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Abstract
Many of the world’s languages are falling out of use without a written record and

minimal linguistic documentation. Language documentation is a slow process and
there are an insufficient number of linguists working to ensure the world’s languages
are documented before they die out. This thesis addresses automatic understanding
of unwritten languages in order to perform tasks such as phonemic transcription
and bilingual lexicon induction. The automation of such tasks promises to improve
the leverage of field linguists and ultimately speed up the language documentation
process.

Modelling endangered languages is challenging due to the nature of the available
data, which is typically not written text but limited quantities of recorded speech.
Manually annotated information in the form of lexicons and grammars is typically
also limited. Since the languages are spoken, the most efficient way of sourcing data
is to collect speech in the language. Most speakers of endangered languages are bilin-
gual or multilingual, so acquiring spoken translations works to the strength of the
speakers. Key approaches described in this thesis make use of bilingual data, in par-
ticular translated speech, which consists of segments of endangered language speech
paired with translations in a larger language. Such data is important for relating
the source language speech with a larger language. Additionally, the application of
monolingual phoneme transcription is also explored, since it has direct applicability
in more traditional phonemic transcription workflows. The overarching question is
this: what can be automatically learnt about the languages with the data we have
available, and how can this help automate language documentation?
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We first consider translation modelling of accurate phoneme transcriptions. This
assumption allows us to investigate the feasibility of phoneme–word translation and
the effectiveness of inferring bilingual lexical items from such data in isolation from
confounding acoustic factors. A second investigation explores how bilingual lexicons
can be used to improve language models, which are crucial components of speech
recognition and machine translation systems. In a third set of experiments we re-
move the assumption of accurate transcriptions and investigate operating in the face
of acoustic uncertainty. Experiments in this space demonstrate that translated speech
can improve automatic phoneme transcription even without a prior translation model.
Finally, we make a step towards further generalisability, exploring acoustic modelling
in resource-scarce environments without a lexicon or language model. In particular,
we assess the use of automatic phoneme and tone transcription on Yongning Na, a
threatened tonal language spoken in south-west China. Beyond quantitative investi-
gation, we report on the use of this method in linguistic documentation of Na. Its
effectiveness has led to its incorporation into the language documentation workflow
for Na.
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Chapter 1

Introduction

Rapid extinction of the world’s underdocumented, unwritten languages motivates
the incorporation of automation into language documentation work. Two central
procedures in the language documentation process are phonemic transcription and the
construction of bilingual lexicons. This thesis addresses automatic understanding of
endangered language speech, which has the potential to provide linguists with greater
leverage in performing these tasks. Beyond its promise in helping to understand and
preserve the world’s linguistic heritage, the advancement of computational methods in
this space has the potential to improve language technology for low-resource languages
that are not threatened or endangered, but instead have many speakers who would
stand to benefit from such technology.

This chapter discusses the phenomenon of language extinction and language shift,
what people are doing about it, and how technology is changing the documentation
process and the nature of the data being collected. The aim and scope of the thesis
is then presented, along with a summary of contributions.

1
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1.1 Motivation

1.1.1 Language Extinction and Documentation

The majority of the world’s languages are losing speakers and it is predicted that
between 50 and 90 per cent of these languages will become extinct in the next 100
years (Krauss 1992; Miyaoka et al. 2007; Austin and Sallabank 2011). About half of
the world’s approximately 7,000 languages have no orthography and thus no written
record (Lewis et al. 2015). Unless these languages are documented before they fall out
of use, much linguistic, cultural and anthropological information will be lost forever.

Language extinction motivates field linguists to engage in the documentation of
languages so that a record of the language may be kept for posterity. Crowley (2007)
argues that since the field of linguistics seeks to answer questions about the nature of
human languages in order to establish what phenomena can and cannot occur, docu-
mentation of these languages is very important. This cannot be done by investigating
only large languages, as that would be neglecting consideration of the rich linguistic
diversity of human language. However, with such limited documentation of most of
the world’s smaller languages, it is often impossible to conclusively answer important
questions about how languages work in general.

Moving beyond the study of linguistics, language mediates knowledge about groups
of humans, their history and the importance of certain concepts in different cultures.
Language is the means with which almost all knowledge is captured and shared.
Therefore, without documentation, much knowledge held by the speakers of an un-
written language dies when they do. In many cases however, languages do not die
but undergo a process of language shift. In language shift, intergenerational transfer
of the language does occur, but information about entire genres (such as traditional
rituals or knowledge of the land) is not passed on to younger speakers. In such cases,
much knowledge dies even when the language continues to be spoken.

Language extinction is not just something that may occur, it is happening right
now. Every day, speakers of undocumented languages are being lost. In the 20th
century many languages died out. Ethnologue reports 367 languages that have be-
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come extinct since 1950 at an average rate of 6 languages per year (Lewis et al. 2015).
Because of the motivation for people—particularly the young—to shift to larger lan-
guages, it is reasonable to expect that this rate of extinction will increase.

There may be little that can be done to prevent many languages from falling out
of use. People switch to larger languages that are more advantageous for them for
employment and some speakers consider it progress to do so (Harrison 2008). In
some places such as in Tanzania, it is argued that a shift to a unified language is a
step away from tribalism which is seen as a threat to development (Ladefoged 1992).
While the value of keeping a language alive is not universally accepted, this is not the
main goal of language documentation. With adequate linguistic documentation there
is the potential to save much of this valuable information, even when the language is
no longer spoken. Incorporating automation into the documentation process has the
potential to reduce the time it takes to achieve such documentation of a language.

1.1.2 The Changing Nature of Language Documentation

Traditionally, language documentation involves the linguist travelling to remote
communities for one-on-one elicitation of speech data from speakers of threatened
languages, followed by manual analysis to produce text collections, lexicons and gram-
mars of their languages. However, this process is slow and there are a limited number
of linguists engaged in such work. Given the estimated rate of language extinction,
it’s clear that the current rate of collection is insufficient and that a radical speedup
is needed in order to adequately document most of the world’s languages before they
die out.

An important part of language documentation is the acquisition of bilingual data
relating the threatened or endangered language to a larger regional language or inter-
national language. Such data is rich in information, even in small quantities. (Note
that throughout this thesis we use the terms “low-resource,” “threatened,” “endan-
gered,” “larger,” and “high-resource” languages. How best to define these terms is
open to debate, but for the scenario relevant to this thesis we generally use “low-
resource” to refer to those languages categorized as between 6b and 10 on the EGIDS
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scale (Lewis and Simons 2010), while languages between 0 and 6a are considered
“larger.” Category 0 languages are “high” resource.)

The proliferation of cheap mobile phones is creating new opportunities for docu-
menting languages in a manner more efficient than traditional approaches (Hughes
et al. 2010; Reiman 2010; De Vries et al. 2014; Bird et al. 2014b; Bettinson and Bird
2016). Aikuma1 and an extended version, Lig-Aikuma2 (Blachon et al. 2016) used
in the Breaking the Unwritten Language Barrier (BULB) project (Adda et al. 2016)
(discussed in Chapter 2), are two such apps that aim to provide field linguists with
greater leverage in eliciting speech data through the use of a crowdsourcing model
whereby smartphones can be distributed amongst speakers of a language for elicita-
tion of source speech with minimal supervision. Since most speakers of endangered
languages are bilingual, Aikuma aims to elicit bilingual speech aligned in segments
between the endangered language and the larger language, the latter of the two being
a language that can be more reliably transcribed. Zahwa3 is a similar application
that supports spoken translation, originally intended for describing food preparation
with accompanying pictures, but appropriate for documenting and translating any
procedural knowledge (Bettinson and Bird 2016).

Though we will discuss the current breadth of such apps in the next chapter, with
more and more people using electronics as a part of their daily routine, it’s likely
that further methods of performing language documentation will appear. There are
three aspects of these methods that will likely continue to be popularised: (a) less
involvement from linguists per recording, (b) less manual linguistic annotation per
recording, and (c) increased leveraging of bilingual speech. (a) and (b) are a natural
result of the attempt to collect more data from more speakers without a proportional
increase in the numbers of trained linguists. Less involvement from the linguist also
has the advantage that it makes it easier to collect language as it is spoken in natural,
often colloquial, contexts. (c) capitalizes on the very cause of language extinction:
the movement of people away from their native language towards larger languages,

1aikuma.org
2lig-aikuma.imag.fr
3zahwa.aikuma.org

aikuma.org
lig-aikuma.imag.fr
zahwa.aikuma.org
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which means a lot of speakers are bilingual. Working to the strength of bilingual
speakers is important as it is easier to elicit spoken translations than transcriptions
when a language has no standard orthography. It is also important to relate the source
speech to a larger language through some form of bilingual mapping. However, in
the context of language shift, younger bilinguals may not always be able to easily
translate content from older monolinguals due to a significant loss of vocabulary in
the process of intergenerational transfer. This is an additional challenge and adds to
the pressure for translations to be made now while the original speakers are available
for consultation.

But can’t we just wait for the rapid adoption of mobile phones and computers
to perform the language documentation for us? Since the movement towards such
technology usually occurs with a switch to communication in a larger language, it is
likely that little information from the endangered language will ultimately be captured
unless there is an explicit push to do so.

1.1.3 A Different Kind of Data

The data resulting from this changing face of language documentation has specific
features that distinguish it from the data used in most natural language processing
(NLP) research. The data primarily addressed in this thesis is small amounts of speech
data in an endangered language with translations into a larger language. Effective
processing of this data to model the language and speed up the work of the linguist
is a challenge. We now describe the key distinguishing properties of such data.

Limited Quantity Though smartphone-based rapid language documentation of-
fers promise that such data can be acquired more quickly than it has been previously,
the amount of such data available will always be much less than what is available
for natural language processing of larger languages. Expectations of the amount of
data available should thus be kept conservative for the purposes of our investigation
so that any conclusions drawn are generalizable to as many low-resource language
documentation contexts as possible.
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For example:

• In Tembé, Pará State, Brazil, Bird et al. (2014a) collect 2 hours of source audio
with 35 minutes of this audio orally translated over a 4 day visit.

• Nhengatu, Amazonas State, Brazil, the same authors collect 2.5 hours of source
audio and orally translate 1 hour over a 3 day visit.

• In Brazzaville, Congo, Blachon et al. (2016) collected 48 hours of Mboshi speech
using Lig-Aikuma in two 1-month field trips. Of this, 5.5 hours were spoken
translations elicited from French text (Godard et al. 2017).

If we assume the rule of thumb that 1 hour of audio equals around 1,000 sentences
(Cieri and Liberman 2006; Bird and Chiang 2012; Bird et al. 2014b), then in these
specific cases at most a few thousand sentences of bilingual audio are collected.

Bilingual It is typical in traditional language documentation to create glosses and
bilingual lexicons. Since speakers of endangered languages are frequently bilingual
in order to communicate with a wider regional community, the data collected har-
nesses this extra source of information. The investigations of this thesis concern data
that was originally produced in the endangered source language, with some subset
translated into a larger regional language, such as Brazilian Portuguese in Brazil.

Audio Most endangered languages do not have a standardized orthography, making
written documentation in the language difficult and encouraging the emphasis of
documentation to be on speech. Regardless, collection of spoken recordings has three
main advantages:

1. It is faster than collecting text. It is also a precondition for transcription.
Phonemic transcription is a slow process, taking a trained linguist roughly 1
hour to transcribe 1 minute of speech (Do et al. 2014a), or 50 to 100 hours per
recorded hour (Cavar et al. 2016). Focusing only on capturing audio and its
subsequent processing avoids the slow process of manual transcription.
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2. It captures significant amounts of information about intonation, articulation
and accents, that can be lost in transcription.

3. It captures language as it naturally occurs: in fluent conversation, which devi-
ates from written speech in multiple dimensions (Redeker 1984). It is therefore
data that is more representative of the language.

However, the use of spoken recordings means the data is subject to the challenges
of automatic speech recognition. The fluent and conversational nature of speech
makes it difficult to transcribe on account of its variable features such as prosody,
coarticulation and disfluencies. Moreover, when automatically transcribing phonemes
without the aid of a language model, phoneme error rates are high.

Though the data consists of spoken recordings, we assume in much of the thesis
that the target side is a larger language that can be efficiently transcribed. While the
issue of transcription still remains on the target side, and may be complicated by the
bilingual speakers speaking a non-standard or accented form of the target language
(which may require an additional respeaking step), the prospects of efficient, accurate
and scalable manual or automatic transcription with a standard orthography in this
target language are far greater than in the source language. Such transcription may
be automatic, since breakthroughs in automatic speech recognition have made state-
of-the-art systems effective for large languages. In addition, manual transcription
(perhaps via crowdsourcing) is also more feasible for large languages, due to the large
number of speakers.

Limited prior linguistic information The extensive body of linguistic research
on English can inform the approaches used in natural language processing systems for
English. Methods for automation in endangered language documentation has much
less information to draw from. That said, we can assume some linguistic information.
It is reasonable to expect a linguist can determine the phoneme inventory of a language
in a comparatively short amount of time. It might also be reasonable to assume
elicited spoken recordings of common words can be acquired. The small amount of
prior information means that it must be used as effectively as possible.
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1.1.4 Why Pursue Automatic Understanding of Unwritten
Languages?

There are a number of reasons motivating development of speech recognition and
translation tools for endangered languages. Firstly, the availability of such technol-
ogy may help to speed up language documentation by providing linguists with greater
leverage in data collection. If linguists are bogged down less in the time-consuming
task of phonemic transcription, that effort can be spent on expanding the scope of
their research and their reach to other languages. Additionally, the linguist may be
able to spend more time on linguistically meaningful dialogue with the consultants
when the burden of manual data entry is reduced (as we see in §6.5). Although collec-
tion of primary speech data is a key issue in language documentation, this secondary
processing is a bottleneck in the standard documentary linguistics workflow. Linguists
accumulate considerable amounts of speech, but do not transcribe and translate it
all. There is a risk that untranscribed recordings could end up as “data graveyards”
(Himmelmann 2006:4,12-13), and as a result, there is a need for “devising better ways
for linguists to do their work” (Thieberger 2016:92). “For example, out of the 137
unrestricted collections in the Archive of the Indigenous Languages of Latin America,
about half (49%) contain no transcriptions at all, and only 7% are fully transcribed”
(Anastasopoulos et al. 2017). In addition to speeding up this process, the quality and
experience of the linguist’s work may improve since the automatic methods may high-
light phenomena the linguist might otherwise overlook, such as interesting phonetic
and phonemic facts (see Chapter 6) and possible bilingual lexical entries.

A second motivation is that making language technology available for threatened
languages may help in revitalization of these languages. In cases where the commu-
nity is interested in revitalization, the existence of such language technology may
make the languages be perceived as more relevant by the children of native speakers,
who might otherwise not carry on the tradition of the language. The benefits of this
are not purely sentimental: slowing the rate of language extinction and possibly even
revitalizing languages affords communities more time for the languages to be docu-
mented, meaning fewer languages will fall out of use without being documented. In
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this sense, documentation and revitalization are symbiotic. Both the data collected
and the the technology developed for language documentation may facilitate revital-
ization, furthering the coverage of the documentation. The availability of machine
translation technology for low-resource languages also has the potential to make them
more relevant by translating educational resources available only in larger languages
into the smaller languages. However this objective raises its own problems for NLP.
Firstly, there is a domain mismatch between translated heritage materials from the
source language used to train the models and the genre of what is to be translated
from the larger language, which may be information such as educational material
or Wikipedia content. Secondly, the lack of a large amount of source language text
means language model quality in the source language is likely to be poor, limiting
machine translation (MT) performance.

A third motivation is that of incident-response, the focus of the DARPA LORELEI
project.4 There is value in having language technology available “in the context of
a rapidly emerging and quickly evolving situation like a natural disaster or disease
outbreak” (Strassel and Tracey 2016). Humanitarian assistance and disaster relief
can benefit from technology such as translation tools to help communication during a
time of crisis, for example in the 2010 Haiti earthquake, which highlighted this need
(Besacier et al. 2014).

Finally, constraints breed creativity. Limits on the available data force innova-
tion in modelling approaches, and such approaches are useful beyond the arena of
endangered unwritten languages. There exist many low-resource languages that are
not endangered. These languages are characterized by having many speakers (per-
haps millions), robust intergenerational transfer, an established main dialect, and
some web presence, but still lacking the data available for state-of-the-art language
technology. Research on language technology for endangered languages can inform
approaches for such low-resource languages, which has the potential to positively
impact millions of speakers. Moreover, there are data sparsity issues even for large
languages when we consider issues arising from morphology and constraints on the

4www.darpa.mil/program/low-resource-languages-for-emergent-incidents

www.darpa.mil/program/low-resource-languages-for-emergent-incidents
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domain. As a result, advances in this space may find applicability elsewhere in NLP
of high-resource languages.

1.2 Aim and Scope

The aim of this thesis is to progress towards effective semi-automated language
documentation by modelling and making best use of available data, such as monolin-
gual and bilingual speech. Automatic understanding of languages through transcrip-
tion and translation modelling may efficiently guide future documentation of those
languages and engage more linguists by helping to speed up very slow work such as
manual phonemic transcription. Furthermore, investigating how to deal with very
low-resource languages will help when addressing languages for which there are many
speakers, but nevertheless have limited resources, by prompting focus on improved
modelling of language.

The scope of this PhD is limited to the tasks of bilingual lexicon induction, lan-
guage modelling, and phonemic transcription. In Chapters 3 and 5, the input data
is speech or a phonemic representation, along with an orthographic translation in
another language. Orthographic translations are assumed since the target language
is typically a large language for which manual or automatic transcription is efficient.
(It is often the case that the variety of the larger language spoken by the bilingual
speaker is far from standard, which may motivate a further respeaking of the transla-
tion as supported by Lig-Aikuma (Blachon et al. 2016)). In Chapter 4 we consider
the use of bilingual lexicons and large amounts of text data in another language in
order to enable transfer learning when we have limited transcribed data with which
to train language models. Finally, in Chapter 6 limited monolingual source speech
and phonemic transcriptions are used to train acoustic models for phoneme and tone
prediction.

One consistent assumption about available data that holds across all the research
described in this thesis is the availability of a phonemic inventory (and where relevant
to the language, a tone inventory) identified by a linguist. This is a reasonable re-
quirement, as eliciting a phonemic inventory scales well and is ‘constant’ with respect
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to the amount of speech gathered, unlike transcription.

1.2.1 Research Questions

The key aim is to determine what can be automatically learnt about the lan-
guages with the data we have available, and how this can help automate language
documentation. This goal is decomposed into a collection of research questions:

A. Phoneme translation modelling 1. How accurate is translation modelling of
unsegmented phonemic transcriptions? 2. How do different translation models
for this task compare in bilingual lexicon induction?

B. Speech translation modelling 1. How can translation models be learnt from
speech, and 2. can these be used to improve speech recognition and automatic
phonemic transcription?

C. Cross-lingual language modelling 1. How can other bilingual resources, such
as lexicons, be used to transfer information from a high-resource language to a
low-resource language? 2. Can such approaches be used to improve language
modelling, which is useful to speech recognition and machine translation?

D. Usefulness for the linguist and tonal languages Many languages we would
like to automatically transcribe are tonal, and tonal transcription is an impor-
tant process in the linguist’s workflow. 1. How well can we predict tones for
richly tonal languages? 2. How does phoneme and tonal prediction fit into a
linguist’s actual linguistic workflow?

E. Scaling For the methods used in answering the above questions, we also want
to answer the question of how well performance scales with training data size.
We’re particularly interested in whether such approaches can be usefully applied
to small amounts of data to give linguists and computer scientists a sense of
how much data is required for methods to be effective.
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1.3 Overview of the Contributions

The contributions of this thesis take a step towards answering the above questions.
The first contribution of this thesis is an investigation into translation modelling of
unsegmented sequences of phonemes for the purpose of bilingual lexicon induction
(Chapter 3), addressing questions A1 and A2. This includes end-to-end machine
translation experiments as well as a bilingual lexicon induction experiment focusing
on the quality of the inferred lexemes. Traditionally, translation modelling has been
trained on ample data segmented at the word-level. This contribution involves an
evaluation of various methods on small amounts of unsegmented phonemic data,
with results indicating that translation modelling can be effective even when training
data amounts to as little as 1,000 bilingual sentences of unsegmented phonemic text:
an amount feasible for accurate manual transcription. Work here highlights that
bilingual lexicon induction, measured by assessing which entries are corroborated by
established lexicons, is not a good intrinsic measure of the method’s performance.
Moreover, linguists tend to create these in the process of phonemic transcription,
limiting the applicability of such bilingual lexicon induction techniques.

In light of the availability of lexicons for many languages for which speech recog-
nition and machine translation systems do not exist, the next contribution explores
the use of such lexicons for the purposes of transfer learning (Chapter 4), addressing
questions C1 and C2. This work demonstrates that the use of bilingual lexicons can
improve language models, a key component in speech recognition and machine transla-
tion systems, by using them to tap into cross-lingual distributional information. This
is demonstrated by initializing neural network language models with cross-lingual
word embeddings.

The first two contributions explore scenarios where transcribed speech in a source
language is available. The third contribution (Chapter 5) instead explores how trans-
lated speech, which is easier to collect than phonemic transcriptions, can be used
to improve automatic phoneme transcription. This addresses questions B1 and B2,
while giving deeper insight into A1. First, an approach for resolving acoustic mod-
elling errors is explored that relies on the concept of phoneme equivalence classes. In
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light of this model’s flaws, we proceed to investigate a model that jointly segments
phoneme lattices and aligns them with an orthographic translation while learning a
lexicon and translation model. Results demonstrate that translations of speech can
help resolve errors in phoneme recognition even when there is no prior translation
model or bilingual lexicon relating the languages at all. A framework is laid out
which can be extended on for further modular improvement.

The contributions described thus far assume either accurate phonemic transcrip-
tions, or the availability of an acoustic model. The final contribution (Chapter 6)
addresses the requirement of an acoustic model for automatic phoneme transcription
of Yongning Na, a minority language of Yunnan, China, for which there is immedi-
ate practical benefit in language documentation work. Addressing questions D1 and
D2, we conduct an investigation into acoustic modelling as a way to make automatic
phoneme transcription feasible for languages with extremely low amounts of training
data. Importantly, we address phonemic transcription of tones, since many languages
are tonal and transcription of tones is important in the language documentation. A
key takehome is that useful phoneme recognition accuracies can be obtained when
trained on small quantities of transcribed data and that such automated transcripts
can serve as a useful “canvas,” partially automating the work of the linguist. This
is encouraging, as we can tell linguists that as little as 30 minutes of transcription
work may be adequate to build a training set which can then be used to aid in sub-
sequent transcription. Such automated transcription has now been incorporated into
the linguist’s workflow for documentation of Na.

The progression of the chapters can be viewed as progressively removing simpli-
fying assumptions about the data while addressing pieces in an automatic phonemic
transcription and lexicon induction pipeline: language models, translation models,
and acoustic models. In Chapter 3, we assume large quantities of data and error-free
phonemic transcriptions in order to assess translation modelling. We then remove the
assumption of large quantities of data in order to assess bilingual lexicon induction
from limited phonemic transcriptions without word segmentation. Chapter 4 also
assumes the availability of correct transcriptions, and bilingual lexicons are used for
the purposes of training language models. In Chapter 5 we remove the assumption
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of error-free transcriptions. We first do this by simulating errors using two different
methods, before using the output of actual acoustic models. In finally addressing
acoustic modelling in Chapter 6, we complete exploration of the final piece in the
experimental pipeline, dropping the assumption of an acoustic model trained with
generous amounts of data. In Chapter 7, we conclude with a discussion of the main
findings, limitations of the work and promising avenues for future work.



Chapter 2

Background

The promise of being able to efficiently collect bilingual speech is a key motivation
for the contributions of this thesis, and so we begin with a brief survey of work on the
acquisition of such input data. Modelling this data requires us to draw on knowledge
in both the fields of automatic speech recognition (ASR) and machine translation
(MT). This background chapter will provide a lay of the land, giving an overview of
relevant work and ideas in MT and ASR before considering the intersection of these
two areas of research as they relate to and motivate the subsequent work in the thesis.

This chapter assumes some familiarity with:

• General machine learning concepts (such as the bias/variance tradeoff and the
curse of dimensionality) and architectures (particularly neural network models
such as feed-forward, recurrent and convolutional architectures).

• Machine translation: word and phrase level alignment and translation, evalua-
tion with BLEU scores. See Koehn (2009) for an accessible reference.

• Speech recognition: traditional approaches based on hidden Markov models.
See Jurafsky and Martin (2009) for an accessible reference.

• Linguistic concepts such as parts of speech, derivational and inflectional mor-
phology.

