

Palumbo’s manuscripts (Palumbo, 1998, 1999), a part of which we now make available for

computational and linguistic research.

After scraping from their website4 114 narratives that Palumbo had collected, along

with their Italian translations, we removed all HTML markup and normalized the orthog-

raphy: we substituted all curly quotes and apostrophes with simple ones, and substituted the

vowels with circumflex (â, ô, û) that were used in a few contractions with the more com-

mon accented vowel–apostrophe combination (à’, ò’ ù’). Using the Moses tools (Koehn

et al., 2007) with the Italian settings, we lowercased and tokenized our parallel dataset. For

completeness purposes, we also make available the untokenized and proper-case versions

of the corpus. The statistics of the resource are shown in Table 5.1.

We chose the first 10 narratives to be our test set, as they correspond to about 10% of

all sentences. The rest of the narratives are treated as a monolingual or parallel resource to

be leveraged. The test set was, in addition, hand-annotated by linguists: they corrected any

tokenization errors that were introduced by the automatic process (for example, regarding

the use of the apostrophe) and produced POS tags for every test sentence.

For every narrative, one of the linguists was presented with the produced output of

the tagger, and proceeded to correct it. In order to ensure the quality of the annotations,

a second linguist was then presented with the result of the work of the first linguist and

tasked with correcting it, until all disagreements were resolved. Although it significantly

slowed down the annotation process, we hope that this scheme ensured the quality of our

annotations.

5.1.4 Differences from Previous Griko Resources

Orthography Griko has never had a consistent orthography. The transcriptions in the

UoI corpus are based on orthographic conventions found in the few textual resources such

4https://www.ciuricepedi.it
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TABLE 5.2

LIST OF TAGS AND THEIR FREQUENCY IN THE ANNOTATED TEST

PART OF THE CORPUS

tag freq tag freq tag freq

V (verb) 24.4 Prt (particle) 2.2 Adv+Adv 0.4

PUNCT (punctuation) 18.3 P+D 1.8 X (other) 0.3

Pr (pronoun) 12.5 P (adposition) 1.6 V+Pr 0.3

N (noun) 11.6 Adj (adjective) 1.2 P+P 0.1

C (complementizer) 11.4 Num (numeral) 0.7 Pr+Pr 0.1

D (determiner) 7.2 N+Pr 0.6 C+Pr 0.1

Adv (adverb) 5.0 V+C 0.4

Adv+P, Adv+Pr, Adv+Prt, Adj+Pr, Prt+N, Prt+Pt,
< 0.1

D+N, Adv+Adv+Prt, Adv+Adv+Pr

as the local magazine Spı̀tta, that closely follow conventions adopted in Italian, aiming to

be familiar to the speakers of the language. This non-standardization of the orthography

leads to variations in the transcription of the same words.

In addition, we find that the word segmentation in our collected narratives follows

more the concept of a phonological word. As a result, words that are segmented in the UoI

corpus, in our narratives are often fused in a single token. The most common case that

also appears in both Italian and Greek, is the contraction of prepositions and subsequent

articles, such as the Italian alla or the Greekστη (sti) ‘to the.Fem’. Other examples of word

fusion that is not permitted in either Italian or Greek but appear in our narratives are nouns

and possessive pronouns, or adverbs with other adverbs or prepositions. A direct result of

this phenomenon is that annotating such tokens with single POS tags does not capture all
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of the necessary information.

Therefore, we chose to annotate such words with multiple POS-tags, effectively making

our tag dictionary the superset of the universal tagset. The final tags that appear in practice

in our corpus, and their respective frequencies, are listed in Table 5.2. Examples of fused

words and their glosses and associated tags are shown in Table 5.3.

Phonosyntactic Gemination One important difference is that the UoI corpus explicitly

annotates the phenomenon of raddoppiamento fonosintattico (phonosyntactic gemination,

or doubling of the initial consonant of the word in certain contexts) with a hyphen that sepa-

rates the two words. The transcriptions that we collected do not mark for this phenomenon.

The two words are often fused into a single token, and the doubling is not always present.

For example, both following types appear in our corpus: aderfòmmu and aderfòmu ‘my

brother’.