15
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2.1 Data Acquisition

Methods central to this thesis are premised on the acquisition of source language
speech paired with translations (spoken or written) in a larger language. Such data
is collected in traditional language documentation workflows (Hanke 2017), but these
workflows typically entail a slow process of one-on-one work between a linguist and
native speaker. This involves creating a phonemic transcription of the primary speech
data and relating it to a larger language through the process of glossing and construc-
tion of a lexicon, perhaps using a tool such as FLEx.1

There have been recent efforts to speed up the language documentation process by
harnessing cheap mobile devices to collect speech and spoken translations, as well as
fostering collaborative involvement of speakers. These approaches are often based on
the idea of greater native speaker involvement in the language documentation process,
thereby empowering them and making them custodians of their language rather than
the linguists. The involvement of more people in the documentation process may help
to speed up progress in documenting the world’s languages. At the same time, less
direct curation of materials by linguists raises the question of how best to process
such data and conduct quality control.

Reiman (2010) proposed the method of basic oral language documentation (BOLD)
in order to sidestep the issue of written documentation. This approach involves
oral annotation including ‘oral transcription:’ careful respeaking of a source record-
ing, and ‘phrasal translation.’ Motivated by the BOLD approach, one collection of
work in this space are approaches based on the Aikuma tool (Bird et al. 2014b),
which is an android app designed to facilitate the collection of recordings of en-
dangered language speech and, importantly, spoken translations in a larger lan-
guage. Since speakers of endangered languages are frequently bilingual or multi-
lingual, this works to the strength of the speakers. The Aikuma app has had prelim-
inary deployments in Papua New Guinea, Nepal and Brazil (Hanke and Bird 2013;
Bird et al. 2014a). The Aikuma app was primarily designed for collection of spon-
taneous speech, as opposed to linguist-driven elicitation of words, phonological and

1software.sil.org/fieldworks/

software.sil.org/fieldworks/
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grammatical constructs. This encourages the collection of material that is a more
faithful representation of the language and what the speakers care about, while at
the same time requiring less of the linguist. A positive side effect of this is that the
observer effect is reduced: materials are more naturalistic when a foreign linguist is
not there holding a microphone.

An extended version of the application, Lig-Aikuma (Blachon et al. 2016) has since
superseded Aikuma. This application adds several extensions including an elicitation
mode. Lig-Aikuma has been used by the Breaking the Unwritten Language Barrier
(BULB) project (Adda et al. 2016) to collect Mboshi speech in Congo and Fongbe
speech in Benin through speech elicitation from translated reference sentences (Adda
et al. 2016; Laleye et al. 2016; Godard et al. 2017).

Beyond the Aikuma apps, there is other work on smartphone apps to collect
speech data. Examples include the app of Hughes et al. (2010) for elicitation of
speech. Another elicitation-based application is Woefzela (De Vries et al. 2011; De
Vries et al. 2014), the focus of which is to collect speech data from prompts for acoustic
model training. However, both of these applications target collection of speech in the
same language as the prompt, requiring some textual data beforehand.

The development of applications for language documentation collection is a grow-
ing area of work. For further reading, Bettinson and Bird (2016) and Bird (2017)
discuss considerations in the development of language documentation applications
more generally.

2.2 Modelling Translation

In this section we discuss literature relating to modelling the relationship between
words in two or more different languages. The vast majority of work in this space has
been focused on bilingual text to address machine translation, where input text in a
source language is converted to text in a target language.

Machine translation is a challenging task even for humans, who are the champi-
ons of language. There are a number of reasons for this. The relationship between
words in languages is not one-to-one: some words may not have a equivalent word
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in another language, encouraging either an inaccurate translation or a more elabo-
rate paraphrasing. When there are single-word translations, they often have subtly
different meanings in certain contexts. Languages typically have many word tokens
which are polysemous, relying on contextual information for translation (sometimes
rich background context that a computer cannot yet incorporate into modelling).
Furthermore, languages vary greatly in syntax. These issues, along with the effec-
tively unbounded inventory result in problems such as indirect associations (Melamed
1996), where source-language words are given substantial translation probabilities for
target-language words that frequently co-occur but are not translations. Such issues
make machine learning of effective translation models given parallel data a difficult
challenge in artificial intelligence.

This section reviews traditional models of word alignment, recent advances in MT
using neural architectures, and approaches addressing data sparsity in MT that are
relevant to low-resource translation modelling. Beyond the task of MT, this section
also discusses work in related tasks including bilingual lexicon induction and the
learning and use of cross-lingual word embeddings.

2.2.1 Traditional Word Alignment

Traditional MT systems from the 1960s until the 1990s relied heavily on linguis-
tically motivated rules (Koehn 2009). Increased computational power and access to
corpora catalysed a shift towards statistical methods for machine translation, starting
in the late 1980s and gaining momentum through the 1990s. These models are built
on large quantities of data and, rather than being governed by handcrafted rules,
learn patterns of translation from the data.

In a pivotal paper, Brown et al. (1993) introduced the so-called “IBM models”
for word-based MT. Given a corpus of text aligned only at the sentence level, the
IBM models describe lexical translation probabilities of foreign words given an En-
glish word, and alignments of words within these training sentences. In the most
basic model, IBM model 1, all possible word orderings have an equal probability and
the only parameters the model stores are the lexical translation probabilities. The
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subsequent IBM models in the paper build upon this first one to include information
such as parameters describing likely word re-orderings and how many English words
correspond to a given foreign word. These models play an important role as base-
lines for the translation modelling in Chapters 3 and 5. As well as the IBM models,
other approaches to statistical word alignment arose and gained a foothold, among
which is the notable use of hidden Markov models for capturing locality of alignments
and allowing the use of well-established statistical methods for training and decoding
(Vogel et al. 1996; Deng and Byrne 2008).

The parameters of the IBM models 1 and 2 are typically learnt using the ex-
pectation maximization algorithm. This algorithm uses an iterative two step process
whereby the lexical translation parameters of the model are used to predict word align-
ments (the expectation step) before these word alignments are used to re-estimate
the parameters (the maximization step). By iteratively finding the best word align-
ments and re-estimating the translation model parameters, the model parameters
converge to a local optimum that describes the corpora with the highest probability.
IBM models 3 and onwards are intractable for expectation maximization and so a
hill climbing algorithm is used instead. More recent work in parameter estimation
for the IBM models include Bayesian methods whereby a distribution over model
parameters is instead expressed (DeNero et al. 2008; Mermer and Saraçlar 2011;
Mermer et al. 2013; Li et al. 2013). Such approaches can help avoid degenerate
solutions and the overfitting that is associated with point estimates of the model
parameters found in maximum-likelihood estimation approaches.

2.2.2 What is the Right Granularity for Translation Units?

The translation parameters of the IBM models are at the word level. This is
limiting, since the relationships between words and translations may in practice be
one-to-many or many-to-many. On the other hand, varying inflection and agglom-
erative morphology suggest that sub-word translation units may sometimes be more
appropriate.
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Figure 2.1: Word alignments that motivate multi-word translation units. (Illustration
created by Qin Gao, 2008 and released into the Public Domain; example sentence
taken from Chiang (2005)).

Phrase Alignment

In order to more accurately model translation of larger collections of words, ap-
proaches such as n-gram machine translation (Mariño et al. 2006) were introduced.
In particular, phrase-based machine translation (Koehn et al. 2003) became popular
for its ability to handle groups of words and local reorderings within them. In this
approach, heuristic methods are used to extract phrase alignments from word align-
ments in order to assign scores to translations of groups of words. This helps resolve
alignment ambiguities within the phrases, facilitating a one-to-one mapping between
the source and target sentences at the phrase level. Consider how the Chinese–English
parallel sentence in Figure 2.1 motivates the use of translation of multi-word units.

A related issue with word-based MT is that multi-word sequences are often not
decomposable into translations of the constituent words. Idioms are a clear example
of this. Consider the translation of a German idiom (describing a person perceived
to be crazy) into an English equivalent:

German: er hat nicht alle Tassen im Schrank
Gloss: he has not all cups in the cupboard
English: ‘he’s a fruitcake’

In the translation between these idioms only the word ‘he’ can be literally trans-
lated. This issue is inadequately addressed by heuristic phrase extraction methods
since they are based on word-level alignments which ineffectively model such phe-
nomena unless there are enough training examples. Thus while phrase-based MT
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was the most popular framework in machine translation until the arrival of neu-
ral MT, other machine translation paradigms existed to address this problem of
non-decompositionality, among other problems such as limited reordering ability.
These include trees (Yamada and Knight 2001; Neubig 2013) and grammars (Chi-
ang 2007). Wu (1997) introduce inversion transduction grammars (ITGs), a gram-
mar formalism that permits the vast majority of sentence-level reorderings to be
captured in a simple binary synchronous grammar, which have been used as the
basis for a variety of phrase alignment models, both with maximum-likelihood and
Bayesian inference (Cherry and Lin 2007; Zhang et al. 2008; Blunsom et al. 2009;
Cohn and Haffari 2013). Neubig et al. (2011b) contribute one such method, with an
important distinguishing feature that the generative story of each parallel sentence
involves the model attempting to generate a phrase pair at each branch in the tree,
backing off to using a non-terminal distribution. This allows for phrase translations
of varying granularities to be modelled without decomposition into tokens. This
contrasts with previous ITG approaches that require heuristics to construct larger
phrases, as phrase-based MT approaches do. We explore the use of heuristic phrase
extraction versus a Bayesian ITG approach for translation modelling and lexicon
induction in Chapter 3.

Character-Based Alignment and Sub-Word Neural Machine Translation

While the shift of phrase-based statistical MT was largely based on the idea
that word alignments are often too fine-grained to capture larger units appropriate
translation, it is also the case that they are limited in that they often are not fine-
grained enough. Consider how decomposition of a word into sub-word units such
as morphemes reveals information that could be useful in translation. Character-
based MT addresses this idea in the other extreme, using characters as the unit of
translation. Earlier approaches to character-based MT focused on similar languages
such as Castilian and Catalan (Vilar et al. 2007), Norwegian and Swedish (Tiedemann
2009), and Macedonian and Bulgarian (Nakov and Tiedemann 2012). This is because
earlier approaches were based on lexical translation probabilities, which require a
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meaningful relationship between characters in the source language and characters
in the target language, which only holds true for similar languages. Consider this
Norwegian–Swedish parallel sentence taken from Tiedemann (2009):

Norwegian: Så du bø være temmelig redd .
Swedish: Så du bör vara mycket rädd .

Note how strong the character-level relationship between the languages is (one En-
glish translation could be ‘so you should be pretty scared’). Character-based MT
between more distant languages has also been shown to be effective through the use
of hierarchical models which compose larger units from characters. This allows trans-
lation probabilities to be modelled at coarser granularities but without restricting
them from modelling character level translation phenomena when appropriate. This
has been explored by Neubig et al. (2012b), who extend the Bayesian inversion trans-
duction grammar approach described above (which is used in Chapter 3), as well as in
more recent character-based approaches to translation that have been used in neural
machine translation (NMT) contexts.

The most basic neural model is an encoder-decoder framework (Kalchbrenner and
Blunsom 2013; Sutskever et al. 2014; Cho et al. 2014). In this framework an encoder
is used to transform input one-hot vectors representing tokens on the source side
into a hidden representation encapsulating the meaning of the whole sentence. A
decoder then takes this representation of the source sentence and uses it as the basis
for generating a sequence of words in the target language. The encoder and decoder
are connected end-to-end for training. A popular extension to this model uses an
attention mechanism (Bahdanau et al. 2014) to weight the relevance of source-side
words in determining the output, resolving issues such as sentence length that arise
from the basic encoder-decoder approach that uses a single vector representation to
capture the entire meaning of the source sentence.

Two appealing properties of neural network models are that 1) they share in-
formation between words using richer distributed word representations and 2) the
architecture is simplified compared to the traditional statistical MT pipeline. How-
ever, this second property comes at the cost of the model being less interpretable. In
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recent years the performance of word-level neural MT has exceeded that of phrase
based statistical MT, with research in the former largely replacing that of the latter.

Recently, character-based neural MT has been explored. This includes a neural
MT approach built on the language model of Kim et al. (2016b) which involves com-
posing source-language character-level information into word embeddings via a con-
volutional encoder with highway layers (Costa-jussà and Fonollosa 2016). However,
the output vocabulary remains at the word level, and thus suffers from an imposed
limit on the vocabulary size in decoding since the models require a probability distri-
bution over each possible target word. It is appealing to deal with characters on the
target side as well in order to overcome this problem, since the character inventory
is fixed and vastly smaller than the word inventory. Ling et al. (2015) do this, using
character-level information both for encoding and decoding in an attentional neural
MT model. For encoding, a character-level bidirectional long short-term memory
(LSTM) network is used to compose each word out of character embeddings. At the
decoding stage a hidden target word representation is converted into characters using
a forward-LSTM conditioned on the word representation and previously generated
characters. Thus the model is capable of interpreting and generating unseen word
forms. Such models have demonstrated that multilingual many-to-one models can
outperform bilingual specific models (Lee et al. 2016). However, the training data
requirements of such neural MT models are large.

2.2.3 Data Sparsity in Machine Translation

Language documentation work necessarily happens in a low-resource context. In
the field of machine translation, there has been a wide variety of work on models to
better cope with limited training data. This includes work directly on MT for low-
resource languages (Carl et al. 2008; Irvine and Callison-Burch 2013; Mikolov et al.
2013b; Östling and Tiedemann 2017), but the issue of data sparsity arises in MT
even for large languages, and is one of the reasons varying token granularities have
been explored. Data sparsity is caused by a variety of factors, including morpholog-
ical complexity (inflections, compounding) and phenomena such as numbers, proper
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names. Because of the infinite productivity of human languages and a long tail of
rare words, all machine translation can be considered a battle against data sparsity.
In light of this, the division between low-resource and high-resource languages is not
clear cut.

Morphology

For languages with rich morphology, such as Turkish, Finnish and Russian there
will be many instances of words that haven’t been seen many times during train-
ing. Approaches to deal with this data sparsity for such languages typically in-
volve segmentation of words into finer grained units such as morphemes (Lee 2004;
Zwarts and Dras 2007; Clifton and Sarkar 2011; Ataman et al. 2017; Bastan et al.
2017) reducing the size of the vocabulary and taking advantage of regularity in the
morphology. A popular recent approach is the use of byte pair encoding (BPE) in
MT (Sennrich et al. 2015), which involves iteratively replacing the most commonly
paired characters and groups of characters, creating a smaller vocabulary of frequently
seen character n-grams (of variable n). Decomposition of words based on BPE has
been used on its own, as well as in combination with character-based models, such
as in the model of Chung et al. (2016), which performs character level and sub-word
level decoding, with source sentences segmented using BPE. To compare segmentation
granularity for Chinese–English and English–Chinese translation, Wang et al. (2017a)
explore character-level, BPE-level and word-level Chinese–English translation using
LSTM encoders and decoders (after word segmentation with in-house tools).

Other concepts to address morphology include incorporating source-side linguistic
information for more accurate generation of morphology in a richer target language
(Chahuneau et al. 2013; Durrani et al. 2014), paraphrasing to effectively create dif-
ferent translation inputs when translating from a morphologically richer language
(Nakov and Ng 2011), and modelling the influence of morphemes on nearby words to
improve alignment (Luong and Kan 2010). Bergmanis and Goldwater (2017) address
morphological analysis by abstracting over spelling differences between functionally
similar morphemes, unlike much previous work that focuses solely on segmentation.
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Transfer Learning

Transfer learning is another approach to deal with data sparsity which is broadly
applicable (including to speech recognition, as we will discuss in §2.3.4), but in ma-
chine translation works by applying information learnt from translating some lan-
guages to the task of translating others. These approaches commonly involve sharing
neural network parameters between models to harness the similarity of the distribu-
tional representations of words and that of their translations, and is useful both in
high-resource settings (Johnson et al. 2016) and in low-resource settings (Zoph et al.
2016; Nguyen and Chiang 2017). Zoph et al. (2016) demonstrate that training a NMT
model for a high-resource language pair can then be used to substantially improve
translation performance from a low-resource language into a high-resource language.
This allows embeddings in the common high-resource language to be transferred.
Though the neural MT alone underperforms a syntax-based alternative, ensembling
such pre-trained low-resource neural MT models allows for improvements over the
syntax-based alternative. Nguyen and Chiang (2017) expand on this model to ex-
ploit vocabulary overlap between related low-resource languages, enabling transfer
from one low-resource Turkic language to another to improve translation into En-
glish.

2.2.4 Unsupervised Word Segmentation

In the MT frameworks discussed above, translation typically assumes the use of
orthographies that include spaces to delimit words. Sometimes such segmentation is
not available and automatic word segmentation is necessary. Word segmentation plays
a very important role when performing natural language processing tasks on languages
such as Chinese and Japanese which do not include segmentation in the orthography.
It is also used in segmentation-based approaches to handling morphology discussed
in §2.2.3; and is relevant in this thesis since phonemic representations of speech are
unsegmented by default.

Word segmentation for languages whose orthographies do not include them can
involve the use of a dictionary or segmented training corpus for supervised training
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to help determine candidate points in strings at which to split (Nagata 1997; Sassano
2014; Cai et al. 2017). However, ambiguities frequently make this task more difficult
than one might naively assume. For example, in Japanese 東京都 can validly be
segmented as 東 (east) + 京都 (Kyoto), or more commonly as 東京 (Tokyo) + 都
(prefecture). In Chinese, 3.6% of characters could be segmented such that they serve
as a prefix of the word to the right, or a suffix of the word to the left (Ma et al. 2014).

Unsupervised word segmentation approaches that do not use dictionaries employ
statistical methods to lump together high-frequency clusters of characters (Goldwater
et al. 2006; Johnson and Goldwater 2009; Mochihashi et al. 2009; Elsner et al. 2013).
For such methods, the predicted segmentation of words will frequently deviate from
what are considered words in a canonical dictionary. These unsupervised methods find
their use in tasks such as modelling the lexical acquisition of children, and preparing
text for downstream tasks such as machine translation. Such a segmentation method
is used as a component of an alignment approach in Chapter 3.

For machine translation, there is often no single correct segmentation and it has
been argued that the best segmentation is the one that leads to the best machine
translation scores (Nguyen et al. 2010). Xu et al. (2004) learn a dictionary from
character–word alignment for Chinese–English MT, which is then used to inform
segmentation. Xu et al. (2008) and Nguyen et al. (2010) both describe Bayesian
techniques in which bilingual information informs segmentation useful for machine
translation, while Chen and Xu (2015) use a variety of features at the character,
phrase and sentence levels in a log-linear model. This concept of jointly segmenting
while performing non-MT tasks has been explored in other contexts such as segmen-
tation with part-of-speech (POS) tagging (Sun 2011). Su et al. (2016) use lattices
of possible tokenizations as input to neural machine translation systems to mitigate
issues of error propagation.

2.2.5 Bilingual Lexicon Induction

Machine translation techniques such as translation modelling find use beyond the
task of classic machine translation of sentences. Bilingual lexicon induction is a task
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that involves drawing semantic correspondences between words in a source language
and words in a target language. Beyond its implicit use in MT, bilingual lexicon
induction has a long history as lexicons play an important role in multilingual tasks
such as cross-lingual information retrieval (Levow et al. 2005). Since a key task of
documentary linguistics is the creation of lexicons to relate the source language with
a larger language, we now discuss computational approaches for this task.

The traditional approach to bilingual lexicon induction has involved statistical
inference over word-level information and is essentially a post-processing step after
word alignment. Early work includes that of Wu and Xia (1994), who explore lexicon
induction between English and Chinese using a variation on IBM model 1 to deter-
mine translation probabilities after dictionary-based segmentation. A post-processing
step uses significance filtering to remove spurious entries by effectively adapting the
filtering threshold based on translation entropy. Melamed (1996) present a technique
to clean out spurious entries from translation lexicon, highlighting the issue of indi-
rect associations, whereby pairs of unrelated words have statistical properties that
resemble those of mutual translation. An example of this might be what and a trans-
lation of time being erroneously learnt from a corpus of travel expressions, owing to
common sentences beginning with “What time…” Other word alignment based ap-
proaches include that of Caseli et al. (2006), which involves lexicon induction in the
context of translation rule induction for rule-based MT, and that of Lardilleux et al.
(2010), who compare word alignment tools for the task of bilingual lexicon induction.

Other methods remove reliance on the scarce resource of parallel corpora by us-
ing comparable corpora (Fung and Yee 1998; Koehn and Knight 2002) or monolin-
gual corpora (Haghighi et al. 2008). More recently, word embeddings (discussed in
§2.2.6) have become the main basis for such approaches. Vulic and Moens (2015)
learn bilingual word embeddings (see §2.2.6) by adapting the skip-gram model to
predict bilingual contexts of words. This method simply involves concatenating a
source document with its target translation, shuffling, and then running the skip-
gram model training with a large window size. The cosine similarity between words
thus corresponds strongly with the likelihood that they are translations, outperform-
ing state-of-the-art bilingual lexicon induction baselines as well as similar bilingual
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word embedding models. Bilingual lexicon induction has also been explored with
comparable corpora and sub-word information, with Heyman et al. (2017) using char-
acter level information and multilingual Wikipedia data as a comparable corpus in
order to exploit orthographic similarities between words and related languages. Un-
like previous work in the same vein, neural models are used to encode character
level representations of words for a downstream classification task which determines
whether words are translations of one another.

As well as this recent work incorporating character-level information in lexicon
induction, there has previously been some work on lexicon induction from phonemes
which is closely related to the explorations of Chapter 3. Stüker and Waibel (2008)
and Stüker et al. (2009) take a first look at phoneme–word translation modelling,
using traditional IBM Models (Brown et al. 1993) in order to determine alignments,
and applying heuristics to extract dictionaries, while Stahlberg et al. (2013) build on
the approach of Stahlberg et al. (2012), using 30k Bible verses for lexicon extraction.
None of the above work considers bilingual lexicon induction from speech directly,
though we discuss spoken term discovery in §2.3.3.

2.2.6 Cross-Lingual Word Embeddings

In recent years word embeddings and cross-lingual word embeddings (CLWEs)
have become popular. Relevant to our interests, CLWEs have the capacity to en-
able transfer learning in cross-lingual contexts, which is relevant in the low-resource
domain (Duong et al. 2015; Fang and Cohn 2017; Zoph et al. 2016).

Word embeddings are vector representations of words in a common vector space
such that similar words are closer to one another. They originally arose as a side-effect
of neural language models (Bengio et al. 2003; Goodman 2001), discussed in §2.2.7.
One advantage of word embeddings is that they can help models cope with sparse data
by sharing information among words with similar characteristics. Although count-
based distributed vector representations of words, such as latent semantic analysis
(LSA) (Landauer and Dumais 1997), have a long history, word embeddings have
become more popular since recent approaches show effective use of shallow neural
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network architecture to learn them from large quantities of data (Mnih et al. 2009;
Bengio et al. 2009; Collobert and Weston 2008; Mikolov et al. 2013a; Mikolov et al.
2013c). These prediction-based word embedding models, in contrast to traditional
count-based models such as LSA, have led to improvements in many natural language
processing tasks through their use in initializing the parameters of neural network
models when supervised training data is limited, harnessing information from large
amounts of unlabelled data (Frome et al. 2013; Zhang et al. 2014; Zoph et al. 2016;
Lau and Baldwin 2016).

The most well-known of these approaches are the continuous bag-of-words models
and the skip-gram models, which predict words given contexts and contexts given
words respectively (Mikolov et al. 2013a). In the original formulation, these contexts
are sliding windows of words, but subsequent work has used other structural represen-
tations as contexts in similar models, such as using dependency parsers for more syn-
tactically motivated word embeddings (Vulić et al. 2016). The success of embeddings
has led to a myriad of other popular word embeddings approaches, both count-based
and prediction-based (Chen et al. 2013; Pennington et al. 2014; Shazeer et al. 2016;
Bhatia et al. 2016).

Cross-lingual word embeddings (CLWEs) have also been the subject of signifi-
cant investigation. These methods embed words across two or more languages in
a common vector space, such that words and their translations have similar vector
representations. Many methods require parallel corpora or comparable corpora to
connect the languages (Klementiev et al. 2012; Zou et al. 2013; Hermann and Blun-
som 2013; Chandar AP et al. 2014; Kočiský et al. 2014; Coulmance et al. 2015;
Wang et al. 2016), while others use bilingual dictionaries (Mikolov et al. 2013b; Xiao
and Guo 2014; Faruqui and Dyer 2014; Gouws and Sogaard 2015; Duong et al. 2016b;
Ammar et al. 2016; Fang and Cohn 2017). Other methods use neither parallel data nor
bilingual dictionaries, instead learning cross-lingual word embeddings through analy-
sis of the monolingual distribution of words in more than one language (Barone 2016;
Conneau et al. 2017). Most relevant to this thesis are the methods that use bilingual
dictionaries to bridge between monolingual corpora, with the approach of Duong et al.
(2016b) being used to train the CLWEs used in Chapter 4.
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2.2.7 Language Modelling

Before moving to speech recognition, we first address language modelling, which
is an important component in both machine translation and speech recognition, and
other text generation tasks. Language models (LMs) are a tool that score the fluency
of some generated text, associating with it a likelihood of it occurring in the language
the LM was trained on.