Furthermore, the UoI corpus also uses apostrophes to mark word boundaries within

which the raddoppiamento fonosintattico takes place. The use of apostrophes in our col-

lected narratives is more loose. They are used both to mark elision/apocope, stress, as well

as what it seems to be instances of raddoppiamento fonosintattico. This poses further issues

that are discussed in the next paragraph.

Code Switching There are three languages present in the region of Salento: the regional

variety of Italian, the Italo-Romance dialect of Salentino, and Griko.5 In modern day all

members of the Griko community are bilingual or trilingual. The generations before the

Second World War are considered to have been predominantly monolingual, and our nar-

ratives were collected at that time, around the beginning of the 20th century. However,

elements of Salentino do appear in the narratives, either as passing words, or as full sen-

tences, mostly in dialogue turns. Note that resources on Salentino are also extremely scarce

5See (Golovko and Panov, 2013) for a broader overview of the linguistic diversity in the Salento area.
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TABLE 5.3

EXAMPLES OF FUSED TYPES THAT RECEIVE MULTIPLE TAGS IN OUR

ANNOTATION

word: stı̀ mànassu cikau ènna vàleti

morphemes: s[e]-tı̀ màna-su ci-kau è-na vàle-ti

POS tag: P+D N+Pr Adv+Adv V+C V+Pr

gloss: to-the.Fem.SG mother-your.SG there-down have-COMP put-her

translation: ‘to the’ ‘your mother’ ‘down there’ ‘will’ ‘put her’

if not non-existent.

In order to deal with such examples, we decided to distinguish two scenarios. Tag

switching or intra-sentential switching instances were fully annotated. So, any Salentino

words or phrases that appear within a Griko sentence, are used for training and evaluation.

However, in the few cases where we encounter full sentences in Salentino, we opt to not

use them for training or evaluation. Such sentences are marked with distinctive tags in

the released corpus. Note that the UoI corpus does not include any non-Griko words or

phrases. An extensive study of the code-switching phenomena that occur in our corpus is

left for future work.

The following is an example of usage of a Salentino phrase (italicized) within a Griko

sentence, taken from story 4. Note that there exists a Griko word for ‘olive oil’, namely alài

or alàdi, as well words for ‘good’, namely kalòn or brao. However, the Salentino phrase

oju finu ‘fine oil’ is chosen:
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leo ti vastò oju finu

say-1SG COMP hold-1SG oil fine

V C V N Adj

‘I say that I have good olive oil’

Tokenization The UoI corpus has been carefully crafted to make sure that word bound-

aries are clearly denoted by spaces or hyphens. This unfortunately is not the case in our

collected narratives. The “loose” use of apostrophes complicates the work of the tokenizer.

We chose to tokenize all apostrophes as a single token, except for the cases of known eli-

sions that were present in previous corpora, such as the case of the conjunction c’ (ce)

‘and’. In addition, in the manually annotated test set, the linguists corrected any clear tok-

enization issues regarding the apostrophe.

Stress Marking In the UoI corpus, all words with two or more syllables have a diacritic

mark to indicate the location of stress. However, the resources that we collected are not

consistent in the use of such a diacritic. Its use is, besides, not standardized and not well

studied. Although in most cases such a diacritic is used, there are several instances of

polysyllabic words that have no stress marks.

Metadata We further provide as much information as possible for each narrative, in the

form of metadata. This includes the original url of the narrative, the title of the narrative

in Griko and its translation in Italian. Whenever they were reported (more than 95% of the

narratives) we include the location where the narrative was collected, and we anticipate

that further analysis could possibly reveal any regional variations. The vast majority of the

stories were naturally collected in Calimera, the largest village and the center of the Griko

community, but the resource also includes 10 stories collected in Martano, as well as stories

collected in Corigliano and Martignano, two smaller villages. We also include information

about the date that a story was collected, as well as the narrator of the story. There are
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a total of 37 different narrators, while the 10 stories from Martano were retrieved from

anonymous manuscripts. There are also 11 stories where the narrator is not known. Two

thirds of the stories were narrated by women, while 15% of the narrators were male. The

oldest manuscript dates back to 1883, while the most recent story was collected in 1998. We

hope that this additional information will further allow us to investigate morphosyntactic

phenomena in relation to their temporal or location context, but this is left as future work.

5.1.5 Part-of-Speech Tagging

First, we construct a mapping of the tags of the UoI corpus to the Universal Part-of-

Speech tagset (Petrov et al., 2012). This mapping is available as part of the complementary

material of our resource.

Starting with the tagged UoI corpus, we can use several methods to train a tagger,

which we use as baselines. We use the Stanford Log-linear POS-tagger (Toutanova et al.,

2003) (henceforth stanford), trained and tested with the default settings. We also test a

simple feature-based CRF tagger (henceforth crf), using the implementation of the nltk

toolkit (Bird and Loper, 2004). We extended the implementation to also use prefix and

suffix features of up to 4 characters, along with bigram and trigram features.6 We will refer

to this method as crf-mod.

Finally, we also investigate the use of a simple neural model. It uses a single bi-LSTM

layer to encode the input sentence, and it outputs tags after a fully connected layer applied

on the output of the recurrent encoder, as was described in Lample et al. (2016). The model

is implemented in DyNet (Neubig et al., 2017), with input embedding and hidden sizes of

128, and output (tag) embedding size of 32. It is trained with the Adam optimizer with an

initial learning rate of 0.0002 and for a maximum of 50 epochs. We select the best model

based on the performance on a small dev set of 40 sentences that we sampled randomly

from the training set.

6Our extensions will be submitted to the nltk codebase.
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TABLE 5.4

THE BEST PERFORMING MODEL IS THE ONE THAT COMBINES

SEMI-SUPERVISED LEARNING WITH CROSS-LINGUAL PROJECTED

TAGS (G&B+CLP), WITH ALL MODELS EXCEPT FOR CRF-MOD

BENEFITING FROM TRANSFER LEARNING THROUGH ALIGNMENTS

(+CLP)

Model

Data

no transduction transduction

UoI +clp +clp-all

stanford 62.90 67.10 67.11

crf 57.79 59.12 59.26

crf-mod 67.52 62.89 66.50

neural 45.27 53.24 58.50

UoI+mono +clp +clp-all

G&B 71.67 72.92 72.07

The tagging performance of all methods is shown in the first column of Table 5.4. We

find that the crf-mod model is the best baseline model. With such few data to train on,

both the crf and the neural model do not perform well. The bi- and tri-gram features that

the crf-mod model uses are very sparse, while the neural model has to deal with a very

large number of unknown words, as discussed below in the Analysis subsection.

In line with previous work, we find that semi-supervised training achieves better re-

sults in such low-resource settings. We exploit all the narratives that we collected by treat-

ing them as an additional monolingual corpus, used in the framework proposed by Gar-
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rette and Baldridge (2013). This approach (henceforth G&B) significantly improves upon

all baselines, achieving an accuracy of 71.67% in the test set, an improvement of more

than 4 percentage points.

Cross-lingual projected tags So far, our results have not used the Italian translations

of our resource. We can follow a procedure similar to the one of Täckström et al. (2013),

and extract word alignments from the Griko-Italian parallel data of the training set. We

use a pre-trained Italian tagger7 in order to tag the Italian side, and we map those tags to

the universal tagset. We can then project the tags of the Italian tokens to the aligned Griko

ones.8 For the cross-lingual projected tags, we found that in practice type-level predictions

work better, and thus we only report results with such models. The tags of the Italian side

of our resource, the Griko-Italian alignments, and the cross-lingual POS projections on

Griko types are available through the complementary material of our resource.

Augmenting the training set with the type-level projected tags (clp in Table 5.4), we

achieve improvements for all models, except crf-mod. The crf-mod method uses sparser

features and is more prone to errors due to the noise of the projections. The best perfor-

mance is achieved when we combine the projected tags, as type-level supervision, with the

G&B method that leverages monolingual data. Their combination achieves the best overall

performance, with an accuracy of 72.9%, a significant improvement over all other meth-

ods. As far as we know, this is the first time that cross-lingual projected tags are combined

with the method of Garrette and Baldridge (2013).