Statistical language modelling was popularised with the advent of large digital
corpora and the rise of corpus statistics around 1990 (see Kneser and Ney (1995)
and related papers cited there). Traditional language models rely on the concept
of an n-gram, which is a sequence of n words. Corpus statistics on the occurrences
of n-grams is used to estimate the probability of each word (in the language that
the corpus represents) given that preceding n − 1 words. This allows our models to
incorporate the intuition that given a context “I like to eat” the following word is
more likely to be “sushi” rather than “run” or “aeroplane.” Typically n is not larger
than 5 or so due to data sparsity, since longer sequences are unlikely to be seen more
than once, which makes statistics unreliable.

There has been much work on n-gram language models, including smoothing ap-
proaches to account for data sparsity of higher order n-grams (or infinite order models
such as that of Shareghi et al. (2016)). Approaches typically involve heuristic back-off
to (or interpolation with) word probabilities conditioned on smaller contexts where
more data is available (Chen and Goodman 1999; Goodman 2001), as well as work on
fully Bayesian models, such as the hierarchical Pitman-Yor processes of (Teh 2006).

Bengio et al. (2003) introduced neural language models (along with the notion of
word embeddings discussed in §2.2.6), which play an important role in the language
modelling experiments of Chapter 4. Rather than representing words discretely and
completely distinctly from one another, words would be embedded into a vector space
such that similar words have similar vector representation. Thus language models
can have smoother distributions and the probabilities of word generation can harness
statistics from semantically similar words. However, in practice count-based meth-
ods with advanced smoothing techniques remained state-of-the-art due to the large
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data and computational requirements of neural language models and the difficulty in
effectively training them.

Neural language modelling has since demonstrated powerful capabilities at the
word level (Mikolov et al. 2010). Notably, long short-term memory (LSTM) models
(Hochreiter and Schmidhuber 1997) have been shown to be effective for modelling long-
ranging statistical influences that traditional n-gram or log-linear models are unable
to model, such as matching closing parentheses to opening ones (Osband et al. 2016;
Zaremba et al. 2014). De Mulder et al. (2015) survey neural networks for language
modelling.

Such models have also demonstrated effective modelling at the character level
(Martens 2011). Such work has many of the same motivations to that of character
level and sub-word MT discussed in §2.2.2 and §2.2.3: words have sub-word struc-
ture that can be captured and modelling these directly can help address the data
sparsity concerns that arise from word-based models. Kim et al. (2016b) compose
word embeddings out of character embeddings using a convolutional layer and high-
way network to create a word-level output distribution (which has been used in MT
models. See §2.2.2). Other work has involved combining word and character-level
information as input. For example, Verwimp et al. (2017) concatenate word embed-
dings and character embeddings of the word to harness this sub-word information
before word-level prediction. Lankinen et al. (2016) apply character-level models to
the morphologically rich Finnish language, using LSTMs to encode an internal word
representation before character-level prediction on the output. They demonstrate
correct inflections not present in the training data can be scored better than incor-
rect ones. The character-based predictive approach of the last paper is promising,
since out-of-vocabulary words can be generated. This is important for tasks involving
generation of words and is promising for low-resource situations where many words
are out-of-vocabulary: consider the implicit language model included in the neural
MT framework of Ling et al. (2015) discussed in §2.2.2. However, the sub-word
information need not be at the character level. In languages such as Korean, sylla-
ble and morpheme-level LMs have been used with the argument that character-level
information does not effectively capture the context of the word (Yu et al. 2017).
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Other work has also operated at a morpheme-level granularity (Kirchhoff et al. 2006;
El-Desoky Mousa et al. 2010; Sak et al. 2010) or at a granularity mixed between
words and sub-word units, with frequent words being included in the lexicon but less
frequent words being decomposed (Shaik et al. 2011; Mikolov et al. 2012). Botha
and Blunsom (2014) instead use a compositional approach where word vector repre-
sentations are comprised of morpheme vectors. These models that harness sub-word
information are useful for overcoming the data sparsity problem associated with low-
resource language modelling.

In addition to these models trained on text, there has also been work on learning
language models from speech recognition phoneme lattices (Neubig et al. 2012a). The
idea underlying this approach is appealing because it allows for language modelling
over word-like units even when a lexicon is not available, suggesting applicability of
the concept to low-resource languages. They use a hierarchical Pitman-Yor process
to learn a lexicon and language model by capturing all the information in a lattice.
Blocked Gibbs sampling is used for inference in a weighted finite-state transducer
(WFST) framework, where the WFST is created by composing the phoneme lattice
with both a (dynamically evolving) lexicon FST and LM finite-state acceptor. This
approach has particular relevance to the translation modelling method proposed in
Chapter 5, which can be seen as a bilingual variation of this language model.

In low-resource settings, Gandhe et al. (2014) investigate neural network LMs,
comparing them with count-based language models, and find that neural network
LMs interpolated with count-based methods outperform standard n-gram models
even with small quantities of training data, while Hao Fang et al. (2015) harness
sub-word morphological information in neural network models (among other mod-
els), outperforming count-based methods without interpolating probabilities. Kurimo
et al. (2016) investigate a variety of relevant topics for low-resource language mod-
elling, including language model adaptation and decoding with sub-word units on
account of the rich morphology of the Finnish language. Also having been explored
for low-resource language modelling is cross-lingual language modelling, with work
on interpolation of a sparse language model with one trained on a large amount of
translated data (Jensson et al. 2008), as well as integration of speech recognition with
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translation to harness statistics from target language corpora (Jensson et al. 2009;
Xu and Fung 2013). Bellegarda (2004) review language model adaptation, and argue
that small amounts of in-domain data are often more valuable than large amounts of
out-of-domain data, but that adapting background models using in-domain data can
be even better.

2.3 Automatic Speech Recognition

Having considered work relevant to modelling the bilingual nature of the data
used in this project, we now consider work relevant to modelling speech, since lan-
guage documentation starts with the collection of speech. In this section we overview
work on the traditional speech recognition problem, as well as unsupervised speech
modelling and adaptation of speech technology to low-resource domains.

2.3.1 Traditional Speech Recognition

Speech recognition has traditionally been framed as the problem of predicting
a sequence of words w given a representation of the acoustic signal x. There are
many challenges in this problem: determining an effective feature representation of
the acoustic signal, accounting for interference such as reverberations, ambient noise,
handling variable speaker features such as prosody, disfluencies, pitch and the rate
of speech, Lombard reflexes, telephone speech, speaker intoxication, dialectal differ-
ences and accents along with addressing general difficulties of language such as an
unbounded lexicon (Goldwater et al. 2008; Kunze et al. 2017; Sriram et al. 2017).
Early work on speech recognition focused on limited domains, with an extreme exam-
ple being single digit recognition. At the other end of the spectrum is large vocabulary
continuous speech recognition (LVCSR) which is a much harder problem, since words
may be spoken from a larger lexicon, covering a wide variety of topics, while phenom-
ena such as coarticulation across word boundaries compound the difficulty.

The problem of speech recognition is typically framed as finding the most likely
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word sequence w given acoustic features x:

argmax
w

P (w|x). (2.1)

Bayes’ rule is used to factorise this probability

argmax
w

P (w|x) = argmax
w

P (x|ϕ)P (ϕ|w)P (w) (2.2)

where ϕ is a sequence of phonemes that may have been expressed in the speech.
This factorisation is useful for learning model parameters. P (x|ϕ) is described by an
acoustic model, P (ϕ|w) by a pronunciation lexicon and P (w) by a language model.

The prevailing framework that has existed from the 1990s until today uses hidden
Markov models to represent a) the lexicon and language model with transition proba-
bilities between words and the phones in those words (the hidden states) (Lee 1990),
and b) observation probabilities being described by an acoustic model. Traditionally,
Gaussian mixture models were the most popular method for representing an acous-
tic signal given the sub-phone state, but in recent years deep neural networks have
demonstrated superior performance in light of advances in the availability of data,
computational power, and the algorithms used to train the networks (Hinton et al.
2012).

The representation of the speech signal, x, modelled by the acoustic model is
represented by a sequence of vectors. There are a variety of representations based on
human perception such as Mel-frequency cepstral coefficients (MFCCs) and percep-
tual linear predictive (PLP) features (Hermansky 1990).

Mainstream speech recognition focuses on word-level outputs, as opposed to a
sequence of phonemes. This is because in most domains we are interested in ortho-
graphic transcriptions of speech. An advantage of operating at the word level is that
there is a constraint on the phoneme sequences being consistent with possible words,
and this helps to reduce the search space. The disadvantage is that the lexicon of
the language must be known in advance, along with the pronunciations of each word
in the lexicon. In low-resource contexts the lexicon may be sparse and thus speech
must be effectively recognised at the phoneme level.
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2.3.2 End-to-End Speech Recognition

As mentioned above, deep neural networks have, in most places, superseded the
use of Gaussian mixture models for modelling the relationship between the signal
and hidden states. There is additional growing work on so-called end-to-end speech
recognition, which involves direct discriminative training of a model to predict the
transcription of an utterance given the acoustic signal using a single neural network
architecture. A motivation for this end-to-end training is that the components of the
speech recognition system are jointly optimized with the target objective in mind,
rather than being trained separately on different objectives, leading to “compartmen-
talization” that can negatively affect results (Miao and Metze 2017).

Graves et al. (2006) introduce the connectionist temporal classification (CTC)
loss function, which allows recurrent neural networks (RNNs) to be trained without
segmentation of the label sequence, even though there is a significant mismatch in the
number of input acoustic feature vectors and output labels. This opened the door
to body of work on CTC-based models with underlying RNNs in order to predict
phonemes (Graves et al. 2013). This set a new state-of-the art for results on the
TIMIT dataset, while facilitating simpler formulation of speech recognition models
that do not need phoneme segmented training data. Other work extends on this,
exploring other underlying neural architectures including convolutional neural net-
works (CNNs) (Li and Wu 2016; Zhang et al. 2016c; Zhang et al. 2016b). Neural
networks trained end-to-end with the CTC loss function in order to predict phonemic
transcriptions play an important role in Chapter 6.

CTC has also been used in the context of orthographic transcription prediction,
either by incorporating a lexicon and language model (Miao et al. 2015; Zweig et al.
2016; Wang et al. 2017b) a character-level language model (Zenkel et al. 2017), or
by discarding the concept of a phone and performing direct character-level prediction
(Hannun et al. 2014; Graves and Jaitly 2014; Maas et al. 2015), word-level predic-
tion (Soltau et al. 2016), or prediction of multi-character units (Liu et al. 2017b).
Audhkhasi et al. (2017) perform direct word based prediction using CTC, presenting
techniques to mitigate the issue where the number of possible output words requires
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more training data. Importantly, results still underperform use of phone-based CTC
and 4-gram language models.

Beyond CTC, there has been exploration in various other approaches to end-to-end
speech, including neural attention (Chorowski et al. 2015; Chan et al. 2015; Chorowski
and Jaitly 2016; Bahdanau et al. 2016; Shan et al. 2017), segmental models (Lu et al.
2016; Tang et al. 2017), multitask combinations of CTC with attention (Kim et al.
2016a) and segmental models (Lu et al. 2017), and discriminative end-to-end training
of lattice free maximum mutual information (LF-MMI) models (Hadian et al. 2018).
Variations on CTC have also been proposed such as the simplified AutoSegCriterion
of Collobert et al. (2016), who use the CTC-based objective in conjunction with
CNNs as the underlying neural network. A key insight from exploration in this
space, corroborated by experiments with various architectures, is that direct character
prediction can be effective, bypassing phonemic annotation and allowing for a simpler
overall speech recognition architecture. This grapheme-level prediction is useful for
low-resource written languages, but is not directly relevant to the scenario we focus
on in this thesis.

2.3.3 Unsupervised Speech Modelling

Even for languages where we are fortunate enough to have a small amounts of
transcribed speech, the amount of untranscribed data will always be much greater.
There has been some work on semi-supervised speech recognition, which in addition
to the transcribed data harnesses this untranscribed data for improved speech recog-
nition, and is able to reach par performance with less labelled data through the use
of autoencoders on phoneme transcription (Dhaka and Salvi 2016; Tietz et al. 2017),
as well as LVCSR using transcription hypotheses from initial models for retraining
(Thomas et al. 2017; Nallasamy et al. 2012).

In the unsupervised case, with a total absence of labelled data, there are two
main areas of work: unsupervised term discovery, and sub-word unit discovery. Both
areas of work are motivated by its applications to low-resource languages where anno-
tated data may be very scarce, as well as its potential in modelling human cognition
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and early-age learning. Unsupervised term discovery seeks to discover new words
in the acoustic signal. These words can be found directly from speech features, us-
ing approaches based on segmental dynamic time warping (Park and Glass 2008;
Jansen et al. 2010) or acoustic word embeddings (Levin et al. 2013; Kamper et al.
2017); or from 1-best transcriptions (Godard et al. 2016); or alternatively from
phoneme lattices (Neubig et al. 2012a) (see §2.2.7 for more on this last approach).

Sub-word unit discovery, on the other hand, involves learning a relatively small
set of phonetic units that can be composed together to create the words in a language
(Varadarajan et al. 2008; Kempton and Moore 2014; Liu et al. 2017a). For example,
Lee and Glass (2012) segment speech and learn sub-word units using Bayesian non-
parametric methods in a hidden Markov model (HMM) framework. The approach
learns sub-word units that correlate closely with English phones, which suggests it
can find appropriate phone-like units in contexts where we might not know appropri-
ate units in advance. This can be motivated in the context of endangered languages,
where we might not always be able to assume prior knowledge of a useful phoneme
inventory. While such approaches to sub-word unit discovery are promising given
the inevitably low amount of transcribed data available, in the most language doc-
umentation contexts a linguist will be able to determine the phonetic categories of
the language in a reasonably short amount (such a step can be considered a constant
cost per language, unlike the manual transcription of recorded speech). However,
even when an appropriate phoneme inventory is known in advance, semi-supervised
approaches harnessing untranscribed speech on top of existing phonetic knowledge
make for an appealing line of research relevant to language documentation.

2.3.4 Low-Resource and Multilingual Speech Recognition

Just as data sparsity was an issue in MT, so too is it in ASR. There has been a
variety of work on developing speech recognition systems for low-resource languages,
even widely spoken languages for which there are many millions of speakers but for
which limited resources exist to train ASR systems, such as pronunciation dictionaries
(Le and Besacier 2009). This includes collecting data directly from speakers for train-
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ing traditional systems for as-of-yet unexplored languages (Laleye et al. 2016). “The
biggest cost factor in such a development is the need of training data for the acoustic
model” (Grézl et al. 2011), therefore much responsibility lies in the approaches to data
collection for acoustic model training, such as the Woefzela tool (De Vries et al. 2014)
(see §2.1). Beyond speech data, collection and effective preprocessing of text data
from the Internet has been explored for low-resource languages (Le and Besacier 2005;
Gauthier et al. 2016; Kurimo et al. 2016). For a review of ASR for low-resource lan-
guages, see Besacier et al. (2014).

While much of this language-specific work is useful, promise lies in work in two
close (even overlapping) topics: domain adaptation, whereby the goal is to adapt
existing acoustic models trained on large amounts of data to target domains with little
data, and multilingual acoustic modelling, whereby an acoustic model is trained on
data from more than one language. This distinction has also been referred to as that
of “model adaptation” versus “heterogeneous transfer” (Kunze et al. 2017). In both
cases, the idea is to harness a broader range of information to improve performance
in a specific domain, or to generalize better across domains.

Domain adaptation may occur in a monolingual context. This includes work on
adapting the acoustic model to the properties of a given speaker, such as accent,
pitch and pronunciation variation (Sakti et al. 2011; Hofmann et al. 2012). However,
it also may involve adapting an acoustic model trained on one language to effectively
recognise the sounds of other related languages (Imseng et al. 2014; Scharenborg et al.
2017) and more distant languages (Schultz and Waibel 2001a; Le and Besacier 2005;
Stolcke et al. 2006; Tóth et al. 2008; Plahl et al. 2011; Do et al. 2014b).

In multilingual acoustic modelling an acoustic model is trained in data from more
than one language. The expected advantages this approach has are the same as
those for multitask learning more generally: prevention of overfitting, eavesdropping
(attempting other related tasks can guide the model to informative features), and data
amplification (different noise added to same feature may help) (Heigold et al. 2013).
There is overlap between these conceptual categories of adaptation and multilingual
acoustic modelling. For example, Sam et al. (2012) perform unsupervised acoustic
model adaptation for non-native speakers using multilingual acoustic models, while
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Thomas et al. (2012) train a multilingual model on large amounts of Spanish and
German data before adaptation to 1 hour of English (Thomas et al. (2017) do similar
multilingual + domain adaptation). Such approaches are not exclusive to low-resource
languages: Bohac et al. (2014) use multilingual data to create systems to rapidly adapt
to people with different speech impairments.

In training an acoustic model to recognize the sounds in multiple languages,
there are two main approaches that can be taken: common phonemes between lan-
guages can be merged into a single symbolic representation (say, based on their
representation in the international phonetic alphabet) (Köhler 1998; Lin et al. 2009;
Grézl et al. 2011), despite differences in articulation between the languages and allo-
phonic variation within those languages. The other approach is to treat all phonemes
in each language as symbolically distinct from all the phonemes in all the other lan-
guages (Thomas et al. 2012; Heigold et al. 2013; Ghoshal et al. 2013; Huang et al. 2013;
Xu et al. 2015; Sercu et al. 2016). In the latter case, the acoustic models typically
share information in lower layers of a neural network, but have separate layers for
language-specific prediction, which can also yield improvements. (Vu et al. 2014) com-
pare the two approaches with varying results depending on how related the languages
are. For non-related languages in a low-resource rapid adaptation setup most relevant
to the work in this thesis, they found no merging strategy consistently performed the
best. Vu et al. (2012) use a combined approach, where a merged universal phoneme
inventory between languages is used for multilingual training, before adaptation and
extension of the phoneme set to a low-resource language not in the original training
set. Multilingual models have also been used in end-to-end frameworks. For example,
Toshniwal et al. (2017) use the attentional model of Chan et al. (2015), consistently
outperforming language-specific models.

Despite this large body of work, there currently exists no freely available universal
phoneme transcription tool that can be used by linguists in an automated or semi-
automated transcription workflow.

The principle behind multilingual acoustic modelling is to generalize better. Even
monolingual speech recognition systems typically aim to generalize well to voices
unheard in the training data. However, sometimes generalization isn’t the goal. In
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language documentation settings, there may be just a few speakers whose speech
is being recorded and forming the basis of linguistic analysis. While multilingual
acoustic modeling may help generalize across speakers, it is questionable how well a
multilingual acoustic model can help with speech recognition for such single-speaker
contexts as opposed to a model trained on just a small amount of in-domain data.

In addition to automated approaches to transcription, there has been work on
crowd-sourcing transcriptions in a low-resource domain from non-native speakers (and
in fact speakers with no knowledge of the target language at all). If we view the
human transcribers as acoustic models, then this is analogous to cross-lingual acoustic
modelling (Jyothi and Hasegawa-Johnson 2015; Liu et al. 2016).

2.3.5 Tonal Speech Recognition

Tonal modelling presents a challenge for ASR systems since tonal information is
suprasegmental, spanning many frames (Hu et al. 2014; Mortensen et al. 2016). Most
work in tone recognition sits in the context of speech recognition, though there also
has been work on tone-only transcription (Bird 1994).

Advances in tone recognition have involved improving approaches to extracting
pitch features from the waveform (Huang and Seide 2000; Lei et al. 2006). However,
ASR systems often do not incorporate pitch information for speech recognition of
tonal languages (Metze et al. 2013), as spectral information has performed adequately,
with methods instead relying on contextual information for tonal disambiguation via
the language model (Le and Besacier 2009; Feng et al. 2012) and tone modelling in
language-dependent setups, for example accounting for language-specific tone sandhi
(Lamel et al. 2011). However pitch information has been shown to be useful for even
non-tonal languages in neural network frameworks, where prosody is traditionally
perceived only to be valuable at the sentential level. To this end Metze et al. (2013)
explore explicit (tone-tag) and embedded (tonal phone) modelling approaches for
tonal languages (a common distinction between approaches is that between embedded
tonal modelling, where phoneme and tone labels are jointly predicted, and explicit
tonal modelling, where they are predicted separately (Lee et al. 2002)) finding that
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pitch information does improve speech recognition for non-tonal languages and that
the tonal phone model robustly performed better. The work of Ghahremani et al.
(2014) corroborates this: they propose a method for pitch feature extraction, and find
that along with strong improvements for tonal languages when tone is marked in the
lexicon, modest improvements for non-tonal languages are found too. Pitch features
as input features in tonal prediction is are used in experiments in Chapter 6.

2.4 Machine Translation Meets Speech Recognition

So far we have discussed MT and ASR separately, but there is much overlap. Both
are sequence transduction tasks that involve generating text. Issues that affect MT,
such as data sparsity and low ratios of annotated to unannotated data, also affect
ASR.

In addition to independent research on speech recognition in machine translation
there has also been a significant amount of work on problems that involve both MT
and speech recognition. The two most popular problems involving the intersection
of speech recognition and MT are speech-to-speech translation and computer-aided
translation. In this section we discuss work on these problems. Importantly, in
addition to these topics we discuss more recent work on training translation mod-
els directly from speech, which is of relevance to the translation modelling method
proposed in Chapter 5.

2.4.1 Speech-to-Speech Translation

There has been extensive work on combining ASR and statistical machine trans-
lation (SMT) systems, with the work largely focused on coupling the systems for the
problem of speech translation (Vidal 1997; Matusov et al. 2005; Ney 1999; Casacu-
berta et al. 2004). Speech-to-speech translation involves taking a speech signal in
a source language and producing speech in a target language. Traditionally this
problem has been approached using speech recognition, MT, and speech synthesis
systems in cascade, such that the source speech is first transcribed into text before
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text-based translation into the target language before finally applying speech synthe-
sis. However, rather than feeding the one-best speech recognition hypothesis into the
MT system, popular approaches change the interface between the systems, feeding
instead the speech recognition lattice into the MT system. In this way, the extent to
which errors in the speech recognition system are propagated to the system is min-
imised, since more information in the form of alternative hypotheses are captured in
the lattice, which is useful when the 1-best transcription is false.

2.4.2 Computer-Aided Translation

There has also been a variety of work on using translation models to improve
ASR performance (Vidal et al. 2006; Alabau et al. 2011), which includes the popular
computer-aided translation (CAT) use case pioneered by (Brown et al. 1994). This
task involves humans working with computers to perform translation. The human
translator is presented with source text to translate and is tasked with producing a
spoken translation. The computer then recognises this speech and produces a target
transcription. This is fundamentally just a speech recognition task in the target
language. However, the speech recognition system is given additional information in
the form of the source text which can inform transcription hypotheses in the target
language. Work on computer-aided translation has typically involved modifying
language model probabilities in the ASR system (Rodriguez et al. 2012; Pelemans
et al. 2015; Ng et al. 2013) using N-best lists (Paulik et al. 2005). Additionally, word
lattice based approaches have also been pursued (Khadivi and Ney 2008; Reddy and
Rose 2010). The transcription of multiple streams of interpreted speech has also been
addressed with the aid of machine translation (Miranda et al. 2012a; Miranda et al.
2012b). However, in all of these pieces of work, the translation models are trained on
substantial external written corpora such as European parliament proceedings or the
Canadian Hansards. In a low-resource context, such information will not be available.
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2.4.3 Translation Modelling of Speech

A third area of work in which speech recognition meets MT is work on train-
ing translation models on representations of speech and corresponding text. Such
work has been motivated by speech-to-speech translation, using word-level automatic
transcriptions of interpreted speech to train a translation model more appropriate
to the spoken nature of the data (Paulik and Waibel 2009; Paulik and Waibel 2010;
Paulik and Waibel 2013). Other work involves source-language phonemic represen-
tation along with word-level translations in the target language. Stüker and Waibel
(2008) and Stüker et al. (2009) use 1-best phonemic representations of the source
speech for translation modelling and lexicon induction using traditional IBM models
of word alignment. The motivation is that such an approach would allow the writ-
ten form of the language to be bypassed. This could potentially facilitate speech
translation of non-written languages (Besacier et al. 2006).