Transduction An additional approach that needs to be studied is the transductive ap-

proach. Since we have translations both for the training and the test sets, we can extract

word alignments and project POS tags also for the test set. The results of the transductive

7http://elearning.unistrapg.it/TreeTaggerWeb/TreeTagger.html

8The type-level projections are also provided with the Supplementary Material.
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approach using cross-lingual projected tags from all the data that we have are shown in the

third column of Table 5.4 (under clp-all).

We find that most methods benefit from the transductive approach, with the stanford

and crf methods exhibiting minimal improvements, while the neural method improves

significantly by about 5 percentage points as now there are even less out-of-vocabulary

words in the input. The crf-mod method improves over the UoI+clp version, but still

does not surpass the UoI only version. The only method that does not benefit from the

transduction setting is the G&B method, where the performance drops.

An additional transductive step that can be taken with the G&B method is to also add

the test set as part of the monolingual data that it uses. However, including the test set in

the monolingual data also resulted in a drop in performance. Using all monolingual data

along with the train-only cross-lingual types (clp) leads to accuracy around 69.9% (a drop

of 3 points from the best model), while using all monolingual data with clp-all leads to

a drop of another 1.4 points, to an accuracy of only 68.5%, which however is still better

than all other taggers. These accuracy drops are probably justifiable, since G&B was not

developed under a transductive assumption.

Analysis It is worth noting that our choice of using combined tags for fused/contracted

words means that our training sets, under all settings, do not contain all tags that we en-

counter in the test set. The tagset of the UoI corpus only had 14 tags (the 12 universal ones

plus P+D and C+Pr), indicative of its small size. As more narratives were annotated, the

size of the necessary tagset increased to the final 29. However, the additional tags that we

had to use are rather rare and do not severely affect the performance of our models. The

tags that are present in the UoI corpus in fact account for 96.7% of all target tags in the test

set, a value that could be considered as a skyline for all methods.

The explanation of our models’ performance lies in vocabulary coverage. The UoI cor-

pus only includes 46.6% of the test set tokens (8.9% of the test set types). The augmented
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training set with type-level projections increases those numbers to 48.7% of test tokens

and 14.8% of test types. Even though we restrict ourselves to high quality alignments,9 we

are able to project tags to 3870 types (3911 in the transductive scenario), an amount higher

than the amount of tags that a trained linguist can produce within four hours of annotation

(Garrette et al., 2013).

The G&B method deals with the vocabulary coverage issue by introducing a tag dictio-

nary expansion as a first step. They use a label propagation algorithm —Modified Adsorp-

tion (Talukdar and Crammer, 2009)— in order to spread labels between related items. In

our framework, the cross-lingual projected tags provide labels for a subset of the types, in a

way similar that an annotator would, partially alleviating the difficulty of the method’s first

step. This leads to less noise in the created tag dictionary, leading to increased accuracy.

Note that, out of the cross-lingual projected tags that correspond to types that appear in the

test set (about 10% of the test set types, in the no transduction setting), more than 65%

were correctly projected.

5.1.6 Active Learning

We further explored the use of active learning while tagging our test set. Our active

learning scheme is as follows: We first sorted the test set narratives according to length,

and starting only with the UoI corpus, we trained all taggers, producing annotations for

the first story of the test set. After the corrections on the annotation of each narrative were

completed, it was added as gold training data and the taggers were re-trained. For each

subsequent story, the linguists were provided with the output of the tagger that achieved

the highest accuracy in the previous iteration.

The main reason why we decided to follow this narrative-level active learning scheme

instead of collecting type-level annotations is that a noisy corpus is not very helpful for

9An alignment is used if either its probability is 1, or its probability is higher than 0.9 and the frequency
of both tokens is higher than 5. Relaxing those conditions leads to worse performance due to noise.
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TABLE 5.5