A key challenge in this task is learning an effective translation model given such
small amounts of erroneous transcriptions and building meaningful correspondences
between phonemes and target words, where there is a substantial mismatch in granu-
larity of the token. To address this, Besacier et al. (2006) perform unsupervised word
segmentation and discovery on the phoneme sequences before translation modelling.
As an alternative model for this task, Stahlberg et al. (2012) propose Model 3P,
an extension to IBM Model 3 that includes additional word length parameters in the
generative model, allowing for more effective alignment between phonemes and words,
and word segmentation of phonemes. As well as word-to-phoneme alignment, Model
3P has been used for pronunciation dictionary induction (Stahlberg et al. 2013;
Stahlberg et al. 2014b; Stahlberg et al. 2015) to help facilitate speech recognition
in a low-resource scenario without target language training data (Stahlberg et al.
2014a). Jiang et al. (2011) investigate translation using a phonetic representation
of the input sentence. However, they train a translation model in a phrase-based
SMT framework on standard word-based parallel corpora before converting it into
phonemic representations to reduce the ill effects of recognition errors at test time
for speech-to-speech translation, thus relying on predetermined word segmentation.
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Such work is often motivated by the low-resource bilingual data scenario, as is
the motivation for the work in this thesis. However, the approaches listed so far are
limited in that they assume an error-prone 1-best phoneme transcription of speech.
As we saw in §2.4.1, it is well documented that error propagation can be minimized
through the use of lattices or n-best lists instead of 1-best transcriptions.

More recently, and contemporaneous to the work of this thesis, there has also
been work on directly relating speech to a target translation without first perform-
ing transcription at the phoneme level. In this spirit, Duong et al. (2016a) use an
attentional model for their proposed task of speech-to-text alignment. Their stacked
pyramidal LSTM-based attentional encoder facilitates speech-to-text alignment al-
most as accurately as using gold source phoneme transcriptions. Though their model
has the capacity to learn effective representations for phone recognition, translations
were not harnessed to improve this transcription, with the tasks of speech-to-text
alignment and translation being emphasized. Anastasopoulos et al. (2016) present
another model for this task, which marry a reparameterization of IBM Model 2 (Dyer
et al. 2013) with dynamic time warping for speech-to-translation alignment, outper-
forming the neural model. This model was subsequently extended upon to provide
translations of unlabelled segments of speech (Anastasopoulos et al. 2017). Their ap-
proach outperforms a model for a similar task which instead uses unsupervised term
discovery cascaded with MT (Bansal et al. 2017b) instead of using the translations
to inform the discovering of units, which has been shown to be beneficial (Bansal
et al. 2017a). This line of work has parallels to standard unsupervised term discovery
discussed in §2.3.3, with the key distinction being the availability of translations for
model training, which can help inform the discovery. The discovery of these word
units in a bilingual framework allows for partial translation based on word spotting.

More recently still there has also now been work on full translation directly from
speech using attentional models (Berard et al. 2016). Weiss et al. (2017) go further
to perform source language speech recognition jointly with direct translation, which
has the benefit of using phonemic transcriptions where available in order to train
the model for automatic transcription. All of the work in the last two paragraphs
involves bypassing a phonemic representation, meaning the system is not constrained
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by errors propagated from the acoustic model and generalizes to scenarios where the
phoneme inventory is not known or an acoustic model cannot be effectively adapted.
Yet for language documentation purposes, there still is an incentive to acquire phone-
mic transcriptions. These two goals are not inimical. As Weiss et al. (2017) show,
training phonemic transcription jointly with the translation task when transcriptions
are available is beneficial for the translation task. Perhaps phonemic transcription
can benefit via joint translation model training too.

The areas we have discussed: data acquisition, translation modelling, speech recog-
nition, and their combination, provide much of the context for the work in this thesis.
Key work in this thesis sits within this intersectional area of translation modelling
of speech (Chapters 3 and 5), drawing on understanding in machine translation and
speech recognition. Other work addresses language modelling, relevant to both speech
recognition and MT, while still tapping into bilingual information (Chapter 4). Mono-
lingual speech recognition is explored too, addressing the nuances of tone and the
language documentation context (Chapter 6).



Chapter 3

Translation Modelling of Phonemes

Large portions of this chapter have appeared in the following paper:

Adams et al. (2015) Inducing bilingual lexicons from small quantities of
sentence-aligned phonemic transcriptions, in Proceedings of the 12th Inter-
national Workshop on Spoken Language Technologies, Da Nang, Vietnam.
pp. 248–255.

3.1 Introduction

For low-resource languages, speech recordings are the primary source of data. Spo-
ken translations into a major language, along with transcriptions of these translations,
are easy to obtain and—in the case of transcriptions—might be derived automatically.
Armed with speech recordings in the source language, along with orthographic tran-
scriptions in the target language, we can start to model the correspondences between
them. When little bilingual data is available, we have limited information about these
correspondences between the spans of speech on the source side, and the words on
the target side. The presence of errors multiplies the indeterminacies. To get started,
we introduce two assumptions.

The first assumption is that (a) we have ample quantities of phonetic transcrip-
tions and (b) that these transcriptions are error-free. In this chapter we conduct
experiments to assess whether sentences of unsegmented phonemes paired with trans-
lations can be effectively modelled given these two assumptions. We then relax the

46
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first assumption and scale the available training set down to as little as 1,000 sen-
tences of parallel data. Such a small quantity of data is a reasonable amount for a
project in documentary linguistics to procure manually with high transcription accu-
racy. This serves as our first step towards more realistic data. Aside from helping
to reign in complexity, this lets us isolate the translation modelling aspect of this
work from confounding speech recognition factors. Subsequent chapters (Chapter 5
onwards) of this thesis will additionally remove the second assumption of error-free
transcription.

This chapter proceeds as follows. As a preliminary step, we first investigate mod-
elling the bilingual data in an end-to-end machine translation context that makes
both of the above assumptions. This is done in order to assess how the challenge of
coping with unsegmented phonemes can be addressed and whether comparable trans-
lation quality can be attained in the absence of segmentation. Can unsegmented
phonemes and target words be meaningfully aligned? If so, then perhaps informa-
tion from the larger language can inform how we process the smaller language. We
then relax this assumption of ample data, scaling available data down in the context
of a bilingual lexicon induction task. Bilingual lexicon induction is a key step in
the language documentation workflow. We compare the strengths and weaknesses of
a variety of models, including (a) monolingual segmentation followed by alignment,
(b) a model that jointly segments and aligns in a hierarchical inversion transduction
grammar framework, (c) traditional IBM Model word alignment models as well as
(d) an extension to IBM Model 3 proposed by Stahlberg et al. (2012).

3.2 Phoneme-Based Machine Translation

Before we investigate bilingual lexicon induction directly, we begin with a prelimi-
nary experiment into translation modelling in an end-to-end machine translation con-
text, demonstrating that translation between foreign phoneme sequences and English
is feasible in the absence of word segmentation and punctuation. This is accomplished
by applying non-parametric Bayesian methods in an inversion transduction grammar
(ITG; see Wu (1997)) framework. Though the later portion of this chapter focuses
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on bilingual lexicon induction through construction of a translation model, this con-
stitutes just one main component in an end-to-end machine translation pipeline. We
perform machine translation here as a preliminary step in order to get an understand-
ing of how effective unsegmented sequences of phonemes can be modelled if ample
data is available, and how it compares to word-based machine translation systems.

There is value in machine translation between endangered languages and English
and vice versa in its own right. First, it has the potential to open up a world of
educational information to speakers of small languages for which manual translation
of a wide variety of materials is impossible, though this involves the more challenging
task of translation into the endangered language, for which language model quality
will be limited by available data. Second, in some instances it could arguably reduce
the rate of language death since there will be more of an incentive for speakers of
small languages to continue speaking their language if more information is available
in it. Third, it would provide a measure of how well a language has been docu-
mented. The more comprehensive the data the machine translation system has to
work with, the better the quality the translations can be expected to be. Because of
this, shortcomings in machine translation quality can highlight gaps in the collected
data, guiding the elicitation of more data. Also, machine translation quality indicates
a lower bound on what humans could conceivably learn from the data. If a machine
can translate to a certain level using the data, then it could be expected that humans
can do at least as well (Abney and Bird 2010).

With the extremely low amount of speech data that is the focus of this thesis, we
cannot expect effective end-to-end machine translation. There are many barriers to
the task of machine translation of endangered languages. Since we must work with
speech, we face the problem of determining appropriate phonemic units for the lan-
guage and sourcing an acoustic model capable of detecting useful phonemes. However,
without a strong pre-existing language model or lexicon, automatically transcribing
audio is very error-prone, making word or phrase alignment more difficult. Other
issues in speech processing and machine translation are also present, such as deter-
mining a useful word segmentation. Furthermore, without linguistic data, actually
evaluating the machine translation systems on real-world data is problematic, since
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it depends on a pre-existing test set.
Experimental assumptions are made to address the scenario where sufficiently

large quantities of data have been acquired by means of this new-wave language
documentation effort and use of this data has made it possible for acoustic model
errors to be resolved to a high degree of accuracy. Error free transcription of English
is also assumed. There is hope that the negative effects of these issues can be mitigated
to some degree through an increased rate of data collection due to the proliferation of
cheap smartphones and other digital technology, however the remainder of the work
in this thesis removes these assumptions.

The work demonstrates that translation from parallel sentences of foreign phonemes
(without word segmentation) to English text is possible in two substantially differ-
ent statistical frameworks and can achieve accuracy approaching that of word–word
systems.

3.2.1 Alignment Approaches

We compare two approaches for the task of phoneme–word phrase alignment,
which include a traditional maximum likelihood based approach, as well as a hierar-
chical Bayesian grammar.

IBM Word Alignment Models

Giza++ (Och and Ney 2003) is the baseline that follows the standard statistical
machine translation (SMT) pipeline of performing alignment with the IBM Mod-
els (Brown et al. 1993). This approach to alignment was used in seminal work on
phoneme–word alignment (Stüker and Waibel 2008; Stüker et al. 2009). The problem
with this approach is that it attempts to capture relationships between individual
foreign phonemes and English words, which is extremely difficult.

Figure 3.1 shows the correct alignments for word–word based models and phoneme–
word based models. This illustration highlights why token-level alignment at finer
granularities is more challenging: there are many more ways things can go wrong.
Moreover, the vocabulary size on the phoneme side is lower, making unique alignment
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das ist hier nicht der fal

this is not the case here

d a s ʔ ɪ s t h iː ɐ n ɪ ç t d ɛ ɐ f a l

this is not the case here

Figure 3.1: Correct alignments for word–word models (top) and phoneme–word mod-
els (bottom).

with word-level translations more challenging.

Bayesian Inversion Transduction Grammars

A more promising model for the task of machine translation of phonemic foreign
sequences into English is the Bayesian inversion transduction grammar framework
of Neubig et al. (2011b); Neubig et al. (2012b). Alignments are obtained through
Bayesian learning of ITGs (Wu 1997) which completely describe the sentence and its
translation as a tree of aligned phrases and binary reordering operations and allow
for alignment via efficient parsing techniques.

However, in contrast to the preceding work involving Bayesian ITG modelling
of many-to-many alignments, where phrases were modelled only at terminal nodes,
(Cherry and Lin 2007; Zhang et al. 2008; Blunsom et al. 2009) the method of Neu-
big et al. (2011b) models phrase-alignments at each node in the ITG using Bayesian
non-parametric methods to encourage learning of larger phrase translation units for
simpler models, backing off to smaller phrases when appropriate to explain the data.
This avoids the issue of only modelling translations of minimal phrases, which other-
wise has to be overcome with heuristic phrase extraction methods.

Figure 3.2, illustrates the generative story of a German–English sentence pair, with
phrases of different granularities being captured. The Reg and Inv tags illustrate
the reordering capacities of the ITG trees, with Reg being a monotone alignment
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d a s ʔ ɪ s t h iː ɐ n ɪ ç t d ɛ ɐ f a l
this is not the case here

h iː ɐ n ɪ ç t d ɛ ɐ f a l
not the case here

d a s ʔ ɪ s t
this is

n ɪ ç t d ɛ ɐ f a l
not the case

h iː ɐ
here

Reg

Inv

Figure 3.2: An ITG structure learnt by Pialign. The phonemes represent the Ger-
man sentence ‘das ist hier nicht der Fall.’ Note that Pialign forces alignments down
to individual tokens, but the leaf nodes presented here represent alignments that were
generated as single phrase by the model.

ordering and Inv flipping the English side with respect to the foreign phonemes.
Allowing flipping at each branch in the tree allows for the vast majority of sentence
reorderings to be expressed.

Beyond allowing phrase translations to be captured at varying granularities in
a statistical framework free of heuristics, another advantage of this joint learning
approach over IBM Model alignment with heuristic phrase extraction (and over UWS
Giza++ discussed in §3.3.1) is that the segmentation on the phoneme side can be
informed by the English, which has been shown to be valuable (Xu et al. 2008;
Chang et al. 2008; Nguyen et al. 2010).

We use the freely available Pialign1 implementation of Neubig et al. (2011b);
Neubig et al. (2012b). Readers are encouraged to delve into Graham Neubig’s thesis
(Neubig 2012) for a more in-depth exposition.

1www.phontron.com/pialign/tool

www.phontron.com/pialign/tool
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3.2.2 Experimental Setup

Data

We used 241k sentences of pretokenized German–English training data from the
Europarl Corpus (Koehn 2005), with development and test sets taken from the 2005
ACL shared task on machine translation.2 German data was used since it allowed
for scaling up to this substantial amount of data, while permitting easier manual
annotation of lexical entries and interpretability of errors. Although German and En-
glish are more closely related languages than language pairs encountered in linguistic
fieldwork, modelling of the language pair is still complex due to varying word order
between the languages and the morphological richness of German relative to English.

For all systems, training data was filtered for sentences where both the source and
target side were 100 tokens or less when segmented at the character level. Sentences
where the fertility (the ratio of tokens on one side to tokens on the other) was greater
than 9 were removed, which constituted a small subset of the training sentences. For
the English language model, the full German–English subset of Europarl was used.

For word–word systems, the data was then left as is for training. In the case
of phoneme–word translation, the German side of the corpus was converted to a
string of phonemes using the MARY text-to-speech system (Schröder and Trouvain
2003), where the phoneme set used is a subset of SAMPA relevant to German.3 After
punctuation and whitespace were removed, the German data was segmented at the
phoneme level. Stress markers and syllable boundaries that aren’t typical outputs
of automatic speech recognition (ASR) systems were removed. The English data
remained tokenized at the word level.

Settings

For alignment, Giza++ (Och and Ney 2003) was used with default settings. In
the case of Pialign, default settings were used with the exception that the base mea-
sure was set to coocll, a log-linear interpolation of phrase co-occurrence probabilities

2statmt.org/wpt05/mt-shared-task
3phon.ucl.ac.uk/home/sampa/german.htm

statmt.org/wpt05/mt-shared-task
phon.ucl.ac.uk/home/sampa/german.htm
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Figure 3.3: BLEU scores comparing phrase tables based on Giza++ and Pialign
for phoneme–word and word–word based MT systems translating from German to
English.

in each direction, with a discount of 5 (as opposed to IBM Model 1 probabilities as a
base measure, which are a poor prior when fine granularity tokens are used (Neubig
et al. 2012b)).

We used Moses (Koehn et al. 2007) for tuning and testing. We performed min-
imum error-rate tuning (MERT) with cube-pruning for both the Giza++ and Pi-
align phrase tables. For testing, the decoder was used with default settings.

The English language model was the same for both word–word and phoneme–
word systems and was a 5-gram interpolated Kneser-Ney model (Kneser and Ney
1995) learnt using KenLM (Heafield 2011).

3.2.3 Results and Discussion

Figure 3.3 shows the BLEU scores for the word–word and phoneme–word systems
as training data is scaled from 1k sentences to ~241k sentences.

For word–word translation, Giza++ and Pialign phrase tables are competitive,
with Giza++ performance scaling as an almost perfectly logarithmic function of the
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number of training sentences. For phoneme–word translation, performance between
the approaches begins to diverge at 128k sentences, when Pialign gains a ~2.5 BLEU
point advantage.

This advantage of Pialign over Giza++ for phoneme–word translation is ex-
pected, due to the aforementioned reason of Pialign naturally capturing translation
at varying granularities, while Giza++ produces translation model probabilities just
at the token level, requiring subsequent heuristic phrase extraction. In this sense, it
is somewhat surprising how well Giza++ manages to keep pace with Pialign on
smaller training sets. The use of a common language model in the MT pipeline prob-
ably helps to normalize the scores, which are based on word-level English output: as
long as there is sufficient signal to produce the output word tokens, the quality of
source-side segmentation is not so important. In the next section (§3.3) we evaluate
the quality of the entries intrinsically, using human annotators for deeper insight into
the quality of the learnt phrases.

While application of Giza++ allows for phrase-based machine translation, it
still depends on combining two sets of one–many word alignments using heuristics
to create phrasal alignments. While this is sufficient for word–word translation tasks
and char–char translation tasks for similar languages (Vilar et al. 2007), the lack of co-
occurrence of letters in dissimilar languages makes for poor word alignments. That is,
it isn’t very helpful to model the probability of an English letter given a German one.
It’s important to note that this same issue extends to the task of aligning phoneme
sequences with words, as lexical translation probabilities that relate phonemes to
words have little meaning and make effective modelling impossible.

Most importantly, these results demonstrate that machine translation using sentence-
aligned phoneme streams and English is feasible, although the performance signifi-
cantly underperforms that of traditional frameworks where punctuation and word-
level tokenization is present. More importantly for the purposes of this thesis, the
results actually suggest that the alignments and phrase tables are meaningful and can
be potentially used for other tasks such as bilingual lexicon induction that are less
data-onerous than end-to-end MT.

There are a number of ways a phoneme-based machine translation could be cre-
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ated. In this section we have evaluated just one setup using Pialign and Moses in
the interest of demonstrating the feasibility of the approach. Though investigating
the efficacy of other phrase alignment tools in the task of translation between foreign
phoneme sequences and written text could be done, the point is that the issue of no
word segmentation and the fine granularity of phonemes can reasonably be overcome,
and in the rest of the thesis we consider other tasks that involve translation modelling
but not machine translation.

Experimental results have the limitation that spoken speech takes a different form
to written speech converted to phonemes, with spoken speech exhibiting additional
complicating features such as coarticulation. Furthermore, while we scale up results
to hundreds of thousands of sentences, if such accurate phonemic transcriptions were
available, it’s likely there would be word segmentation provided by a linguist.

3.3 Phoneme-Based Bilingual Lexicon Induction

In this section we investigate a task more directly relevant to documentary lin-
guistics: creating bilingual lexicons. We consider the task of automatically learning
monolingual and bilingual lexical items from unsegmented phonemic transcriptions
of bilingual audio where segments of speech in one language are paired with spoken
translations in another. In doing so, we remove the first assumption articulated in the
introduction of this chapter, which was of an abundance of phonemic transcriptions
in parallel with orthographic translations in a larger language. Relaxing this assump-
tion brings us closer to a real-world scenario in its own right, but in addition, it makes
the second assumption (that the phoneme transcriptions are correct) more realistic,
since the more limited the amount of source-language data, the more reasonable it is
that a linguist may manually transcribe it.

Such transcriptions could arise from two scenarios. The first is when future philolo-
gists phonetically transcribe speech of a language post-mortem, without native speak-
ers to assist in word segmentation. In such instances lexicon induction would aid in
linguistic analysis of the language. The second is by instead employing automatic
speech recognition technologies for the same task. In both cases lexicon induction
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could aid in bootstrapping ASR systems targeting the language’s untranscribed au-
dio. We assume a transcription of the English translation, since English speech can
be reliably and cheaply transcribed.

We evaluate existing models that have been used for this purpose in previous
work, and report two additional models which demonstrate improvements in lexicon
induction. We show that monolingual and bilingual lexical entries can be learnt
with high precision from corpora having just 1k–10k sentences. We explain how our
results support the application of alignment algorithms to the task of documenting
endangered languages.

Previous work on bilingual lexicon induction using sentence-aligned corpora has
focused primarily on large corpora of written text (Wu and Xia 1994; Melamed 1996;
Caseli et al. 2006; Lardilleux et al. 2010). Bilingual lexicon induction applied to
phonemically transcribed audio, on the other hand, introduces problems including
the lack of word segmentation and the small quantities of data. There has been
limited work on learning lexicons from phonemic transcriptions. Stüker and Waibel
(2008); Stüker et al. (2009), mentioned above, take a first look at phoneme–word
translation modelling, using traditional IBM Models (Brown et al. 1993) in order
to determine alignments, and applying heuristics to extract dictionaries. Stahlberg
et al. (2012) propose Model 3P, which builds upon the generative story of IBM
Model 3 by adding additional word length parameters and allowing it to significantly
outperform the IBM models (Stahlberg et al. 2013; Stahlberg et al. 2014a; Stahlberg
et al. 2014b).

Building on this work, we investigate two models that haven’t been considered in
this context, and demonstrate that they can outperform the models that have been
considered. The first performs unsupervised word segmentation followed by word
alignment. The second jointly performs word segmentation and alignment.

Importantly, we evaluate the models on a data set that is significantly smaller than
they have been evaluated on previously in this chapter and in other work, containing
between just 1k and 10k sentences, corresponding to 13k and 132k words. As a point
of comparison, Stahlberg et al. (2012) used 123k sentence pairs, Stüker et al. (2009)
used 146k parallel sentences, Stüker and Waibel (2008) used 155k parallel sentences
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and Stahlberg et al. (2013) use 30k Bible verses for lexicon extraction. Our training
set likely corresponds to roughly 1 to 10 hours of speech (Cieri and Liberman 2006;
Bird and Chiang 2012; Bird et al. 2014b). These quantities of data are realistic in the
context of documentation of endangered languages, though the applicability of these
techniques also applies more generally to low-resource languages that have no body
of written resources.

In the previous section, we evaluated MT for two different translation models.
That extrinsic evaluation yields limited insight to the quality of the lexical entries
on the phonemic side, and their implicit segmentation. We now run experiments to
intrinsically assess the induced lexicons’ precisions at k entries. We do this by applying
the alignment models to a German–English corpus, using heuristics (namely, limiting
the number of translations of a given word) to extract lexical entries before having
them manually annotated.

Results demonstrate that hundreds of bilingual lexical entries can be learnt with
good precision, with the additional proposed methods outperforming Model 3P on a
data set of 10k sentences. This offers promise of the technique’s applicability in a lan-
guage documentation context. Moreover, the majority of incorrect entries correspond
to well segmented, but misaligned, source words.

3.3.1 Translation Models

Our lexicon induction approach uses various phrase alignment techniques to ac-
count for the lack of word segmentation and learn phrase translation tables. There
are several methods for addressing word segmentation in machine translation (Deng
and Byrne 2005; Xu et al. 2008; Chang et al. 2008; Nguyen et al. 2010; Stahlberg
et al. 2014b), but there has been limited application in a low-resource context. In
this section we examine four representative methods to apply to parallel sentences
comprised of source phoneme tokens and target words.

Giza++ and Model 3P have been investigated previously for the task of phoneme–
word alignment and are evaluated as a point of comparison for the other two methods,
UWS Giza++ and Pialign, which we demonstrate are effective for this task.
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this is not the case here

this is not the case here
Fertility

this is here not the case
Distortion

this/3 is/4 here/3 not/4 the/3 case/3
Word length

d a s ʔ ɪ s t h iː ɐ n ɪ ç t d ɛ ɐ f a l
Translation

(das ist hier nicht der Fall)

Figure 3.4: The generative model of Model 3P, which extends IBM Model 3 to
include additional word length parameters. This allows it to model relationships
between source phonemes and target words better than the traditional IBM models.

Model 3P

Model 3P (Stahlberg et al. 2012) builds upon the generative model of IBM
Model 3 (Brown et al. 1993) by adding additional word length parameters (see Figure
3.4), allowing it to outperform traditional IBM models on phoneme–word alignment
tasks. After initializing the model with learnt IBM Model parameters, the Pisa
implementation of Model 3P4 uses a genetic algorithm to learn the parameters of the
model.

The additional word length parameters, distinct from the fertility parameters
(which in a traditional model indicates how many target words a source word is
mapped to), allow Model 3P to learn latent word representations that would not be
able to be captured in a direct phoneme–word mapping. This allows for better seg-
mentation performance. The key distinction between the fertility parameters and the
word length parameters is based on their relationship to the reordering step. Fertility
happens before reordering in the generative story. If the word length step also hap-
pened before reordering, the phonemes of a word would likely be reordered. Instead,
including this step as a separate step from fertility that happens after reordering

4code.google.com/p/pisa

code.google.com/p/pisa
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das ʔɪs t hiːɐ nɪç t dɛɐ fal

this is not the case here

Figure 3.5: Unsupervised segmentation of words followed by alignment, as done in
the UWS Giza++ approach.

preserves the monotonicity of the phonemes representing the word.

UWS Giza++

UWS Giza++ (unsupervised word segmentation and Giza++) first performs
unsupervised word segmentation using the Bayesian Pitman-Yor language model
(Mochihashi et al. 2009), as implemented in the tool pgibbs5 (Neubig 2014). Align-
ment is then performed between these phoneme sequences and the English words
using Giza++ (see Figure 3.5). This was hypothesized to be more appropriate than
Giza++ alone since it would result in breaking the foreign phoneme sequences into
coarser tokens that translate better to English. Note that there is not an expectation
that the word segmentation performs well with respect to what is considered a canon-
ical word in the given language. Instead, the key idea is that the segmentation model
breaks phonemes into frequently repeating units that capture more meaning than
just using individual phonemes. Consider Figure 3.5, where the erroneous segmen-
tation of ist and nicht nevertheless allows for accurate alignment after monolingual
segmentation.

3.3.2 Experimental Setup

Data

To train the translation models we used the German–English parallel corpus from
Europarl v7 (Koehn 2005). In order to imitate a phoneme transcription, we converted
the German side to a sequence of phonemes (using the SAMPA phoneme alphabet)

5github.com/neubig/pgibbs

github.com/neubig/pgibbs
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with the MARY text-to-speech system (Schröder and Trouvain 2003). For example,
‘dieser’ is represented as a sequence of space-separated phonemes, /d iː z ɐ/.

The phonemic output of MARY includes some information that cannot reasonably
be detected by an ASR system. In particular, stress markers and syllable boundaries
are features output by the system, so we filtered them out. The granularity of tokens
on the source side was thus at the phoneme level while English words were used on
the target side.

Small quantities of data were used in order to mimic the realities of data collection
for endangered languages. We experimented with varying data sizes to evaluate how
the best method’s performance scales. We used data sets of 1k, 2k, 5k, and 10k parallel
sentences (corresponding to between ∼13k and ∼132k words), a quantity that is vastly
smaller than what is typically used in statistical machine translation experiments,
but which approaches reasonable size for reliable manual transcription. We limited
training sentences to those with fewer than 100 phonemes.

Training

Giza++ was trained using the train-model.perl script included in Moses with default
settings, using the grow-diag-final-and heuristic for symmetrization/phrase
extraction and the msd-bidirectional-fe reordering model.

Model 3P was trained with the Pisa implementation on default settings.

UWS Giza++ was trained by running pgibbs first, and then running Giza++ over
the segmented phoneme sequences with default settings. The pgibbs settings
were default, with the following exceptions: block sampling was used with a
block size of 50, a Pitman-Yor process was used, and 1,000 iterations were run.
The final sample output by pgibbs was used as input to Giza++. Giza++ was
run in the same way as above, using train-model.perl with heuristics for phrase
extraction. It’s worth noting that the hyperparameters supplied to pgibbs dic-
tate segmentation granularity. These hyperparameters were not optimized, but
were they to change, we would expect the average length of the word units
learnt to be different.
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Pialign We ran Pialign with the base distribution being a log-linear interpolation
of phrase co-occurrence probabilities in both directions (with a discount of 5),
a beam width of 10-6, a batch length of 40, for 10 iterations. The final sample
was used for the purposes of phrase table extraction.

Bilingual Lexicon Extraction

To create bilingual lexicons using the above approaches, entries in the phrase
tables were first sorted according to their joint probabilities. We only included entries
where the length of the phonemic side was 2 or greater. This heuristic was used since
it removed many spurious entries where one foreign phoneme was aligned to an entire
word. Additionally, for a given English entry, no more than the top 5 translations
were included. A similar filter was applied to prevent more than 5 English translations
of a given phoneme sequence. The top 500 entries of each lexicon were then manually
annotated.

Annotation

Entries in the lexicon were evaluated by a native German speaker.6 They were
labelled as Correct, Incorrect or Ambiguous. Correct entries are those that can
readily be found in existing German–English dictionaries. For example, the entry
/vɪsən/⇔know (‘wissen’). Incorrect entries are those whose translations are deemed
to be clearly incorrect by the annotator. These include entries such as /tsuːʔaɪn/⇔the
(not a German word) and /bədɪŋʊŋ/⇔be (‘Bedingung’). In the latter case, note
that although the word alignment is incorrect, the phonemes represent a correctly
segmented German word, ‘Bedingung.’

Ambiguous entries are those that are neither strictly correct nor incorrect. These
include entries that have boundary errors. For example, /nviːɐ/⇔we (‘wir’) includes
an extra /n/ in an otherwise correct entry. Other Ambiguous entries are those that,
while not found in lexicons, are nonetheless meaningful. These usually highlight

6We measured inter-annotator agreement by doubly annotating a sample of 1k entries, using a
non-native German speaker, resulting in κ = 0.69.
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interesting linguistic phenomena. For example, /nɪçt/⇔does not (‘nicht’) couldn’t be
found in Leo,7 however it captures a meaningful grammatical relationship between
the languages. Consider the phrase ‘er rennt nicht’ and one English translation, ‘he
does not run,’ where this entry makes sense.

3.3.3 Quantitative Evaluation

For the evaluation, precision is favored over recall. Because it is not clear what
entries can be reliably learnt from a given bilingual corpus, a measure of recall is
difficult to ascertain. In the context of this work it is also more important to determine
what can be reliably learnt with high confidence from the small amount of available
data.

Precision at k Over Lexical Entries

Figure 3.6 shows the precisions of the bilingual lexicons as the number of entries
increases from 1 to 500, using methods trained on 10k sentences. The ‘traditional’
approach with Giza++ is the worst performer across the board. This is to be
expected as it uses lexical translation probabilities between poorly translated German
phonemes and English words as the basis for the extracted phrases. As a point of
comparison at the other extreme, using Giza++ on the gold-standard segmentations
of 10k sentences of the original German–English yielded an oracle lexicon with a
precision of 0.932 over the top 500 entries.

The other methods are more similar in performance, with the best performing
approach being Pialign. Though the results are close, the better performance of
Pialign as compared to the unsupervised word segmentation approach can possi-
bly be attributed to the added information the English side provides in determining
useful German segmentation. This contrasts to the unsupervised word segmentation
approach which segments using only monolingual German phonemic data. Perfor-
mance gains over Pisa’s Model 3P can perhaps be attributed to limitations in
the generative story of Model 3P. Rather than learning explicit phrasal relation-

7www.leo.org

www.leo.org
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Figure 3.6: Comparison of the lexicon induction methods on the 10k sentence dataset
using strict evaluation, where only Correct entries improve precision.
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Figure 3.7: Comparison of the lexicon induction methods on the 10k sentence dataset,
where Ambiguous entries improve precision.
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Figure 3.8: Comparison of the precisions of Pialign lexicons when learnt from be-
tween 1k and 10k sentences.

ships between phoneme groups and words, Model 3P conditions the generation of
phonemes from latent words and the location within that word. Similar trends in the
scores were demonstrated when evaluating precisions that accepted Ambiguous entries
as also Correct. Additionally, in contrast to Model 3P’s initialization, which uses the
limited phoneme–word alignments of Giza++, the base distribution Pialign draws
from additionally uses co-occurrence probabilities of phrases, avoiding this limitation.

Note that when Ambiguous entries are considered valid (Figure 3.7), Giza++
precisions gain the most, and jump up towards 80%. This is due to this approach
often including a lot of boundary errors. The phoneme sequence is often incorrectly
segmented, leaving promising resulting entries that aren’t complete German words.
UWS Giza++ becomes the best performing approach because the issue of under-
segmentation propagating to alignment is reduced, since evaluation is softer.

Given that Pialign was the best-performing approach on 10k sentences, we ad-
ditionally evaluated it on smaller data sizes (see Figure 3.8). The fewer sentences of
phonemes that are supplied, the more reasonable it is to assume that they can be ac-
quired through reliable manual transcription in a real language preservation scenario.
Precision appears to be a logarithmic function of the size of the training data. These
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Figure 3.9: Comparison of the monolingual lexicon segmentation precisions for the
four lexicon induction methods over the 10k sentence dataset.

results suggest that the first few hundred entries in a lexicon can be acquired with
good precision even with very limited data.

Word Segmentation Performance

In addition to evaluating the quality of the bilingual entries, we evaluated the
quality of monolingual lexical entries on the phoneme side. This is motivated by the
observation that often correct phonemic word units were extracted, but mistranslated.
Since monolingual entries are useful in their own right for language documentation
purposes (for instance, as a useful starting point for manual correction) and language
modelling, we assessed entries that were labelled Incorrect or Ambiguous to deter-
mine whether the phonemic component was segmented correctly at the word bound-
aries. Note that while it is common to measure token segmentation performance with
an F score (as Goldwater et al. (2006) do, for example), we are measuring the quality
of types in a lexicon, and so this should be considered word segmentation in a different
sense.

Figure 3.9 shows improved performance of Pialign and Model 3P relative to
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Incorrect Ambiguous

Method Sents Total % Acc. % Total % Acc. %

Giza++ 10k 19.4 15.5 36.0 0.5
Model 3P 10k 14.6 46.6 17.6 13.6

UWS Giza++ 10k 7.2 38.9 13.2 3.0
Pialign 10k 9.6 62.5 7.8 25.6

Pialign 5k 13.4 62.7 9.0 35.6
Pialign 2k 16.6 60.2 16.6 18.1
Pialign 1k 26.2 52.7 22.2 20.7

Table 3.1: The accuracy of the segmentation of phonemic lexical entries judged
Incorrect and Ambiguous. The Total % columns indicate the percentage of entries
that were Incorrect or Ambiguous. The Acc. % column indicates the percentage of
those Incorrect and Ambiguous entries that were well segmented, despite not being
annotated as Correct.

the UWS Giza++ approach. In the approach of UWS Giza++, it is impossible to
break apart phoneme groups that have been grouped across word boundaries by the
monolingual segmentation. However, the other methods aren’t constrained by poorly
informed early segmentation.

Table 3.1 shows the proportion of the total entries judged to be well segmented but
were either Ambiguous with boundary errors or Incorrect. Pialign demonstrates
effective inference of lexical items with few boundary errors, outperforming the other
methods, regardless of the amount of training data used. This corroborates past
research that indicates that word segmentation can be better informed with bilingual
data (Xu et al. 2008; Chang et al. 2008; Nguyen et al. 2010).

Although we are evaluating monolingual entries, the entries of UWS Giza++
are still informed by the alignments with English, as the entries evaluated are the
highest probability bilingual lexical entries found. This mitigates the problem of the
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Token Occurrences

ʔ 13,096
ə 8,587
n 8,138
t 6,422
ən 6,300
d 5,929
s 3,226
ɐ 3,136
fl 3,099
diː 2,913

Table 3.2: The most common lexical entries found by the unsupervised word segmen-
tation, without harnessing bilingual information.

effort required to tweak the hyperparameters of the word segmenter to find the right
granularity of phoneme clusters. The granularity is instead informed by the English.
To appreciate this, consider the most occurring lexical entries of the monolingual
supervision without being informed by the alignments, as shown in Table 3.2. Of
these, the only one that is an actual word is /diː/ (die). The rest are common sub-
word units. Note though that /ən/ (-en) is a common suffix for infinitive verbs—a
particularly useful morpheme.

3.3.4 Qualitative Evaluation

To appreciate the peculiarities and differences of these approaches, we now will
consider some general observations made by examining the lexicons of the various
approaches, discussing some representative lexical entries and word alignments.

Model 3P seemed generally more susceptible to off-by-one errors at the bound-
aries of entries. A high confidence—but Incorrect—entry that occurred in the lexi-
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(vielen dank)

f iː l ə n d a ŋ k

thank you

Figure 3.10: The phonemes of vielen dank as aligned to thank you by Model 3P.

con based on Model 3P alignments was /iːləndaŋk/⇔you (vielen dank). The English
makes some sense, as ‘vielen dank’ can be translated as thank you or thank you very
much, although the thank component on the English side is missing. Notably, the
German side is segmented incorrectly at the phrase boundary, missing the initial
phoneme /f/ (it should be /fiːləndaŋk/). It turns out that in sentences containing
this German phoneme sequence, the /f/ is often aligned to English thank (see Figure
3.10). In the lexicons created by both Pialign and UWS Giza++ this entry was
correctly phrase-segmented as /fiːləndaŋk/.

A similar such entry in the Model 3P lexicon was /daspaɐlaːmɛn/⇔parliament,
where the source side is missing the final /t/. In the lexicon constructed using Pi-
align, such boundary mistakes were scarce. The equivalent entry constructed by
Pialign was /daspaɐlaːmɛnt/⇔parliament (‘das Parlament’). Note that this entry
was not considered strictly Correct nor correctly segmented, as it is comprised of two
words, with the German article being included (note that the article is optional in En-
glish). However in this case, as in almost all others, Pialign still segments correctly
at the boundaries of multi-word units (as distinct from correctly segmented individual
words). The only instance of an entry annotated as Incorrect in the top 500 entries
of the Pialign lexicon where the phoneme side was also incorrectly segmented was
/tvoɐdən/⇔been, where there is a spurious /t/ prefixing the phonemic representation
of worden. Investigating the alignments highlights the cause of this entry. Phoneme
sequences such as /ʊntɐʃtʏtstvɔɐdən/ (unterstützt worden) and /ʔɛɐʁaɪçtvɔɐdən/ (erre-
icht worden) include verbs that often appear inflected with different suffixes elsewhere,
but end with a /t/ when occurring before /vɔɐdən/ (unterstützen and erreichen re-
spectively, with the suffix -en). High correlation of /vɔɐdən/ (worden) and the suffix
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/t/ likely caused this entry.
The lexicon constructed using Model 3P demonstrated an apparent bias to

shorter units. In that lexicon, the above entry was segmented correctly as /vɔɐdən/.
On the other hand, Pialign tended to lean towards longer multi-word units as a
result of the model’s capacity to capture phrases at coarser granularities when it is
useful to do so.

/poːɛteːɐʁɪŋ/⇔Mr Poettering was present in the Pialign lexicon, where the title
is missing on the source side. This can be attributed to varying morphology of the
title, which takes the form of both ‘Herr’ and ‘Herrn’ depending on context. However,
since the English side consistently takes the form of ‘Mr Poettering’, evidence is built
up primarily to relate both the title and name on the English side to only the name
on the phoneme side.

UWS Giza++ yielded high confidence, yet erroneous, entries, such as /tʔ/⇔is,
/nʔ/⇔to, /nʔ/⇔of that didn’t occur in the other lexicons. This is likely a result
of the pipelined nature of the approach, where monolingual segmentation is first
performed before alignment. The German components to these entries represent
frequently occurring phonemic sequences since many words end with /t/ or /n/ and
many start with a glottal stop, /ʔ/, before some vowel. The English side represent
function words that are so commonly occurring that the coincidental co-occurrence
of these phonemes and English words lead them to be learnt by UWS Giza++ but
not by Pialign or Model 3P. Entries such as this also partly explain why UWS
Giza++ failed to perform as well as Model 3P in segmenting lexical entries, despite
outperforming it in bilingual precision. The other likely reason is that chunks that
cross word boundaries learnt during the monolingual segmentation phase propagate
into the translation modelling.

3.4 Discussion

We found that meaningful bilingual relationships can be established for the pur-
poses of machine translation and bilingual lexicon induction despite a mismatch in
granularity between the source and target sides. The best performing models are
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those that allow flexibility in what granularity is used for modelling (such as Pi-
align), overcame the mismatch by grouping phonemes together into word-like units
(UWS Giza++), or added additional parameters to explain the production of the
fine-grained units from the coarse (Model 3P).

In the machine translation results of §3.2 Giza++ did not underperform Pialign
on low amounts of data. However, in this manual evaluation of the quality of the
lexical entries, Pialign is substantially better. This shows that comparably accurate
segmentation of phrase table entries is not required for comparable machine transla-
tion performance with ~10k parallel sentences of training data when measuring the
BLEU score of target word-level translations.

3.4.1 Evaluation Issues

Evaluation of the bilingual lexical entries highlighted some issues involved in intrin-
sically measuring bilingual lexicons. Firstly, the evaluation using precision, whereby
entries are treated as correct or incorrect, supposes a dichotomy that isn’t actually the
case. While we can consider lexical entries to be correct if they occur in an established
bilingual dictionary, there are many relations between phonemes on the source side
and words on the target side that are useful for models to infer based on downstream
tasks such as machine translation (such as/nɪçt/⇔does not (‘nicht’)). Such a bilin-
gual lexical item would be useful for machine translation systems as there are many
sentences in which this is an appropriate entry in the context of the downstream task
(eg. Er rennt nicht (“He does not run”)).

Word segmentation is another dimension in which learnt lexical entries may be
ambiguous. What constitutes a word is ambiguous, particularly in languages that
have no standardized orthography. Aside from models committing off-by-one errors
frequently, there are also multi-word units that are meaningful and have practical use,
despite not aligning in a strictly correct sense to a correct translation. The challenge
of assessing correct segmentation and alignment is a burden on the annotator. Though
the Ambiguous label was introduced, the issue is not solved. If a word segmentation
is off-by-one is it Ambiguous? What if it’s off-by-two?
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This highlights an important point about word and phrase alignment algorithms.
Such algorithms are rich methods for finding frequent co-ocurrences in parallel cor-
pora (though are to a large extent capable of ‘explaining away’ non-translation co-
ocurrences that frequently co-occur). Incidentally words and their translations fre-
quently co-occur, which is convenient for translation modelling. However, many issues
that arise in translation stem from such indirect associations (Melamed 1996).

3.4.2 Reconsidering the Value of Bilingual Lexicon Induction

Since downstream extrinsic tasks such as machine translation and speech recog-
nition can benefit from entries in the phrase table that are incorrect when evaluated
intrinsically in a bilingual lexicon induction context, it is worth stepping back to
consider how bilingual lexicon induction is actually useful to a linguist documenting
languages, and how automatically learnt translation models may help that process.

Bilingual lexicon induction is a fundamental task in language documentation. In
contrast to phonetic or phonemic transcription, which considers monolingual acoustic
properties of the language such as allophonic variations, bilingual lexicon induction
relates words in the source language to words in a larger language. This is key for
preserving understanding of meaning, since most audio has no grounding in the form
of images with which to ascertain meaning from. However, the linguist’s creation of
dictionaries is much more than the process of collecting tokens and relating them to
larger “contact” languages. It involves exploring different senses of the words (per-
haps coming up with example sentences), how they might be inflected, and what
part of speech they take. They’re carefully crafted based on experience with the
language. Computers cannot fill the linguist’s role here. What computers can do
is provide linguists with a large list of statistically sound, unbiased bilingual rela-
tionships which can inform their judgements, speeding up the process by making the
computer the ‘harmless drudge’ (Johnson 1755) helping the linguist to better focus
on more interesting things.

In the course of transcribing the data that could be fed to models described in
this chapter, linguists may have actively been creating a lexicon, since it is one of the
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fundamental starting points of language documentation. Indeed a lexicon of modest
size may exist before transcription has even begun, or arise during transcription and
glossing.

Given that downstream tasks might benefit from entries that would be considered
incorrect by the measures used in §3.3, I argue that such simple intrinsic measures of
bilingual lexicon quality, while generally informative in the case of large differences
(such as those between Bayesian ITG methods and IBM word models in the context
of phones) are not particularly useful in the language documentation context. The
important insights into the properties of each model came from the qualitative assess-
ment of the nature of the entries each model produced. Providing linguists with such
models may be useful for them to ground their understanding of the language based
on statistics and help them see patterns they may have overlooked while highlighting
differences in the languages. But the choice between such models should not be based
entirely on narrow differences in the precision of models.

Therefore for the remaining investigations in the rest of this thesis, we do not
measure bilingual lexicon quality intrinsically, but rather consider it as some piece of
a larger body of information the models learn or can harness in some other prediction
task. In Chapter 5, learning bilingual relations is an integral part of disambiguating
the speech signal. In the next chapter (Chapter 4), a presupposed bilingual lexicon
containing just word-to-word pairings is used in order to improve language modelling
in contexts where there is limited data.

The assumption of error-free phonemic transcriptions limits the insight from the
experimentation in this current chapter, and will be addressed Chapters 5 and 6.



Chapter 4

Cross-Lingual Low-Resource
Language Modelling

Large parts of this chapter have appeared in:

Adams et al. (2017) Cross-lingual word embeddings for low-resource lan-
guage modeling, in Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics (EACL), Valen-
cia, Spain.

4.1 Introduction

In Chapter 3 we explored bilingual lexicon induction using small quantities of
accurate phonemic transcriptions paired with orthographic translations. However,
such data is rarely—perhaps never—available in the absence of other information
in the language. Even in the Aikuma-style data collection scenario, typically a lin-
guist documenting the language will have constructed a basic lexicon, and the lexicon
will often contain more information than simple bilingual token level mappings, with
things such as part-of-speech tags and example sentences. Furthermore, in the pro-
cess of phonemically transcribing speech the linguist will determine candidate word
segmentations. It is phonemic transcription that continues to remain a significant
bottleneck for the traditional workflow. In Chapter 5 we investigate methods to di-
rectly do this, but in this chapter we explore the use of bilingual lexicons to improve
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statistical language models, an important component of speech recognition systems,
as well as other tools that involve text generation in the language, such as machine
translation systems.

In creating language models for endangered languages, the available textual data
is limited to phonemic transcriptions prepared by linguists, since most of the world’s
languages are not actively written (Bird 2011). Since phonemic transcription is time-
consuming, such data is scarce. This makes language modelling, which is a key tool
for facilitating speech recognition of these languages, a difficult challenge. One of
the touted advantages of neural network language models (NNLMs) is their ability
to model sparse data (Bengio et al. 2003; Gandhe et al. 2014). However, despite
the success of NNLMs on large datasets (Mikolov et al. 2010; Martens 2011; Osband
et al. 2016), it remains unclear whether their advantages transfer to scenarios with
extremely limited amounts of data, though Gandhe et al. (2014) find interpolation of
neural network language models with count-based methods to outperform standard
n-gram models in low-resource settings and Hao Fang et al. (2015) outperform count-
based methods without interpolation by using recurrent neural network language
models, also in low-resource settings.

Appropriate initialization of parameters in neural network models has been shown
to be beneficial across a wide variety of domains, including speech recognition, where
unsupervised pre-training of deep belief networks was instrumental in attaining break-
through performance (Hinton et al. 2012). Neural network approaches to a range of
natural language processing (NLP) problems have also been aided by initialization
with word embeddings trained on large amounts of unannotated text (Frome et al.
2013; Zhang et al. 2014; Lau and Baldwin 2016) or on other tasks (Collobert and
Weston 2008; Zoph et al. 2016). However, in the case of underdocumented languages
we do not have the luxury of large quantities of this unannotated text.

As a remedy to this problem we focus on cross-lingual word embeddings (CLWEs),
which are learnt using information from multiple languages. Recent advances in
CLWEs have shown that high quality embeddings can be learnt even in the absence of
bilingual corpora by harnessing bilingual lexicons (Gouws and Sogaard 2015; Duong
et al. 2016b). This is useful as some threatened and endangered languages have
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been subject to significant linguistic investigation, leading to the creation of high-
quality lexicons, despite a dearth of transcriptions. For example, the training of a
quality speech recognition system for Yongning Na, a Sino-Tibetan language spoken
by approximately 40k people, is hindered by this lack of data (Do et al. 2014a) despite
significant linguistic investigation of the language (Michaud 2008; Lidz 2010) and the
availability of an online multilingual dictionary (Michaud 2016).

In this chapter we address two questions. First, is the quality of CLWEs depen-
dent on having large amounts of data in two languages (symmetrical quantities in
two languages), or can large amounts of data in a single target language inform em-
beddings trained with little source language data (asymmetric quantities)?1 Second,
can such CLWEs improve language modelling in low-resource contexts by initializing
the parameters of an NNLM?

To answer the first question, we scale down the available monolingual data of the
source language to as few as 1k sentences, while maintaining a large target language
dataset. We assess intrinsic embedding quality by considering correlation with hu-
man judgment on the WordSim353 test set (Finkelstein et al. 2002). For training
CLWEs in this chapter, we build on the work of Duong et al. (2016b). Their method
harnesses monolingual corpora in two languages along with a bilingual lexicon to con-
nect the languages and represent the words in a common vector space. The model
builds on the continuous bag-of-words (CBOW) model (Mikolov et al. 2013a) which
learns embeddings by predicting words given their contexts. The key difference is
that the model also tries to predict a source language translation of a target language
word centered in a target language context. Since dictionaries tend to include a num-
ber of translations for words, an expectation-maximization style training algorithm
is used in order to best select translations given the context. This process thus al-
lows for polysemy to be addressed which is desirable given the polysemous nature of
bilingual dictionaries. In our work, we remove the assumption that significant mono-
lingual corpora are available on both sides, instead investigating the resilience of such

1Note that we have used a different nomenclature to our paper, where source was used to denote
the large language because it was the source of distributional information in the transfer learning
framework. However, to maintain consistency with the rest of this thesis, where source is the low-
resource language, we instead use target to refer to the large language.
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approaches in the asymmetric case when one side has scarce monolingual data.
To answer the second question, we then perform language modelling experiments

where we initialize the parameters of long short-term memory (LSTM) language mod-
els using such CLWEs for low-resource language model training across a variety of
language pairs.