TAGGING ACCURACY FOR EACH TEST NARRATIVE WITH AND

WITHOUT ACTIVE LEARNING, OBTAINING SIGNIFICANT

IMPROVEMENTS (∆ COLUMN) BY ADDING EACH ANNOTATED

NARRATIVE TO THE TRAINING SET BEFORE RETRAINING AND

TAGGING THE NEXT NARRATIVE

Iter. Narrative
Best accuracy

∆
Accuracy

Best method
no AL with AL on story 9

1 story-1 77.89 — 0.0 78.13

G&B+clp
2 story-8 72.76 78.48 5.72 82.12

3 story-7 75.07 85.17 10.10 83.57

4 story-10 70.88 79.98 9.10 85.08

5 story-5 72.26 82.34 10.08 88.21
crf-mod+clp

6 story-4 74.03 86.30 12.27 90.32

7 story-3 72.48 89.67 17.19 92.13

crf-mod8 story-6 74.67 91.80 17.13 93.64

9 story-2 70.78 92.67 21.89 94.17

10 story-9 72.97 94.17 21.20 —

linguistics research; at least some part of the resource should have to be checked for qual-

ity and accuracy by hand. In addition, the translations of the narratives can provide such

information, as we already showed in the previous section. As we expand the coverage of

our POS annotations over the whole corpus, we will explore other methods for selecting

the types or sentences to be annotated through an active learning scheme.

The results, per narrative, with and without active learning, in the order that they were

96



370 396 423 473 526 609 715 840 975 1,105

60

70

80

90

100

Annotated Sentences

A
cc

ur
ac

y

crf-mod crf-mod+clp neural G&B

Figure 5.1: Accuracy on the (remaining) test set as we add annotated narratives to the 
training set. All methods benefit from the active learning approach, with G&B displaying 
better performance due to its use of monolingual data in the first iterations, but the crf-
mod approach achieving the best results in the last iterations, eventually not even needing 

the cross-lingual type-level projections (+clp).

annotated by our linguists (from the shortest narrative to the longest) are outlined in Ta-

ble 5.5. The results for each narrative in the active learning scenario (“with AL” column) 

report the best performing model that is trained on the concatenation of the UoI corpus and 

all the stories that were annotated in previous iterations. It is clear that the performance of 

the taggers improved continuously, as we added more training data. This is further outlined 

by each iteration’s tagging accuracy on story 9, the last and longest narrative of the test set. 

Of course, when a narrative is added in the training set, it is then excluded from the test 

set, and the performance is reported on the rest of the narratives.

All methods display notable improvement as we added the annotated narratives to the 

training set. The performance trends are outlined in Figure 5.1. Firstly, it is notable that as 

the training set increases, the advantage of the model of Garrette and Baldridge (2013) that 

leverages monolingual data diminishes, compared to our simpler crf-mod tagger, both

with or without cross-lingual projected tags. Before the first iteration, the accuracy gap

is 6.4 percentage points in favor of G&B. However, after adding around 4-5 narratives so

that there are around 500 training sentences, our crf-mod+clp method surpasses the G&B
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method and keeps improving. This is also outlined by the dashed line in Table 5.5. As we

add more training instances, the accuracy of the G&B method plateaus around 85% and does

not improve further.

Furthermore, after a couple more iterations, when more than 800 annotated sentences

are available for training, the crf-modmethod without cross-lingual projected tags achieves

higher accuracy than all others. We identify this point as the one where simple token-

level supervision is efficient enough to outperform semi-supervised or transfer-learning

approaches.

Finally, we observe that the accuracy of the neural bi-LSTM approach that only uses

the tagged corpus without further use of monolingual data, improves significantly as the

training set increases. With only 370 training sentences, the gap between the neural and

the best method is more than 14 percentage points. With 1,100 training sentences, the

accuracy gap diminishes to only 2 percentage points.

5.1.7 Cross-Validation

Our end goal is to annotate the whole corpus with POS tags, as well as richer annota-

tions. Towards that direction, our gold annotated test data could be used to train a higher

quality POS tagger, which we will use to annotate the rest of the corpus. In Section §5.1.6,

we found that including all but one annotated narratives for training, and testing on the last

one (story-9) we were able to obtain an accuracy of more than 94.17%. In order to get a

better estimation of how well a tagger trained on our gold data would work, we perform a

cross-validation experiment, using crf-mod, our best performing model.

For each cross-validation instance, one of the annotated narratives becomes the test set,

and the rest will be included in the training set. This allows us to obtain an average per-

formance over 10 instances. The average accuracy of the crf-mod model is about 91.9%,

with a standard deviation of about 2 percentage points (minimum is 88.5% on story 5, and

maximum is 94.9% on story 2).