Results indicate that CLWEs remain resilient when source language training data
is drastically reduced in a simulated low-resource environment (§4.2), and that initial-
izing the embedding layer of an NNLM with these CLWEs consistently leads to better
performance of the language model (§4.3). In light of these results, we explore the
method’s application to Na, an actual low-resource language with manually created
lexicons and transcribed data (§4.4). We present a discussion of the negative results
found, which highlights challenges and future opportunities.

4.2 Resilience of Cross-Lingual Word Embeddings

Previous work using CLWEs assumes a similar amount of training data for each
available language, often in the form of parallel corpora. Recent work has shown that
monolingual corpora of two different languages can be tied together with bilingual
dictionaries in order to learn embeddings for words in both languages in a common
vector space (Gouws and Sogaard 2015; Duong et al. 2016b). In this section we
remove the assumption of the availability of large monolingual corpora in the source
and target languages, and report an experiment on the resilience of such CLWEs
when data is scarce in the source language but plentiful in a target language.

The idea underpinning word embeddings is the distributional hypothesis of Har-
ris (1954): that words with similar meaning appear in similar contexts. Prior work
has demonstrated the efficacy of cross-lingual word embeddings, suggesting that the
distributional hypothesis holds across languages. That is, that words and their trans-
lations appear in similar semantic contexts. By greatly reducing the data on the
source side, we put this cross-lingual distributional hypothesis to a tougher test of
how well CLWEs perform as a vehicle for transferring information from a resource-rich
language to a low-resource language.
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4.2.1 Experimental Setup

Word embedding quality is commonly assessed by evaluating the correlation of the
cosine similarity of the embeddings with human judgements of word similarity. Here
we follow the same evaluation procedure, except where we simulate a low-resource
language by reducing the availability of source English monolingual text while pre-
serving a large quantity of target language text from other languages. This allows us
to evaluate the CLWEs intrinsically using the WordSim353 task (Finkelstein et al.
2002), which compares word embedding similarity judgements with those of human
annotators, before progressing to downstream language modelling where we addition-
ally consider other source languages.

We trained a variety of embeddings on English Wikipedia data of between 1k
and 128k sentences from the training data of Al-Rfou et al. (2013). In terms of
transcribed speech data, this roughly equates to between 1 and 128 hours of speech
transcribed orthographically, with word segmentation. For the training data, we
randomly chose sentences that include words in the WordSim353 task proportionally
to their frequency in the set. As monolingual baselines, we use the skip-gram (SG) and
continuous bag of words (CBOW) methods of Mikolov et al. (2013a) as implemented
in the Gensim package (Řehůřek and Sojka 2010). We additionally used off-the-shelf
CBOW Google News Corpus embeddings with 300 dimensions, trained on 100 billion
words.

The CLWEs were trained using the method of Duong et al. (2016b) since their
method addresses polysemy. The same 1k-128k sentence English Wikipedia data
was used but with an additional 5 million sentences of Wikipedia data in a target
language. The target languages include Japanese, German, Russian, Finnish, and
Spanish, which represent languages of varying similarity with English, some with
significant morphological and syntactic differences. To relate the languages, we used
the PanLex lexicon (Kamholz et al. 2014). Following Duong et al. (2016b), we used
the default window size of 48 so that the whole sentence’s context is almost always
taken into account. This mitigates the effect of word re-ordering between languages.
We trained with an embedding dimension of 200 for all data sizes as this larger
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Figure 4.1: Performance of different embeddings on the WordSim353 task with differ-
ent amounts of training data. GNC are the Google News Corpus embeddings, which
are constant (having been trained on a 100 Billion word corpus). CBOW and SG are
the monolingual word2vec embeddings. The other, coloured, lines are all cross-lingual
word embeddings learnt to harness the information from 5m sentences from one of
various source languages (Japanese, German, Russian, Finnish, Spanish).

dimension turned out to be helpful in capturing information from the target side.2

4.2.2 Results

Figure 4.1 shows correlations with human judgment in the WordSim353 task. The
x-axis represents the number of English training sentences. Coloured lines represent
CLWEs trained on different languages: Japanese, German, Spanish, Russian and
Finnish.3

With around 128k sentences of training data, most methods perform quite well,
with German being the best performing. Interestingly the CLWE methods all out-

2Hyperparameters for both mono and cross-lingual word embeddings: iters=15, negative=25,
size=200, window=48, otherwise default. Smaller window sizes led to similar results for monolingual
methods.

3We also tried Italian, Dutch, Greek and Serbian, yielding similar results but omitted for presen-
tation.
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perform GNC which was trained on a far larger corpus of 100 billion words. With
only 1k sentences of source training data, all the CLWEs have a correlation around
0.5, with the exception of Finnish. No consistent benefit was gained by using tar-
get languages for which translation with English is simpler. For example, the use of
Spanish as a target language often under-performed Russian and Japanese as a target
language, as well as the morphologically-rich Finnish, despite English–Spanish being
recognized as an “easier” language pair.

Notably, all the CLWEs perform far better than their monolingual counterparts
on small amounts of data. This resilience of the source English word embeddings
suggests that CLWEs can serve as a method of transferring semantic information
from resource-rich languages to low-resource languages, even when the languages are
quite different. However, the WordSim353 task is a constrained environment, so in
the next section we turn to language modelling, a natural language processing task
of much practical importance for low-resource languages.

4.3 Pre-training Language Models

Language models are an important tool with particular application to machine
translation and speech recognition. For low-resource languages and unwritten lan-
guages, language model quality is poor, since they typically rely on large quantities
of data. In this section, we assess the performance of language models on varying
quantities of data, across a number of different source–target language pairs. In
particular, we use CLWEs to initialize the first layer in an LSTM recurrent neural
network language model and assess how this affects language model performance.
This is an interesting task for reasons more than just the practical advantage of
having better language models for low-resource languages. Language modelling is
a syntax-oriented task, yet syntax varies greatly between the languages we evaluate
on. This experiment thus yields some additional information about how effectively
bilingual information can be used for language modelling.
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Figure 4.2: Perplexity of language models on the English validation set. Numbers
in the legend indicate LSTM language models with different hidden layer sizes, as
opposed to Modified Kneser-Ney language models of order 3, 4 and 5.

4.3.1 Experimental Setup

We experiment with a similar data setup as in §4.2. However, source training
sentences are not constrained to include words observed in the WordSim353 set,
and are random sentences from the aforementioned 5 million sentence corpus. For
each language, the validation and test sets consist of 3k randomly selected sentences.
The large vocabulary of Wikipedia and the small amounts of training data make
this a particularly challenging language modelling task. In our experiments we use a
vocabulary of the 10k most frequently occurring words in the corpus, replacing less
frequent words with a special rare-word token.

For our NNLMs, we use the LSTM language model of Zaremba et al. (2014). As
a count-based baseline, we use Modified Kneser-Ney (MKN) (Kneser and Ney 1995;
Chen and Goodman 1999) as implemented in KenLM (Heafield 2011). Figure 4.2
presents some results of tuning the dimensions of the hidden layer in the LSTM with
respect to perplexity on the validation set,4 as well as tuning the order of n-grams

4We used 1 hidden layer but otherwise the same as the SmallConfig of
models/rnn/ptb/ptb_word_lm.py available in Tensorflow.



Chapter 4: Cross-Lingual Low-Resource Language Modelling 81

used by the MKN language model. A dimension of 100 yielded a good compromise
between the smaller and larger training data sizes, while an order 5 MKN model
performed slightly better than its lower-order counterparts.5

MKN strongly outperforms the LSTM on low quantities of data, with the LSTM
language model not reaching parity until between 16k and 32k sentences of data. This
is consistent with the results of Chen et al. (2015) and Neubig and Dyer (2016) that
show that n-gram models are typically better for rare words, and here our vocabulary
is large but the number of training sentences is small since the data consist of random
Wikipedia sentences. However, the findings from these papers, corroborated further
by our findings, are inconsistent with the belief that NNLMs have the ability to cope
well with sparse data conditions by using smooth distributions that arise from using
dense vector representations of words (Bengio et al. 2003).

4.3.2 English Results

With the parameters tuned on the English validation set as above, we evaluated
the LSTM language model when the embedding layer is initialized with various mono-
lingual and cross-lingual word embeddings. Figure 4.3 compares the performance of
a number of language models on the test set. In every case where pre-trained embed-
dings were used, the embedding layer was held fixed during training. However, we
observed similar results when allowing them to deviate from their initial state. For
the CLWEs, the same language set was used as in §4.2. The curves for the target lan-
guages (Dutch, Greek, Finnish, and Japanese) are remarkably similar, as were those
for the languages omitted from the figure (German, Russian, Serbian, Italian, and
Spanish). This suggests that the English source embeddings are capturing similar
information from each of the languages, information likely to be more semantic than
syntactic, given the syntactic differences between the languages.

We compare these language models pre-trained with CLWEs with pre-training
using other embeddings. Pre-training with the Google News Corpus (GNC) embed-

5Note that all perplexities in this paper include out-of-vocabulary words, of which there are many.
In the model, words not found in the dictionary were given uniform random embeddings between
-0.1 and 0.1.
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Figure 4.3: Perplexity of English LSTM language models when pre-trained with word
embeddings trained on the same English data as the language model. MKN is an or-
der 5 Modified Kneser-Ney baseline. no pretrain is a neural network language model
with no pre-trained embeddings. mono is pre-trained with monolingual word2vec
embeddings. GNC is pre-trained with Google News Corpus embeddings of dimen-
sion 300. The rest are pre-trained with CLWEs using information transfer from 5m
sentences of Dutch, Greek, Finnish and Japanese respectively. MKN+no pretrain
and MKN+en–fi are results gathered by Adam Makarucha as a point of comparison,
which interpolate the probabilities of relevant preceding models.

dings of the method of Mikolov et al. (2013c) unsurprisingly performs the best, due
to the large amount of English data not available to the other methods, making it
an oracle. Monolingual pre-training of word embeddings on the same English data
(mono) used by the CLWEs yields poorer performance because the embedding layer
is held fixed, unlike in the case of LSTM.

On small amounts of data the language models initialized with pre-trained CLWEs
are significantly better than their counterparts without pre-training, reaching par
performance with MKN at somewhere just past 4k sentences of training data. In
contrast, it takes more than 16k sentences of training data before the plain LSTM
language model began to outperform MKN. The out-performance of LSTMs by MKN
with the lowest amounts of training data motivated interpolation of MKN proba-
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8k sentences 16k sentences

Lang MKN LSTM CLWE Interp. MKN LSTM CLWE Interp.

Greek 827.3 920.3 780.4 650.6 749.8 687.9 634.4 549.5
Serbian 492.8 586.3 521.3 408.0 468.8 485.3 447.8 365.7
Russian 1656.8 2054.5 1920.4 1466.2 1609.5 1757.3 1648.3 1309.1
Italian 777.0 794.9 688.3 592.2 686.2 627.7 559.7 493.4
German 997.4 1026.0 1000.9 831.8 980.0 908.8 874.1 761.5
Finnish 1896.4 2438.8 2165.5 1715.3 1963.3 2233.2 2109.9 1641.2
Dutch 492.1 491.3 456.2 381.4 447.9 412.8 378.0 330.1
Japanese 1902.8 2662.4 2475.6 1866.7 1816.8 2462.8 2279.6 1696.9
Spanish 496.3 481.8 445.6 387.7 445.9 412.9 369.6 331.2

Table 4.1: Perplexity of language models trained on 8k and 16k sentences for different
languages. MKN is an order 5 Modified Kneser-Ney language model. LSTM is a long
short-term memory neural network language model with no pre-training. CLWE is an
LSTM language model pre-trained with cross-lingual word embeddings, using English
as the source language. Interp. is an interpolation of MKN with CLWE. Interpolated
results gathered by Adam Makarucha at IBM using my models and code.

bilities with LSTM language model probabilities, which outperformed the separate
language models.6 Such interpolation allows for consistent improvement beyond the
performance of MKN or CLWE-pre-trained LSTMs alone.

4.3.3 Other Target Languages

In Table 4.1 we present results of language model experiments run with other
languages used as the low-resource source. In this table English is used in each case as
the large target language with which to help train the CLWEs. The observation that
the CLWE-pre-trained language model tended to perform best relative to alternatives

6The interpolated results were gathered by a collaborator, Adam Makarucha, using models and
code I developed during my internship at IBM. They are included here as a point of comparison for
the other results, which were entirely my own work.
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at around 8k or 16k sentences in the English case prompted us to choose these slices
of data when assessing other languages as sources.

The pre-trained LSTM language model outperforms its non-pre-trained counter-
part for all languages. There is competition between MKN and the CLWE-pre-trained
models. The languages for which MKN tends to do better are typically those further
from English or those with rich morphology, making cross-lingual transfer of infor-
mation more challenging. There seems to be a degree of asymmetry here: while all
languages helped English language modelling similarly, English helps the other lan-
guages to varying degrees. This suggests the information is largely semantic, since
the target languages vary in their divergence from English syntax (also, the window
size used for training the CLWEs is large and will typically engulf the whole sen-
tence). This, combined with the fact that English helps other languages to varying
degrees, suggests that different source languages differ in the benefit they can reap
from this technique. For all languages, interpolating MKN with the CLWE (Interp.)
yields the best performance, corroborating the findings of Gandhe et al. (2014) and
demonstrating that these methods are complementary.

Neural language modelling of sparse data can be improved by initializing pa-
rameters with cross-lingual word embeddings. The consistent performance improve-
ments gained by an LSTM using CLWE-initialization is a promising sign for CLWE-
initialization of neural networks for other tasks given limited source language data.

4.4 First Steps in an Under-Resourced Language

Having demonstrated the effectiveness of CLWE-pre-training of language models
using simulation in a variety of well-resourced written languages, we proceed to a
preliminary investigation of this method to a low-resource unwritten language, Na.

Yongning Na is a Sino-Tibetan language spoken by approximately 40k people in
an area in Yunnan, China. It has no orthography and is tonal with a rich morphotonol-
ogy. Given the small quantity of manually transcribed phonemic data available in the
language, Na provides an ideal test bed for investigating the potential this method
faces in a realistic setting, while highlighting its shortcomings. In this section we



Chapter 4: Cross-Lingual Low-Resource Language Modelling 85

æ˧ʂæ˧-tɑ˩mv̩˩ | ʈʂʰɯ˧ne˧-ʝi˥ pi˧-kv̩˩-tsɯ˩ | -mv̩˩!

That’s how the story is told!

æ˧ʂæ˧-tɑ˩mv̩˩ ʈʂʰɯ˧ne˧-ʝi˥ pi˥ -kv̩˧˥ tsɯ˧˥ mv̩˩
story like this say °abilitive °rep °affirm

Table 4.2: An example sentence from the Na corpus (sentence 137 from The Sis-
ter’s Wedding), along with an English translation and glosses. Spaces delimit words,
while hyphens delimit morphemes. The segmentation granularity that best facilitates
dictionary lookup varies between words.

report results in Na language modelling and discuss hurdles to be overcome.

4.4.1 Experimental Setup

The phonemically transcribed corpus7 consists of 3,039 phonemically transcribed
sentences which are a subset of a larger spoken corpus. These sentences are segmented
at the level of the word, morpheme and phonological process, and have been translated
into French, with smaller amounts translated into Chinese and English. The corpus
also includes word-level glosses in French and English. The lexicon of Michaud (2016)
contains example sentences for entries, as well as translations into French, English
and Chinese.

The lexicon consists of around 2k Na entries, with example sentences and transla-
tions into English, French and Chinese. Segmentation of the corpus is provided at the
level of the morpheme, word and morphotonological process. However, the dictionary
entries are mixed between morphemes and words without explicit distinction. Seg-
menting the corpus at only the word level or only the morpheme level yielded low hit
rates, since the dictionary entries are distributed between morpheme-level entries and
word-level entries. To choose an appropriate segmentation of the corpus, we used a
hierarchical segmentation method where words were queried in the lexicon. If a given

7Available as part of the Pangloss collection at lacito.vjf.cnrs.fr/pangloss

lacito.vjf.cnrs.fr/pangloss
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Types Tokens

Tones 2,045 45,044
No tones 1,192 45,989

Table 4.3: The number of types and tokens across the Na corpus, given our segmen-
tation method.

word was present then it was kept as a token, otherwise the word was split into its
constituent morphemes and queried again. Without tones included, the total number
of word types from the corpus found in the dictionary was 418/5980. The types not
found were broken into constituent morphemes, where 400/1211 morpheme types in
the corpus were found in the dictionary. Words and morphemes not found in the
dictionary were given uniform random embeddings between -0.1 and 0.1. We evalu-
ate perplexity at a mixed granularity, using units found with this dictionary-based
segmentation approach. Table 4.2 shows an example sentence from the corpus, with
glossing that motivates segmentation at both word level and morpheme level when
appropriate.

We took 2,039 sentences to be used as training data, with the remaining 1k sen-
tences split equally between validation and test sets. The phonemic transcriptions
include tones, so we created two preprocessed versions of the corpus: with and without
tones. Table 4.3 exhibits type and token counts for these two variations. In addition
to the CLWE approach used in §4.2 and §4.3, we additionally tried lemmatizing the
English Wikipedia corpus so that each token was more likely to be present in the
Na–English lexicon. Lemmatization as a step makes sense for languages with varying
syntax. For instance, it makes sense to conflate “run”, “running” and “runs” to have
the same vector representation on the English side since the equivalent Na word may
not be inflected at all, or in a completely different way. By lemmatizing the English,
we’d expect the embeddings to emphasize semantic relatedness over syntax. However,
this may not be a good thing for language modelling, since language modelling is a
syntax-oriented task.
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Tones No tones

MKN 59.4 38.0
LSTM 74.8 46.0
CLWE 76.6 46.2
Lem 76.8 44.7
En-split 76.4 47.0

Table 4.4: Perplexities on the Na test set using English as the source language.
MKN is an order 5 Modified Kneser-Ney language model. LSTM is a neural network
language model without pretraining. CLWE is the same LM with pre-trained Na–
English CLWEs. Lem is the same as CLWE except with English lemmatization.
En-split extends this by preprocessing the dictionary such that entries with multiple
English words are converted to multiple entries of one English word.

4.4.2 Results and Discussion

Table 4.4 shows the Na language modelling results.8 Pre-trained CLWEs do not
significantly outperform that of the non-pre-trained, and MKN outperforms both.
Given the size of the training data, and the results of §4.3, it is no surprise that MKN
outperforms the NNLM approaches. But the lack of benefit in CLWE-pre-training
the NNLMs requires some reflection. We now proceed to discuss the challenges of
this data to explore why the positive results of language model pre-training that were
seen in §4.3 were not seen in this experiment.

Tones A key challenge arises because of Na’s tonal system. Na has rich tonal
morphology. Syntactic relationships between words influence the surface form tone
a syllable takes. Thus, semantically identical words may take different surface tones
than is present in the relevant lexical entry, resulting in mismatches with the lexicon.

If tones are retained, the percentage of Na tokens present in the lexicon is 62%.
8Note that although the perplexities are not phone-based, the tone of a word affects its ortho-

graphic representation. In the model without tones, tonal markers are discareded entirely and thus
the calculated perplexities are different.



Chapter 4: Cross-Lingual Low-Resource Language Modelling 88

Removing tones yields a higher hit rate of 88% and allows tone mismatches between
surface forms and lexical entries to be overcome. This benefit is gained in exchange
for higher polysemy, with an average of 4.1 English translations per Na entry when
tones are removed, as opposed to 1.9 when tones are present. Though this situation of
polysemy is what the method of Duong et al. (2016b) is designed to address, it means
the language model fails to model tones and doesn’t significantly help CLWE-pre-
training in any case. Future work should investigate morphotonological processing
for Na, since there is regularity behind these tonal changes (Michaud 2008) which
could mitigate these issues if addressed.

Polysemy It’s known that many word embedding representations are limited in
that they conflate different meanings of a word into a single vector (Camacho-Collados
et al. 2016). We considered the polysemy of the tokens of other languages’ corpora
in the PanLex dictionaries. Interestingly, they were higher than the Na lexicon with
tones removed, ranging from 2.7 for Greek–English to 19.5 for German–English. It
seems the more important factor is the number of tokens in the English corpus that
were present in the lexicon. For the Na–English lexicon, this was only 18% and
20% when lemmatized and unlemmatized, respectively. However it was 67% for the
PanLex lexicon. Low lexicon hit rates of both the Na and English corpora must
damage the CLWEs’ modelling capacity.

Lexicon word forms Not all the forms of many English word groups are repre-
sented. For example, only the infinitive ‘to_run’ is present, while ‘running’, ‘ran’
and ‘runs’ are not. The limited scope of this lexicon motivates lemmatization on the
English side as a normalization step, which may be of some benefit (see Table 4.4).
Furthermore, such lemmatization can be expected to reduce the syntactic information
present in embeddings, which does not transfer between languages as effectively as
semantics.

Some common words, such as ‘reading’ are not present in the lexicon, while other
words such as ‘to_read_aloud’ are. Additionally, there are frequently entries such
as ‘way_over_there’ and ‘masculine_given_name’ that are challenging to process.
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Figure 4.4: Perplexities of an English–German CLWE-pretrained language model
trained on 2k English sentences as the dictionary available in CLWE training increases
to its full size (sub-dict). As points of comparison, LSTM is a long short-term memory
language model with no pre-training and full-dict is a CLWE-pretrained language
model with the full dictionary available.

As an attempt to mitigate this issue, we segmented such English entries, creating
multiple Na–English entries for each. However, results in Table 4.4 show that this
failed to show improvements. More sophisticated processing of the lexicon is required,
and is left to future work (§7.2.2).

Lexicon size There are 2,115 Na entries in the lexicon (a mix of morphs and
lexemes) and 2,947 Na–English entries, which makes the lexicon especially small in
comparison to the PanLex lexicon used in the previous experiments. Duong et al.
(2016b) report large reductions in performance of CLWEs on some tasks when lexicon
size is scaled down to 10k.

To better understand how limited lexicon size could be affecting language model
performance, we performed an ablation experiment where random entries in the Pan-
Lex English–German lexicon were removed in order to restrict its size. Figure 4.4
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shows the performance of English language modelling when training data is restricted
to 2k sentences (to emulate the Na case) and the size of the lexicon afforded to the
CLWE training is adjusted. This can only serve as a rough comparison, since Pan-
Lex is large and so a 1k entry subset may contain many obscure terms and few useful
ones. Nevertheless, results suggest that a critical point occurs somewhere in the order
of 10k entries. However, since improvements are demonstrated even with smaller
dictionaries, this is further evidence that more sophisticated preprocessing of the Na
lexicon is required.

Domain Another difference that may contribute to the results is that the domain
of the text is significantly different. The Na corpus is a collection of spoken narratives
transcribed, while the Wikipedia articles are encyclopaedic entries, which makes the
genres very different. Since the tone and style are so different, it would be valuable
in future work to use more closely matched corpora by using speech transcripts or
narratives on the high-resource side.

4.5 Discussion

This chapter investigated a method for harnessing cross-lingual word embeddings
for the purpose of improved language modelling in very low-resource contexts. Lan-
guage modelling is a key component of systems for machine translation and speech
recognition. Given methods for bilingual lexicon induction and word segmentation,
we can relate the target and source languages and segment the words in some mean-
ingful way. There is potential this method can then be used to learn a language
model which can be used in a speech recognition system. Such language models may
also facilitate rudimentary translation into the source language.

We argued in the discussion of the previous chapter (§3.4) that, by the time
accurate manual transcriptions of any meaningful size have been acquired, linguists
likely have already been working on lexicons and a small one may exist. It makes
sense to harness this data as well. Importantly, it gives us the ability to harness
vast quantities of monolingual information in English and other large languages in
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order to improve processing of smaller languages, given that parallel text is always
limiting. Thus, we are not actually dealing with bilingual audio, but rather bilingual
information in the form of a lexicon.

This technique was not found to be effective for the threatened language scenario
of Na. However, in light of the results in the other languages examined, the technique
could find more applicability in a low-resource language that has a more comprehen-
sive dictionary and a limited web presence for scraping (see Gauthier et al. (2016)).

4.5.1 Future Work on Na Language Modelling

The technique doesn’t work out of the box for Na, setting a difficult and com-
pelling challenge of harnessing the available Na data more effectively. The lexicon is
a rich source of other information, including part-of-speech tags, example sentences
and multilingual translations. In addition to better preprocessing of the lexical infor-
mation we have already used, harnessing this additional information is an important
next step to improving Na language modelling. The corpus includes translations into
French, Chinese and English, as well as glosses. Some CLWE methods can addition-
ally utilize such parallel data (Coulmance et al. 2015; Ammar et al. 2016) and we
leave to future work incorporation of this information as well. The tonal system is well
described (Michaud 2008), and so further Na-specific work should allow differences
between surface form tones and tones in the lexicon to be bridged.