98



The main obstacle to annotating the rest of the corpus with higher quality is out-of-

vocabulary words. The combined vocabulary of the UoI corpus and our 10 annotated nar-

ratives covers 16% of the vocabulary of the 104 unannotated sentences (but 85% of the

total tokens). As part of our future work, we plan to incorporate word-level active learning

in our annotation/correction scheme, similar to the approaches proposed by Fang and Cohn

(2017).

5.1.8 Conclusion

We presented a parallel corpus of 114 narratives on an endangered language, Griko,

with translations in Italian. For now, a test set of 10 narratives is hand-annotated with Part-

of-Speech tags, but in the future we will enrich the resource with annotations on the rest of

the corpus, as well as with richer syntactic and morphological annotations. We also plan

on contributing our corpus to the Universal Dependencies treebanks (Nivre et al., 2016) as

Griko is absent from the supported languages.

We extensively evaluated several POS tagging approaches, and found that the method

of Garrette and Baldridge (2013) can be combined with cross-lingual type-level projected

tags, outperforming all other methods, with an accuracy of 72.9%, when less than 500 sen-

tences are available. As data was added in the training set in an active learning scenario, a

simple feature-based CRF approach outperforms all other models, with accuracy improve-

ments of over 21 percentage points and over 94% accuracy on the last narrative. In fact,

when more than 800 sentences are available for training, cross-lingual tag projections hurt

performance.

The collected annotations from our test set could form the basis for training a high-

accuracy POS tagger for Griko, so that we can expand the POS annotations to the rest

of our corpus with only a small amount of noise. We aim to explore this direction in our

future work, along with other active learning methods that require less human intervention.

In addition, we plan to further enrich the annotations of our corpus with morphological tags
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similar to the UoI corpus, that will provide even more insight in Griko and its usage. When

the full annotations of the corpus are completed, we plan to use statistical methods to study

specific phenomena regarding the grammar and syntax of Griko.

Finally, and most importantly, we hope that the release of this corpus will spark further

interest for computational approaches applied on endangered languages documentation and

on under-represented languages in general.
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CHAPTER 6

CONCLUSION

The pace at which endangered languages disappear is extremely fast: about one lan-

guage every week. In contrast, the process of documenting a language is very slow, requir-

ing trained linguists to devote a lot of time and effort in data collection and, especially,

annotation.

In this document, we proposed to assist language documentation efforts by evaluat-

ing previous machine learning techniques and by developing new ones, that address the

various sub-tasks involved in a documentation pipeline. All of these techniques leverage

translations in a high-resource language, that provide a signal useful for those tasks.

We first presented novel contributions that address the problem of aligning speech to

its translation (Anastasopoulos et al., 2016; Duong et al., 2016). We also showed that such

alignments can be useful for other tasks of language documentation, both earlier in the

pipeline, when collecting transcriptions (Anastasopoulos and Chiang, 2017), as well as

further down in the pipeline, when annotating already collected data with translation key-

words (Anastasopoulos et al., 2017).

Then, we focused on the tasks of transcribing and translating speech of an endangered

or low-resource language. We presented novel multi-source and tied multitask neural ap-

proaches, that are useful both when translations are available at test time (Anastasopoulos

and Chiang, 2018a) and when translations are another target to be produced (Anastasopou-

los and Chiang, 2018b). We also showed that translations can be used as privileged in-

formation during training, leading to better performance when transcribing speech, even

without access to translations at test time.
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Finally, we collected a parallel textual resource of 114 narratives in an endangered lan-

guage, Griko, with translations in Italian (Anastasopoulos et al., 2018). In collaboration

with linguists, we produced Part-of-Speech annotations for a test set, correcting the auto-

matic annotations produced by a tagger trained in an active learning schema. We showed

that cross-lingual information can be combined with semi-supervised approaches to pro-

duce more accurate POS-tagging in an endangered language, while the active learning

scenario can further significantly improve the performance.

The combination of our contributions will support the overall goal: to aid the process

of documenting an endangered language with computational methods that take advantage

of translations.

6.1 Future Directions

Here, we list three directions for future work in computational linguistics, which have

the potential to positively affect language documentation.

Tools for Linguists: Throughout this dissertation we showcased new machine learning

methods that could be applied in each step of the documentation process. A natural next

step is actually building a user-friendly interface that will allow linguists to utilize these

methods. Such an interface should make the integration seamless, possibly only presenting

the user with suggestions for boundaries, transcriptions, translation, or other annotation.

Ideally, an active learning scheme should also be employed, so that the back-end models

get updated and improve, as the linguist produces more and more annotations. Another

option is equipping the tool with back-end multilingual models, which could produce can-

didate annotations even for unseen languages, an especially common case in language

documentation.

As many researchers have pointed out, e.g. Thieberger (2017), such a tool would be un-

deniably useful to the field and documentary linguistics community, as it has the potential
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to significantly accelerate the pace of language documentation. It is important to note that

prototypes of such tools have already been developed (Bettinson and Bird, 2017; Neubig

et al., 2018).

Low-Resource Speech Transcription and Translation: Our work has pushed the bound-

aries of speech transcription and translation when applied on extremely low-resource set-

tings. However, these problems are far from solved. Following our contributions (Anasta-

sopoulos and Chiang, 2018a,b; Anastasopoulos et al., 2016), the field has further advanced.

Bansal et al. (2018b) shows that pretraining models similar to ours on a high-resource lan-

guage leads to better performance. Di Gangi et al. (2018) showed that fine-tuning on clean

data has the same positive effect, while Jia et al. (2018) demonstrated that monolingual

data can be leveraged, by generating synthetic speech with a text-to-speech system. The

interest of the community, as well as the need for further progress, is further reinforced

by the organization of shared tasks like the IWSLT shared task on speech translation (Jan

et al., 2018). Nevertheless, a lot of work is still needed in order to obtain performance

comparable to high-resource settings

Automatic Glossing and Morphological Analysis: The latter stages of documentation

consist of creating word- and morpheme-level glosses with annotations. In fact, automatic

glossing is an under-studied problem, although it potentially is an easier task than trans-

lation: there is an one-to-one correspondence between every source word and its target.

Most of advances on automatic glossing focuses on glossing for specific phenomena, us-

ing a minimal amount of previously glossed data (e.g. the work of Xia and Lewis (2009);

Zamaraeva et al. (2017)). A non-trivial hurdle in tackling automatic glossing is the lack of

big collections of interlinear gloss text in many languages, but the community has started

to address it with project such as the Online Database of Interlinear Text (ODIN) (Lewis,

2006).
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Meanwhile, automated study of morphology is another emerging field that has huge po-

tential for application within the language documentation process. The UniMorph project

(Kirov et al., 2018) and the CoNLL shared tasks (Cotterell et al., 2018) provide a continu-

ously updated collection of data, even in low-resource languages, which could be leveraged

to train multilingual models.
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Emmanuel Dupoux, Núria Sebastián-Gallés, Eduardo Navarrete, and Sharon Peperkamp.
2008. Persistent stress ‘deafness’: The case of french learners of spanish. Cognition,
106(2):682–706.

Anuvabh Dutt, Denis Pellerin, and Georges Quénot. 2017. Coupled ensembles of neural
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Niehues Jan, Roldano Cattoni, Stüker Sebastian, Mauro Cettolo, Marco Turchi, and Mar-
cello Federico. 2018. The iwslt 2018 evaluation campaign. In International Workshop
on Spoken Language Translation, pages 2–6.

Aren Jansen, Kenneth Church, and Hynek Hermansky. 2010. Towards spoken term dis-
covery at scale with zero resources. In Proc. INTERSPEECH.

Aren Jansen, Emmanuel Dupoux, Sharon Goldwater, Mark Johnson, Sanjeev Khudanpur,
Kenneth Church, Naomi Feldman, Hynek Hermansky, Florian Metze, Richard Rose,
et al. 2013. A summary of the 2012 jhu clsp workshop on zero resource speech technolo-
gies and models of early language acquisition. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 8111–8115. IEEE.

Frederick Jelinek. 1976. Continuous speech recognition by statistical methods. Proceed-
ings of the IEEE, 64(4):532–556.

Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J Weiss, Yuan Cao, Chung-Cheng Chiu,
Naveen Ari, Stella Laurenzo, and Yonghui Wu. 2018. Leveraging weakly supervised
data to improve end-to-end speech-to-text translation. arXiv:1811.02050.

Robbie Jimerson, Kruthika Simha, Raymond Ptucha, and Emily Prudhommeaux. 2018.
Improving ASR Output for Endangered Language Documentation. In Proc. The 6th Intl.
Workshop on Spoken Language Technologies for Under-Resourced Languages, pages
182–186.

Robert Jimerson and Emily Prud’hommeaux. 2018. Asr for documenting acutely under-
resourced indigenous languages. In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC-2018).

112

https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/ListenSemester1_2010_11/jansen_std.pdf
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/ListenSemester1_2010_11/jansen_std.pdf
https://doi.org/10.21437/SLTU.2018-38


Preethi Jyothi and Mark Hasegawa-Johnson. 2015. Transcribing continuous speech using
mismatched crowdsourcing. In Proc. Interspeech.

Herman Kamper, Aren Jansen, and Sharon Goldwater. 2015. Fully unsupervised small-
vocabulary speech recognition using a segmental bayesian model. In Sixteenth Annual
Conference of the International Speech Communication Association.

Herman Kamper, Aren Jansen, and Sharon Goldwater. 2016. Unsupervised word seg-
mentation and lexicon discovery using acoustic word embeddings. IEEE Trans. Audio,
Speech, and Language Processing.

Katharina Kann, Manuel Mager, Ivan Meza-Ruiz, and Hinrich Schütze. 2018. Fortifica-
tion of neural morphological segmentation models for polysynthetic minimal-resource
languages. arXiv:1804.06024.

Takatomo Kano, Sakriani Sakti, and Satoshi Nakamura. 2018. Structured-based curriculum
learning for end-to-end english-japanese speech translation. arXiv:1802.06003.

Anastasios Karanastasis. 1997. Grammatiki ton ellinikon idiomaton tis Kato Italias [Gram-
mar of the Greek dialects of south Italy]. Akadimia Athinon.

Kazuya Kawakami, Chris Dyer, and Phil Blunsom. 2018. Unsupervised word discovery
with segmental neural language models. arXiv:1811.09353.

Santosh Kesiraju, Raghavendra Pappagari, Lucas Ondel, Lukáš Burget, Najim Dehak, San-
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur.
2010. Recurrent neural network based language model. In Proc. Interspeech.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda. 2009. Bayesian unsupervised
word segmentation with nested pitman-yor language modeling. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, pages 100–108, Suntec,
Singapore. Association for Computational Linguistics.

Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. 2016. Infor-
mation bottleneck learning using privileged information for visual recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1496–1505.

Armando Muscariello, Guillaume Gravier, and Frédéric Bimbot. 2009. Audio keyword
extraction by unsupervised word discovery. In Proc. INTERSPEECH.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn,
et al. 2017. DyNet: The dynamic neural network toolkit. arXiv:1701.03980.

Graham Neubig, Patrick Littell, Chian-Yu Chen, Jean Lee, Zirui Li, Yu-Hsiang Lin,
and Yuyan Zhang. 2018. Towards a general-purpose linguistic annotation backend.
arXiv:1812.05272.

Graham Neubig, Taro Watanabe, Shinsuke Mori, and Tatsuya Kawahara. 2012. Machine
translation without words through substring alignment. In Proc. ACL.

Graham Neubig, Taro Watanabe, Eiichiro Sumita, Shinsuke Mori, and Tatsuya Kawahara.
2011. An unsupervised model for joint phrase alignment and extraction. In Proc. NAACL
HLT, pages 632–641.

Hermann Ney. 1999. Speech translation: Coupling of recognition and translation. In Proc.
ICASSP, volume 1.

Toan Q. Nguyen and David Chiang. 2017. Transfer learning across low-resource related
languages for neural machine translation. In Proc. IJCNLP.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D Manning, Ryan T McDonald, Slav Petrov, Sampo Pyysalo, Natalia Sil-
veira, et al. 2016. Universal dependencies v1: A multilingual treebank collection. In
Proc. LREC.
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