Though the results for language modelling in Na are inconclusive, the ablation
experiment, where the dictionary size was reduced significantly in order to assess how
it affected the model’s performance, suggests the method can still be useful with lim-
ited dictionary sizes. Importantly, very low dictionary sizes never adversely affected
language modelling performance, which suggests that this method is worth trying
and unlikely to hurt performance. In the specific context of Na, there were a vari-
ety of confounding factors which probably played a role in preventing distributional
information from the English corpus from helping Na language modelling.
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4.5.2 Beyond Na

Our results corroborate the observation that MKN performs well on rare words
(Chen et al. 2015). Interpolation is an effective means to harness this strength when
training data is sparse. Furthermore, hybrid count-based and NNLMs (Neubig and
Dyer 2016) promise the best of both worlds for language modelling for low-resource
languages.

In order for this approach to be applicable in low-resource language modelling for
tasks such as speech recognition and machine translation, where there will frequently
be out-of-vocabulary words, a promising line of work is to integrate character and
phoneme level information into the language model (Lankinen et al. 2016; Verwimp
et al. 2017) to help the model cope with sparsity at the word token level.

So far in the thesis we have considered two language documentation contexts. The
first is where we have small quantities of unsegmented phonemic transcripts in parallel
with translations in a larger language. Such data can arise when a linguist carefully
transcribes monolingually without the need for deep knowledge of the language. We
demonstrated in Chapter 3 that bilingual lexical items can be learnt effectively but
argued against measuring the quality of a bilingual lexicon intrinsically. The context
considered in this chapter is one where we again have small quantities of accurate
source transcriptions, however we additionally assume a bilingual lexicon, which may
have been gathered by a linguist in the process of transcription, or by automatic meth-
ods in a similar vein to those of Chapter 3. In this context however, we demonstrate
that there is no requirement of parallel data in order for improved language modelling
to be achieved. This absence of this requirement allows for the true magnitude of
data in large languages to be harnessed in improving modelling of smaller ones. In
this work we used 5 million sentences of Wikipedia data in the large language. If
this method is pursued it would be wise to harness even more data, and to harness
from multilingual (more than two languages) contexts as per the work of Duong et al.
(2017).

We now proceed to a third context, where we removed the assumption of accurate
phonetic transcriptions, while maintaining the constraint of limited data. By remov-
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ing the two key assumptions of ample data and of correct data, we now model when
restricted by the constraints that are very real and limiting in language documenta-
tion. In doing so, we make methods available to a much larger spectrum of languages
at different levels of documentation.



Chapter 5

Harnessing Translations for
Improved Phoneme Transcription

Large portions of this chapter have appeared in the following papers:

Adams et al. (2016) Learning a translation model from word lattices,
in 17th Annual Conference of the International Speech Communication
Association (INTERSPEECH 2016), San Francisco, California, USA.

Adams et al. (2016) Learning a lexicon and translation model from
phoneme lattices, in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Austin, Texas, USA.
pp. 2377–2382.

5.1 Introduction

The previous chapters have assumed the availability of correct phonemic transcrip-
tions of source language speech, which is only possible when speech has been manually
transcribed by a trained linguist. However, such manual phonemic transcription is
costly and can become a bottleneck in linguistic fieldwork. To illustrate, one minute
of speech takes around one hour for an expert to phonetically transcribe (Do et al.
2014a). In order for a radical speedup in the language documentation process to be
possible, effective automatic phoneme recognition must be achieved, thus improving

94



Chapter 5: Harnessing Translations for Improved Phoneme Transcription 95

the efficiency of linguists documenting the language. This chapter and Chapter 6
address this problem.

Without the aid of a lexicon or language model trained on abundant text, au-
tomatic phoneme transcription is an error-prone affair. Because of this, important
benefits lie in harnessing cross-lingual information via multilingual acoustic models
or via translations of speech. This chapter explores methods that harness transla-
tions of the speech in order to improve automatic phoneme transcription quality.
Can translations of speech improve transcription of that speech, even when a prior
translation model relating the languages is not known? We explore methods to learn
such a translation model to aid in speech recognition, in the process additionally in-
ferring word segmentation and lexicons. Insights from Chapter 3 motivate evaluation
of bilingual lexicons through their ability to help in the extrinsic task of phoneme
transcription. Thus quantitative results in this chapter are measured with phoneme
error rate (PER) and word error rate (WER) of transcription output. Beyond this
quantitative analysis, we also present qualitative analysis of lexicons and translation
models underlying the model.

The underlying idea common to the methods explored in this chapter is that
speech recognition should become an easier task when a translation is available to help
disambiguate what words might have been spoken. Figure 5.1 illustrates this using
a toy German–English example. This concept of harnessing translations to improve
speech recognition has a long history of application in computer-aided translation
(see 2.4.2). There are two key distinguishing features of the work in this chapter from
previous work. Firstly, previous work uses translation models trained on text as prior
information, but in our case the translation models are trained on inaccurate represen-
tations of the speech we want to transcribe: either error-prone 1-best transcriptions
or lattices. Secondly, the translation model is trained with word-segmented text,
whereas in this chapter we explore training it on unsegmented phoneme sequences,
as well as phoneme lattices from real automatic speech recognition (ASR) systems.

§5.2 begins with a preliminary investigation into the use of phoneme classes to
facilitate translation modelling between source phonemes and target translations even
when the exact form of the phonemes is unknown. This exploration highlights short-
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Figure 5.1: Top: a spoken utterance in German, along with a translation that should
help in finding the correct transcription. Bottom: a phoneme lattice output of
an acoustic model. Using an acoustic model we can construct a lattice containing
phoneme sequences that likely explain the acoustic signal, but frequently the most
probable path (in orange) will be incorrect. The available English translation should
guide the transcription away from ‘das Eis’ and towards ‘das Ei.’ Without prior trans-
lation model probabilities, translation relationships must be learnt in the face of such
error-prone representations of speech.

comings of the model, motivating development of a subsequent model to address these
issues, described in §5.3 and §5.4. This second model takes as input phoneme lattices
and sentence-level orthographic translations, jointly segmenting paths in the lattices
and aligning the implied words with an orthographic translation while learning a
translation model. This allows it to find a better transcription in the original lattice
even when no prior information relates the languages. As a stepping stone towards
developing the second model, we produce a word-based model that aligns without
segmenting in order to first test the hypothesis that lattice alignment can harness
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bilingual information for better speech recognition.

5.2 Phrase Alignment Using Phoneme Classes

This section (§5.2) describes preliminary work in the alignment of phoneme classes.
Shortcomings of the model leave it unable to reduce transcription errors. Readers in-
terested in more effective models should feel comfortable skipping to §5.3.

This exploration is motivated by the observation that humans have a tendency to
misidentify phonemes that fall within a common class. Consider that an /s/ in sight
is more likely to be heard as another fricative (eg. the /f/ in fight), than as sonorant
(eg. /m/ as in might). We explore the use of categorizing phonemes into classes where
the member phonemes are likely to be confusable with one another. For this we first
used a linguistically motivated taxonomy, since it groups phones by articulatory and
acoustic properties which tend to lend themselves to confusion.

Table 5.1 shows three partitions of the phoneme set based on a linguistically
motivated taxonomy. We chose three different granularities for fragmenting German
phonemes. Note that the transition from the fine partition to the coarse partition is
not agglomerative—the phonemes in the plosives class in the Fine partition are then
spread across the voiced and voiceless consonants class in the coarse partition.

Generalizing Phonemes to Classes for Machine Translation

To motivate the use of such classes, consider the performance of phoneme–word
machine translation systems1 when phonemes are replaced with symbols representing
the coarser phoneme classes of Table 5.1. Such a configuration models a scenario
where accurately determining the specific phoneme is error-prone, but determining a
more general class is reliable. Table 5.2 illustrates the replacement of an international
phonetic alphabet (IPA) representation of Maus with class tokens of Table 5.1, which
is then used as source-side training data in the machine translation system.

1The models were trained and evaluated with a similar architecture and experimental setup as
the one described in §3.2, except with ~457k training sentences.
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Fine
Plosives p b t g d k ʔ
Affricates pf ts tʃ
Fricatives f v s z ʃ ʒ ç j x h
Sonorants m n ŋ l ʁ r
Checked vowels u ɪ ɛ a ɔ ʊ ʏ œ o i
Schwa-like ə ɐ
Free vowels iː eː ɛː aː oː uː yː øː
Free diphthongs aɪ aʊ ɔʏ

Medium
Plosives p b t g d k ʔ
Fricatives f v s z ʃ ʒ ç j x h pf ts tʃ
Sonorants m n ŋ l ʁ r
Vowels u ɪ ɛ a ɔ ʊ ʏ œ o i ə ɐ iː eː ɛː aː oː uː yː øː aɪ aʊ ɔʏ

Coarse
Voiced consonants b g d v z ʒ j m n ŋ l ʁ r
Voiceless consonants p t k ʔ pf ts tʃ f s ʃ ç x h
Vowels u ɪ ʊ ʏ i ɛ a ɔ œ o ə ɐ iː u yː eː ɛː aː oː øː aɪ aʊ ɔʏ

Table 5.1: Three taxonomical groupings of phoneme classes of different granularities,
from fine to coarse.

Written Maus
IPA m aʊ s
Fine sonorant free-diphthong fricative
Medium sonorant vowel fricative
Coarse voiced-consonant vowel voiceless-consonant

Table 5.2: Representing phoneme sequences with phoneme classes.



Chapter 5: Harnessing Translations for Improved Phoneme Transcription 99

Source tokens BLEU

Phonemes 20.77
Fine 20.73
Medium 16.11
Coarse 12.48

Table 5.3: German–English machine translation results when phonemes are replaced
with symbols denoting classes.

Table 5.3 shows end-to-end machine translation results where instead of translat-
ing German phonemes to English words, the German phonemes were replaced with
tokens representing broader phonemic classes. Interestingly, using the Fine class
groups yields no substantial change in the machine translation performance, though
there is large degradation when coarser classes are used. This highlights the infor-
mation redundancy in natural language and suggests that phrase alignment can be
resilient to phonemic ambiguity. Since alignment is still feasible when some amount
of phonemic information is removed, perhaps English translation contexts can help
guide restoration of specific phonemic information.

5.2.1 Resolving Transcription Errors: Method

We now proceed to the task of harnessing translations to resolve transcription
errors. That is, given a phoneme transcription replete with errors and a correspond-
ing word-level translation, can this translation guide us to a more correct phonemic
transcription by somehow relating subsequences of the phonemic transcription with
the translation? The first, preliminary approach to this task that we discuss is mo-
tivated by this observation that replacing phonemes with symbols to denote classes
can retain much of the information in the phoneme sequence useful for the purpose
of translation. The advantage this approach might have over finding the one-best
path in a phoneme lattice is that information in translations can inform how the
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1. Replace phonemes
with classes

f ʊ m t ʔ o m ʃ d ʁ ɔ n t

F V S P P V S F P S V S P

2. Align
F V S P P V S F P S V S P

dog on the beach

3. Gather statistics
across corpus

P (ϕ|pos 1,F V S P, dog) =

h f s4. Replace classes with
most likely phonemes

h ʊ n t ʔ a m ʃ t ʁ a n t

Figure 5.2: An illustration of the error resolution process for a phonemic transcription
of Hund am Strand. Erroneously transcribed phonemes are indicated in red. Phoneme
classes are represented in upper-case, where F represents fricatives, V represents
vowels, S represents sonorants, and P represents plosives.

transcription is realized. The method has four steps:

1. Replace transcribed (frequently erroneous) phonemes with tokens representing
broader phonemic classes.

2. Align the phoneme class tokens to the English translations.

3. Estimate probabilities of phonemes occurring given classes and translation con-
texts.

4. Replace phoneme class tokens with the maximum likelihood phoneme given the
alignment context.

Figure 5.2 illustrates visually using a toy example the process of resolving errors in
a phonemic representation of the German phrase “Hund am Strand.” More formally,
given a corpus of phonemic transcriptions of utterances X (possibly the output of a
speech recognition system) and corresponding English translations E, we aim to find
a set of more accurate transcriptions X̂ without supervision.



Chapter 5: Harnessing Translations for Improved Phoneme Transcription 101

Step 1: Generalize phonemes to classes Consider a partition of phoneme sets
P = ⟨pi . . . pI⟩ representing the chosen grouping of phoneme classes. For each phone-
mic transcription x ∈ X, we convert each phoneme x ∈ x into a label representing
pi, where pi is the set in the partition P that contains x, yielding a phoneme class
representation of the sentence, which we denote as c. Do this for each sentence,
yielding an ordered sequence C where each c ∈ C corresponds to a sentence in the
same fashion as X and E.

Step 2: Phrase alignment Phrase align C and E to arrive at alignments A such
that each a ∈ A describes a collection of many-to-many alignments for a sentence
pair, where each a ∈ a, aligns a subsequence of phoneme classes ci . . . cj to sequences
of words in the English sentence ek . . . el.

Step 3: Estimating phoneme probabilities given alignment contexts By
considering each x ∈ x ∈ X, their corresponding class c, and alignment context a, we
can estimate a categorical distribution over phonemes given that context, P (x|c, a).
For example, in Figure 5.2 we can estimate the probability of different fricatives taking
the place of the first phoneme class ‘F’ in a source phrase pattern ‘F V S P’ that is
aligned to ‘dog.’

Step 4: Take the most likely phoneme given each context To produce the
output phoneme stream, the maximum likelihood phoneme is taken for each phoneme
class label and associated alignment context, argmaxx P (x|c, a).

5.2.2 Experimental Setup

In order to imitate the situation where we have inaccurate automatic speech recog-
nition output aligned at the phrase level to English text, yet in significant quantities,
we introduced artificial errors into a dataset similar to the one used in the phoneme-
based machine translation experiment described in §3.2.2.
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Data

The data used is the German–English corpus from shared task for the Association
for Computational Linguistics (ACL) 2005 Workshop on Building and Using Parallel
Texts. This corpus consists of 457,079 sentences, a subset of Europarl (Koehn 2005).
In order to simulate automatic phoneme transcription data of a language with no
orthography, we first convert the German data into a sequence of phonemes using
the MARY text-to-speech system (Schröder and Trouvain 2003). This training set is
thus a superset of the training data used in §3.2.

Error Simulation

We add artificial errors into the phoneme corpus. This process was parameterized
by the parameter ρ, the probability of any given phoneme being erroneously substi-
tuted for another phoneme within its class. For each phoneme in the phoneme corpus,
the phoneme was substituted by another phoneme in its class with probability ρ and
remained the same otherwise. When substituted, it uniformly took the form of each
other phoneme in its class c, with probability 1

|c| . Thus ρ is also a close approximate
measure of the phoneme error rate of the phoneme corpus. For error generation, the
Fine partition was used, but for error resolution all three partitions were evaluated. 5
different values of ρ were used, between 0.1 and 0.5, representing varying transcription
accuracies.

Phrase Alignment

We used the Bayesian inversion transduction grammar model as implemented in
Pialign (Neubig et al. 2011b; Neubig et al. 2012a), since it was the best performing
approach in Chapter 3, able to effectively deal with phoneme granularities that cannot
be done using conventional word-level alignment and heuristic phrase extraction.
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Phoneme error rate (%)

ρ Fine Medium Coarse

10.0 7.3 12.2 12.4
20.0 13.2 18.0 20.5
30.0 19.6 24.4 29.2
40.0 27.0 31.5 38.4
50.0 36.2 40.3 48.2

Table 5.4: Phoneme error rates of the output of the error resolution algorithm using
different granularities of phoneme classes. ρ is the phoneme error rate of the inac-
curate corpus, before resolution. Fine, Medium and Coarse refer to the granularity
of the phoneme classes used by the resolution algorithm (see Table 5.1). Bold scores
indicate scores that reduced the error rate.

5.2.3 Results

Table 5.4 shows the phoneme error rate across the corpus when this method is
applied. In most of the experiment configurations, this method yielded an output
phoneme sequence with a lower phoneme error rate than the inaccurate baseline.
The method makes the most meaningful improvements in the phoneme error rate
when the phoneme classes used are Fine, followed by Medium and then Coarse, with
three configurations underperforming the baseline between the Medium and Coarse
partitions.

When improvements do occur using the Coarse partition, they are not signifi-
cant. This is understandable, since the scope of the possible confusion is greater with
coarser classes, and there is less information that Pialign has to operate with in
the alignment phase. Additionally, since the artificial errors were introduced using
the Fine partition, these results suggest that when the classes used to resolve the
errors are very different to those used to generate the errors, this approach to error
resolution can become ineffective (though it is more robust to smaller changes, as
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evidenced by the results using the Medium partition).

5.2.4 Discussion

These results suggest translations can be harnessed to improve phoneme transcrip-
tions in an unsupervised fashion in a constrained scenario where errors conform to
clear discrete phoneme classes. Though these results show that alignment of source
coarser phoneme classes to English words can be effective, and that the general con-
cept of harnessing translation modelling in uncertain contexts is promising, several
issues make more general applicability of this specific approach questionable.

The artificial errors generated assume that errors manifest only as substitutions
according to the presupposed phoneme classes. For this technique to be applicable
to improving speech recognition, experiments should be run on data with realistic
speech recognition errors. In §5.2.5 below, we more accurately model errors in the
input training data.

A related issue in error generation is that spurious insertions and deletions of
phonemes in the transcription are not modelled. However, they are prevalent in real
speech recognition errors (see Table 5.7). This suggests that there is a fundamental
issue with the notion of phoneme class: real transcription errors cannot be modelled
with substitutions within phonemic classes.

In the remainder of this chapter we address both of these issues. Before moving to
a model capable of addressing insertions and deletions on real speech (§5.3 and §5.4),
we first assess how the approach we have described so far can handle more realistic
substitution errors that fall outside of the phoneme classes.

5.2.5 Improved Error Simulation and Phoneme Confusion
Modelling

The key issue of the above method is that error generation and resolution use
unrealistic phoneme categorization, so in this section we make two changes. Firstly,
we instead model errors from real speech recognition data and use that to generate ar-
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tificial phoneme substitution errors based on actual confusion rates. Secondly, rather
than using taxonomically motivated classes, we use an agglomerative clustering ap-
proach to create classes based on the frequency of confusion between phonemes in
real data.

Error Simulation

In order to more accurately model error generation, we procured 3,986 sentences
of German automatic speech recognition output from a Quaero HMM-GMM system
(Stüker et al. 2012). This data was then used to estimate phoneme substitution
rates via minimum edit-distance alignments with gold transcriptions, before random
sampling was used to add artificial noise into the same training data from before,
with similar error rates and proportions as in the real data. As a first step, we only
explore substitution errors. The system had a phoneme error rate of 43.9%.

Phoneme Clustering

Previously we had considered a linguistic taxonomy of phonemes in order to de-
termine these classes, but actual phoneme substitutions in the ASR data indicated
that these taxonomies do not necessarily yield the best phoneme classes and so we
empirically ground the categorization.

We performed agglomerative hierarchical clustering such that phonemes more con-
fusable with one another were merged into common classes. The distance between
two phonemes p and q is the reciprocal of the number of times p had been substituted
for q or q had been substituted for p. We applied agglomerative hierarchical cluster-
ing, using average linkage criteria. Average linkage was chosen since for our purposes
it is desirable to have classes where each phoneme is confusable with one another,
minimizing cases where two phonemes in a given class are rarely confusable.

We chose the configurations that gave 2 classes, 5 classes and 12 classes per group
as representative of varying granularities. These are shown in Table 5.5. The rea-
soning for these class group choices was as follows. Coarse (2 classes) is the group
that is able to account for as much possible phoneme confusability as possible while
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Fine
Class 0 ɔʏ
Class 1 øː
Class 2 aʊ
Class 3 j iː
Class 4 s z ts
Class 5 ŋ m n
Class 6 ʊ uː ɔ oː
Class 7 b d g k p t v
Class 8 a aː œ aɪ
Class 9 ɛ yː ɪ eː ʏ ɛː ə
Class 10 h ʁ l ɐ f
Class 11 x ç ʃ

Medium
Class 0 ɔʏ
Class 1 aʊ
Class 2 ç, x
Class 3 b ʃ g f n h k ɐ m ts ŋ p s t v ʁ z l d
Class 4 a ɛ eː oː aɪ aː œ j ʏ ɔ yː ɪ øː ʊ uː ɛː iː ə

Coarse
Class 0 b ʃ g f n h k ɐ m ts ŋ p s ç t v x ʁ z l d
Class 1 a ɛ eː oː aɪ aː œ j ʏ ɔ yː ɪ øː ʊ uː ɛː ɔʏ aʊ iː ə

Table 5.5: Groupings of phonemes at different granularities based on hierarchical
agglomerative clustering.
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Method PER

Baseline 32.57
Fine 36.46
Medium 46.95
Coarse 44.79

Table 5.6: Phoneme error rates when applying the error resolution method with
different granularities for phoneme classes. Phoneme error rates all increase over the
baseline (of no error resolution), despite the inclusion only of substitution errors in
the synthetic data.

still yielding information. Groupings more granular than Fine (12 classes) rapidly
degenerated towards a situation where each phoneme is of its own class.

5.2.6 Results and Discussion

Table 5.6 shows the results of error resolution when simulated substitution errors
mimic that of real data and agglomerative clustering is used to determine phoneme
classes. Regardless of the granularity of the class used, the approach underperforms
the baseline. Unsurprisingly, Medium performs the worst, since it is distinguished
from Coarse only by the creation of two single-phoneme classes, and one class with
two phonemes, which are largely unable to account for phoneme misclassifications.

More realistic simulation of substitution errors demonstrates that categorization of
phonemes is an ineffective model, even when categories are motivated empirically by
observations of a real speech recognition system. Phoneme substitution errors crossing
class boundaries negatively impacts alignments, since the source representation of a
word (as class tokens) varies. This has the effect that, in addition to those specific
substitution errors being unable to be resolved, the alignments propagate the damage
to surrounding phonemes grouped together in the alignment.

There are various issues in terms of both the experimental setup and the modelling
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Error type % of total
Substitutions 66.26
Deletions 21.66
Insertions 12.08

Table 5.7: The proportions of different types of errors in the German ASR data.

approach. Firstly, simulated data is still used, though it is better than that of the
previous section as it exhibits similar substitution error rates and types as those
from a speech recognition system. This data is problematic in that a) it is phonemic
data of European parliamentary proceedings, thus the modality is inconsistent with
real speech and effects of features such as coarticulation are limited by the quality
of the text-to-speech system producing the phonemic representation; b) a generous
amount of data is used, which is unlikely to be attainable in a language documentation
setting (~450k sentences); c) insertions and deletions are not modelled. Insertions and
deletions can be addressed in a similar unigram model as the substitutions, but it
would be better yet to use real speech recognition output as we do in §5.3 and onwards.

As for the model, this experimental evidence suggests that phonemic categories
are limited in their capacity to model phoneme confusion owing to deviation from
these categories. Because the experimentation doesn’t use real speech recognition
output, the model also fails to harness further information an acoustic model could
yield, such as lattices which describe alternative phonemic transcriptions to explain
the observed sounds.

In retrospect, the data in Table 5.8 strongly suggests it is ineffective to use a
method relying on phoneme substitution errors consistent with disjoint classes. In the
best case, 32% of phonemes will cross class boundaries (in the case of coarse-grained
clustering, assuming only substitution errors). Assuming uniformity of this statistic
across phonemes, there’s a (1 − 0.32)4 ≈ 0.22 probability a given 4-phoneme word
will be converted to a class-token representation consistent with the underlying true
phonemes, as required for correction. For longer words, this probability quickly drops
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Granularity Taxonomical Clustering Clustering (subs-only)

Coarse 35.0 45.9 68.1
Medium 31.4 42.9 64.7
Fine 16.2 23.5 35.5

Table 5.8: The percentage of phoneme transcription errors in the speech recognition
data that were consistent with taxonomical or clustering-based phonemic classes (of
three different granularities: Coarse, Medium and Fine). The right-most column
restricts sources of errors to substitutions.

towards 0. This back-of-the-envelope calculation and consideration of its implications
should have been done when clustering was first performed the first time, but it was
not.

Another limitation is that experimental results have the limitation that spoken
speech takes a different form to written speech converted to phonemes, with phenom-
ena such as coarticulation present. In using a phonemic representation of text, our
model of true speech is thus limited in capacity to that of the speech synthesizer.

5.3 Learning a Translation Model from Word Lat-
tices

In this section and the next (§5.4) we address the key problems of the work
presented earlier in this Chapter. Rather than error simulation, we use real output
from a speech recognition system. We stop using the notion of phoneme confusion
classes, which does not accurately reflect the real nature of recognition errors. Rather
than a 1-best transcription, we use a lattice which conveys more information. Rather
than the assumption of large amounts of data (~450k sentences), we evaluate on
small amounts of data realistic in the language documentation context (as little as 1
hour of bilingual speech). Despite these changes, the underlying idea remains: using
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information available in translations to help automatic transcription.
In the rest of this chapter we use lattice representations of speech. Lattices contain

more information than a 1-best transcription. This information, along with transla-
tions, can be harnessed to find more accurate transcriptions (ie. paths through the
lattice). Lattices can represent varying length sequences, implicitly allowing mod-
elling of insertions and deletions, overcoming a key shortcoming of the model in §5.2.
Composition of lattices with finite-state transducers can be used to express and in-
fer translation models, thus modelling the acoustic signal and the translation in a
cohesive probabilistic framework. In this section we first explore the effectiveness of
this concept at the word level, by assuming we have a lexicon available with which to
make word lattices. Then in §5.4, we generalize the approach to learn a lexicon from
phoneme lattice input for the case when a comprehensive lexicon is not available in
the language being documented.

Translation models have been used in prior work to improve automatic speech
recognition when speech input is paired with a written translation, primarily for the
task of computer-aided translation, where a human translator speaks their translation
of a written document (Brown et al. 1994; Vidal et al. 2006; Khadivi and Ney 2008;
Reddy and Rose 2010; Pelemans et al. 2015). Existing approaches require large
amounts of parallel text for training the translation models, a scarce resource for
most language pairs even when each language has substantial monolingual data. We
propose a model for learning lexical translation parameters directly from the word
lattices for which a transcription is sought. The model is expressed through composi-
tion of each lattice with a weighted finite-state transducer representing the translation
model, where inference is performed by sampling paths through the composed finite-
state transducer. We show consistent word error rate reductions in two datasets,
using between just 20 minutes and 4 hours of speech input, always outperforming a
translation model trained on the 1-best path.

Beyond the connection to computer-aided translation, the work in this section
and section 5.4 has parallels with topics described in Chapter 2, including speech
translation, where speech lattices are composed with translation models (Casacuberta
et al. 2004; Matusov et al. 2005), translation modelling from automatically transcribed
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speech, which has previously used 1-best transcriptions (Paulik and Waibel 2013), and
Bayesian word alignment (Mermer et al. 2013; Li et al. 2013).

We use a generative model that assumes the acoustic signal and written translation
are produced by some underlying word sequence we seek to recover. This model is
expressed by composing a word lattice that expresses information from the acoustic
and language models with a weighted finite-state transducer (WFST) that expresses
lexical translation probabilities constrained by the observed translation (see Figure
5.3). These parameters are learnt by sampling paths through the composed WFST,
which corresponds to sampling a word sequence and its alignment to the written
translation. A likely source sentence is recovered by finding the shortest path in the
WFST.

In experiments on the Fisher and CALLHOME Spanish–English Speech Trans-
lation Corpus (Post et al. 2013), we compare word error rates with those of ASR
1-best paths and a stronger baseline that trains an existing translation model on
1-best recognition results. The distinction between these two methods is that the
former uses only monolingual information in a 1-best transcription, whereas the lat-
ter harnesses the 1-best transcription and translations in order to learn a translation
model and subsequently improve the 1-best transcription. We demonstrate reduced
word error rates of 4.1% to 5.6% relative over the 1-best paths, and also show 2.3%
to 2.4% relative improvement over the alternative model that uses parameters learnt
from 1-best transcriptions. These results indicate that the mere existence of trans-
lations of what is to be transcribed can help with ASR. Moreover, it shows promise
for models of this type for computer-aided translation and also for speech recognition
for low-resource languages, where neither translation nor recogniser technologies are
currently adequate.

The method differs from previous work in that (a) it depends on no parallel text
training data, and that (b) the translation model is trained directly from word lattices
to harness more information than is available in the 1-best ASR hypothesis alone.

This approach uses techniques similar to those found in the Bayesian word align-
ment literature (Mermer and Saraçlar 2011; Mermer et al. 2013; Li et al. 2013).
However, rather than sampling alignments between observed source and target word
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Word lattice start
das/1.0

Ei/0.4

Eis/0.6

Translation model start

das:the/0.8
Eis:the/0.1

Ei:the/0.1

Ei:egg/0.9

Eis:egg/0.05
das:egg/0.05

Composed WFST
(alignment lattice)

start

das:the/0.8

das:egg/0.05

Ei:egg/0.36

Ei:the/0.04

Eis:egg/0.03

Eis:the/0.06

Figure 5.3: Illustration of the components of the WFST architecture. The alignment
lattice is the result of composing the word lattice with the translation model which
is constrained based on an observed English transcription “the egg.” In this way,
translation model probabilities can guide transcription. In our formulation, only the
word lattice probabilities are given; the translation model parameters are learnt.
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sequences, we sample paths through the source word lattice jointly with alignments
to the target (translation) word sequences. This approach is also similar to that of
Neubig et al. (2012a), where a lexicon and language model are learnt directly from
phoneme lattices. However, rather than composing a phoneme lattice with a lexicon
and a language model WFST, we compose a word lattice with a WFST representing
a translation model.

5.3.1 Model Description

ASR Lattices

ASR is characterized by the search problem

f̂ = argmax
f

P (x|f)P (f) (5.1)

where f represents an unobserved sequence of words f1 . . . fJ that produced the se-
quence of observed acoustic features x = x1 . . . xT , and f̂ is our best guess of those
words. Note that the length J is unknown ahead of time.

An ASR lattice encodes multiple transcription hypotheses, as shown in Figures
5.3 and 5.4, where each edge corresponds to a word fi. The acoustic model (AM)
and language model (LM) probabilities, P (x|f) and P (f) respectively, are captured
by the weights of the edges.

For any path f through the lattice, its probability can simply be determined with
P (f) =

∏J
j=1 PL(fi), where PL(fi) is the probability of the ith edge in that path,

where the language model probability is assumed to factorize with the graph.
The most likely path f̂ = argmaxf P (f) can be determined by finding the shortest

path through the lattice in question using Dijkstra’s algorithm, if probabilities are
represented as negative log probabilities.

Proposed Model

The proposed model also uses translation models to aid in ASR by incorporating
additional information in the form of an observed sequence e = e1, . . . , eI of translated
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0 1
ajá/0

2
pero/0

3
no/0

4son/0.2095

5

nunca/1.666 6

casas/0

sabes/0

Figure 5.4: A lattice obtained from speech recognition of ‘Ahá, pero una nunca
sabe’ (crowdsourced translation: ‘Aha, but one never knows’), with negative log
probabilities. Note that the gold transcription cannot be found in the lattice. The
probability of ‘son’ is incorrectly higher than the probability of ‘nunca.’

start

f :e/P (e|f) ∀e ∈ e

Figure 5.5: Reduced translation model template. Edges are added to the WFST only
if the word e is present in the utterance-level written translation e.

words and alignments a between f and e. If P (e,a|f) is factored into the search
problem, then we can reframe the problem as

f̂ = argmax
f

∑
a

P (x|f)P (f)P (e,a|f), (5.2)

which equals P (e,x,f) under the reasonable assumption that x and e are condition-
ally independent given f (ie. f contains all information pertinent to translation).

This problem can be reduced to a similar shortest-path problem as with traditional
ASR. This is done by composing our original lattices with a WFST that represents
translation model probabilities, as shown in Figure 5.5. The resulting composition of
the final lattice and the constrained translation model can be seen in Figures 5.3 and
5.6.2

2For the examples in the figures and this formulation, we disregard the possibility of the null
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0 1

ajá:aha/0.0030832

ajá:but/13.509

ajá:never/10.1
ajá:one/9.8838

ajá:knows/3.6615

2

pero:one/9.8838

pero:never/4.2826

pero:knows/1.966
pero:aha/12.372

pero:but/0.044997

3

no:aha/5.7903

no:but/3.1351

no:never/2.2973
no:knows/1.4295

no:one/0.22803

4

son:never/10.31

son:knows/2.4522

son:but/7.8122

son:aha/12.582

son:one/1.9881

5

nunca:but/15.175

nunca:knows/5.2487

nunca:one/6.6167

nunca:never/1.7876

nunca:aha/14.038

6

casas:aha/12.372

casas:never/10.1

casas:one/3.874

casas:but/13.509

casas:knows/1.6364

sabes:but/13.509

sabes:knows/1.3235

sabes:aha/12.372

sabes:never/10.1

sabes:one/4.9507

Figure 5.6: The lattice composed with the translation model WFST. Each edge for a
given Spanish word is replaced with a set of edges that transduce to different English
words with probabilities re-weighted by the translation model. Note that ‘nunca’
is now correctly given more weight than ‘son’, given the added information of the
English translation ‘never.’

In this framework, each path represents a sequence of source tokens f and their
alignments a = a1 . . . aJ between tokens in f and types in e. However, this generative
story can fail to describe the observed reference translation e if, say, all words in f

align to the first word in the translation, e1. This is a deficient model of P (e,a|f).
An alternative formulation is to condition on e, ie. using P (f ,a|e). Since we assume
language model probabilities P (f) are already included, this gives rise to a product
model where probabilities over f are given by two different sources:

f̂ = argmax
f

∑
a

P (x|f)P (f)P (f ,a|e)
Z

. (5.3)

Including both of these probabilities over f requires a normalizing constant Z =∑
f P (f)P (f |e), which need not be calculated since it is implicit in the WFST when

token, which corresponds to the possibility of a word in f not aligning to any of the words in e (but
rather a separate null token). We discuss this further in §5.3.3.
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sampling or using Dijkstra’s shortest path algorithm.
Finding the shortest path corresponds to determining the most likely source f

and alignments a. Since distinct alignment paths may have the same source f , f̂ is
most accurately found by marginalizing over the alignments:

f̂ = argmax
f

∑
a

P (x|f)P (f)P (f ,a|e). (5.4)

However, for computational reasons we simply approximate f̂ with the source side of
the most likely path:

f̂ ≈ argmax
f

max
a

P (x|f)P (f)P (f ,a|e). (5.5)

5.3.2 Learning Translation Model Parameters

We assume independent Dirichlet priors over each of the constituent distributions
in the translation model T (one conditional probability distribution for each f). This
is chosen due to conjugacy of the Dirichlet distribution with the categorical distribu-
tion over words. The conditional posterior can be expressed as:

P (f |e) = cA(e, f) + αPbase(f)

cA(e) + α
(5.6)

where cA(e, f) is a count of how many times f has aligned to e thus far in a corpus-
wide set of alignments A between each f and an e in the same parallel sentence (with
counts attributed to by the current alignment path a discounted); cA(e) is a count of
how many times e has been aligned to; Pbase is a uniform prior and α determines the
emphasis on the base distribution.

We now turn to the task of determining parameters which will allow us to find
the f̂ as discussed above. The approach we use involves blocked sampling of align-
ments A, with each utterance as a block. We perform sampling of these alignments
proportionally to their probability given the data and our prior, in effect integrating
over all parameter configurations T :

P (A,F|S, E ;α, Pbase) ∝
∫
T

P (A,F|S, E , T )P (T ;α, Pbase)dT , (5.7)



Chapter 5: Harnessing Translations for Improved Phoneme Transcription 117

where F are the source-language sentences sampled from the word lattices S, while
E are the corresponding translations, and T represents a translation model that we
assume prior information about and whose parameters we integrate over.3

The approach uses blocked Gibbs sampling where each block corresponds to one
utterance and thus one of the composed WFSTs constrained on the observed trans-
lation. The sampling of paths through these composed WFSTs can be achieved
using the method of forward-filtering/backward-sampling as described in (Scott 2002;
Johnson et al. 2007; Neubig et al. 2012a). This method first computes forward prob-
abilities in the same way the forward-backward algorithm for hidden Markov models
does, before sampling edges from the end state proportionally to the product of the
forward probability and the edge weight, using these forward probabilities to yield a
path with probability proportional to the total probability of the edges in the path.4

After sampling a path consisting of lexical alignments, the counts of those lexical
alignments are added to the cache used to calculate the Dirichlet posterior of e given
f as per Equation 5.6 before the next WFST is composed and sampled from. When
all WFSTs have been sampled from, we can repeat the sampling, first removing the
counts in the cache attributed to the current WFST being sampled from, before
adding counts from the new sample as per the sampling approach of Neubig et al.
(2012a).

With repeated sampling of A the samples will converge to the posterior in Equa-
tion 5.7. Sampling sets of alignments n times, we use these alignment sets A1 . . . An

to create a set of point estimates T1 . . . Tn for T . We then average these parameters
to create a final expected T for the purposes of decoding using the approach of §5.3.1.

5.3.3 Variations on Parameter Formulation

In the previous formulation we discussed using P (e|f) as the translation model
parameters. Aside from the problem of deficiency, another problem with using P (e|f)

3Equation 5.7 assumes S, E ⊥ T .
4No Metropolis-Hastings rejection step was used. The WFST is thus not an exact implementation,

but due to the short length of the utterances we argue it is not worth the effort nor time cost in
sampling.
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is that values of e with a higher marginal probability P (e) tend to have a higher condi-
tional probability P (e|f). This problem makes itself especially clear when permitting
null tokens on the English side, as it leads to degenerate alignments where most fi

end up aligning to the null token since it is present in every sentence.
The most obvious alternative formulation include use of P (f |e) instead. Addition-

ally, we can use normalizations of these probabilities. Notably, we propose and test
an approach that uses P (f |e)∑

f ′ P (f ′|e) (both in sampling and decoding) where each f ′ is a
token occurring in the original lattice. The denominator does not equal 1, since not
every possible f ′ from the corpus will occur in any given lattice. The normalization
term does not explicitly affect distinguishing between different source words in the
WFST when sampling or decoding. However, it aids in aligning to the correct target
word e by biasing towards alignments where f is most likely relative to its peers
given e. Improving the alignments this way thus affects the translation model and,
subsequently, the future paths chosen when sampling or decoding.

We also introduce a lattice weight hyperparameter λ. The contribution of original
lattice probabilities from the acoustic model and language model against the trans-
lation model probabilities can be increased by simply multiplying the negative log
probabilities by λ.

5.3.4 Experimental Evaluation

Experimental Setup

For the experiments we used the Fisher and CALLHOME Spanish–English Speech
Translation Corpus (Post et al. 2013), which conveniently offers Spanish word lattices
and crowdsourced English translations. The LDC human transcriptions (Wheatley
1996; Graff et al. 2010) are used as a gold standard against which to evaluate the
ASR. Our preprocessing involved lowercasing all text, and removing punctuation from
both the Spanish and English sides. We additionally removed from the corpus a small
number of empty sentences and empty lattices.5

5Evaluating the 1-best output against the transcript, we find differences to WERs reported in
Post et al. (2013). These were somewhat higher, likely accounted for by preprocessing differences.
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Parameter type 1-best TM Lattice TM

α, λ = 1 α, λ = best

P (e|f) 0.555 0.559 0.556
P (f |e) 0.552 0.542 0.541
P (e|f)∑
e′ P (e′|f) 0.568 0.574 0.570
P (f |e)∑
f ′ P (f ′|e) 0.547 0.539 0.539

Table 5.9: Word error rates of different parameter variations when tuning on the
CALLHOME training set. ASR 1-best accuracy is 0.569.

To evaluate how harnessing the English translations can improve use of the Span-
ish word lattices, we evaluate the word error rate of the chosen path through the
composed WFST against the LDC transcriptions. We compare our approach, which
we refer to as Lattice TM, with a similar method where the translation model is in-
stead trained from 1-best paths from the lattice using Giza++ (Och and Ney 2003),
which we refer to as 1-best TM. Note that while we are ultimately interested in cal-
culating phoneme error rates, this experimentation uses a corpus of word lattices to
explore how word-level translation modelling can improve word-based ASR. Phoneme
error rate evaluation will follow in Section 5.4.

Tuning and Choice of Parameterization

We tuned two hyperparameters on the CALLHOME training set of approximately
14.5 hours (results from the Fisher set are thus those from which insight is most
reliably attained): the lattice weight, λ, and the concentration parameter of the
Dirichlet distributions, α. Tuning involved a simple grid search of λ and α over the
values 0.5, 1, 2, and 4. We found no substantial improvements over the setting of
1 for both parameters. At λ = 4 the WER began to increase, although it was still
significantly better than the ASR 1-best WER, with these improvements robust for all
hyperparameter combinations evaluated. With no strong motivation to do otherwise,
we left these parameters at λ = 1 and α = 1 and evaluated on the test sets.
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Method Fisher CALLHOME
ASR 1-best 0.355 0.586
1-best TM 0.343 0.576
Lattice TM 0.335 0.562

Table 5.10: Word error rates on the Fisher and CALLHOME test sets.

During tuning (Table 5.9), we also evaluated the parameterizations discussed in
§5.3.3. The best parameterization, P (f |e)∑

f ′ P (f ′|e) , was used for the subsequent evaluation.
In tuning, permitting null alignments in the translation model WFST reduced scores
for all parameter variations, most notably P (e|f). The results presented in this
chapter are based on a model that uses no null alignments.

Experimental Results

Table 5.10 shows the main results, across both of the test sets. The 1-best TM
outperforms the ASR baseline, but underperforms Lattice TM on both test sets.

Figures 5.7 and 5.8 illustrate the change in performance when the method is run
on a varying amount of training data, both as subsets and supersets of the training
data. When training data is sufficiently limited, the TM trained on the 1-best path
adversely affects performance, increasing the WER. In contrast, Lattice TM remains
robust.

Each of the plots has a vertical rule labelled ‘Test set.’ The method is unsuper-
vised, always taking an input lattice and written translation. Word error rates can be
evaluated across all the data that is fed to the model. However, for a consistent point
of comparison as the amount of input data varies, we use a fixed test set. To the left
of the rule, when the amount of data is smaller than this test set, the training data
is a subset of this test set. To the right of the rule, we run the model on a superset
of the test set.

The example in Figure 5.4 (from the CALLHOME test set) epitomizes why the
TM learnt from the lattice outperforms the TM learnt from the 1-best path. The
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Figure 5.7: Speech recognition results on CALLHOME, which was the dataset used
for tuning. We compare the performance of models trained on varying amounts of
data. A fixed component of all the training data is used for word error rate evaluation,
marked by the vertical line ‘Test set’ (since the method is unsupervised and designed
to better transcribe data it is trained on, the training set and test set overlap).

crowdsourced English translation is ‘aha, but one never knows’ and the gold tran-
scription is ‘Ahá, pero una nunca sabe.’6 The better path is the bottom one, choosing
‘nunca’ over ‘son.’ However, the 1-best path chooses ‘son.’ Training a translation
model from the erroneous 1-best path causes negative reinforcement, where the TM
is even more likely to assign a high probability to ‘son’ given ‘never.’ Without enough
training data to overcome this negative reinforcement, it has a substantial effect on
scores.

Since ‘never’ and ‘nunca’ are relatively frequently occurring in the test data,
the 1-best TM actually does assign a reasonable lexical translation score to this
pair, however this is not enough to overcome the lattice’s bias and the reasonable
probability of ‘son’ given ‘never’ which was learnt from the erroneous transcription.

6The gold transcription is notably unobtainable from the lattice. Reduced pruning of lattices are
likely to further improve scores.
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Figure 5.8: Speech recognition results on the Fisher corpus. We compare the perfor-
mance of models trained on varying amounts of data. A fixed component of all the
training data is used for word error rate evaluation, marked by the vertical line ‘Test
set’ (since the method is unsupervised and designed to better transcribe data it is
trained on, the training set and test set overlap).

Note that Lattice TM continues to outperform the 1-best TM approach when
training data beyond the fixed test set is used. This suggests that Lattice TM gains
an advantage from the information encoded in the lattice beyond avoiding the negative
reinforcement of the 1-best TM approach.

Further examples from the Fisher test set are shown in Figure 5.11. Coloured
words highlight how English reference words can inform how the Lattice TM approach
deviates from the 1-best ASR path, or that of the 1-best TM. Sometimes this yields
improvements with respect to the reference (green). Often the signal makes more
sense or is justifiable (blue). Occasionally, it mistakenly biases away from the truth
(red).

This method is very fast. Composition, sampling and caching for 1,000 utterances
takes between 3 and 4 seconds on a single 1.80GHz Intel i7-4500U core. Running on
the 213 minute Fisher evaluation set (Table 5.10) took less than 5 minutes, and scales
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English: i go because he doesnt dance either
Reference: voy porque tampoco baila

1-best ASR: pero por otro tampoco vaya
1-best TM: sí pero tampoco vaya
Lattice TM: sí pero tampoco bailar

English: but viaja
Reference: pero vi ajá

1-best ASR : pero vi ajá
1-best TM: pero vi ajá
Lattice TM: pero que ajá

English: and i live in athens mm
Reference: y yo vivo en athens mh

1-best ASR: y yo vivo en hacer
1-best TM: y yo vivo en hacer
Lattice TM: y yo vivo en athens

English: i believe its something like christian science
Reference: ah eh yo creo que christian science algo así

1-best ASR: ah eh yo creo que kristin sáinz algo así
1-best TM: ah ah ah eh yo creo que cristianos años algo así
Lattice TM: ah eh yo creo que cristianos años algo así

Table 5.11: Examples from the Fisher test set (tokenized and lowercased). Each
example consists of (top to bottom): crowd-sourced English translation (though code
switching is common in both languages in the corpus); reference Spanish transcription;
1-best path through the word lattice; best path using a translation model trained
on the 1-best paths (1-best TM); and best path using a translation model trained
on lattices (Lattice TM). Green text indicates a useful correction based on learnt
translations, along with blue text to a lesser extent. Red text indicates how a learnt
translation pair can occasionally damage the transcription.
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roughly linearly with more training data.

5.3.5 Implications

This experimentation demonstrated that having a written translation in another
language can help improve speech recognition even when no pre-trained translation
model is available. This is achieved by training a translation model directly on the
ASR word lattices paired with the written translation in order to make the most of
all information available in the lattice.

Although this is just a step towards a phoneme-based model, one natural setting
for such an approach is for computer-aided translation of a small language for which
there exists written data but no parallel corpora with the larger target language.
However, since most languages have inadequate ASR technology, and stand to gain
the most from improved speech recognition systems, future work should also strive
to reverse the role of the languages in this setup, addressing the speech of a small
language paired with a written translation in a larger language. Such bilingual data
can be collected using a tool such as Aikuma (Bird et al. 2014b). However, for this to
work, an ASR system with a lexicon and language model needs to be trained, perhaps
using a tool such as Woefzela (De Vries et al. 2011). Otherwise this need should be
sidestepped by working directly with the speech signal or phoneme lattices. We now
discuss an extension to this model using phoneme lattices without a predetermined
lexicon.

5.4 Learning a Lexicon and Translation Model from
Phoneme Lattices

In the previous section we described how translation model parameters can be
learnt from lattices paired with translations and demonstrated its effectiveness. How-
ever, the model assumes that a lexicon is available and that there are no out-of-
vocabulary words in the speech recognition. In this section, we generalize the method
to work instead with phoneme lattices, jointly learning the lexicon and translation
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model in a Bayesian non-parametric framework, thereby harnessing translations to
improve automatic phoneme recognition. The method assumes no prior lexicon or
translation model, instead learning them from phoneme lattices paired with written
translations of the speech being transcribed, assuming the target side is a major
language that can be efficiently transcribed.

A Bayesian non-parametric model expressed with a weighted finite-state trans-
ducer (WFST) framework represents the joint distribution of source acoustic features,
phonemes and latent source words given the target words. Sampling of alignments
is used to learn source words and their target translations, which are then used to
improve transcription of the source audio they were learnt from. Importantly, the
model assumes no prior lexicon or translation model.

Experiments demonstrate that this method substantially reduces the phoneme
error rate of transcriptions compared with a baseline recogniser and a similar model
that harnesses only monolingual information, by up to 17% and 5% respectively.
We also find that the model learns meaningful bilingual lexical items. The code is
available online.7

Beyond the related work mentioned in §5.3, this method is related to various
work discussed in Chapter 2, including work on phoneme translation modelling which
has been done on 1-best transcriptions (Besacier et al. 2006; Stüker et al. 2009;
Stahlberg et al. 2012; Stahlberg et al. 2014b), word segmentation in translation mod-
elling (Chang et al. 2008; Dyer 2009; Nguyen et al. 2010; Chen and Xu 2015), and
language model learning from lattices (Neubig et al. 2012a). Recent work that was
done in parallel or after the contents of this chapter include translation modelling
from speech directly, as described in Chapter 2.

5.4.1 Model Description

Our model extends the standard automatic speech recognition (ASR) problem
and the word lattice approach of §5.3 by seeking the best phoneme transcription ϕ̂

of an utterance in a joint probability distribution P (x,ϕ,f ,a|e) that incorporates
7github.com/oadams/latticetm

github.com/oadams/latticetm
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acoustic signal x, phonemes ϕ, latent source words f and their alignments a to
observed target transcriptions e:

ϕ̂ = argmax
ϕ

∑
f ,a

P (x|ϕ)P (ϕ|f)P (f ,a|e) , (5.8)

assuming a Markov chain of conditional independence relationships. Note that bold
symbols denote utterances as opposed to tokens. Deviating from standard ASR, no
lexicon is given in training. Additionally, we replace language model probabilities
with those of a translation model, also not given in training, and search for the best
phoneme transcription instead of words.

Similar to Equation 5.4, the maximum approximation is used for tractability in-
stead of summing over latent source words f that correspond to the phonemes ϕ:

ϕ̂ = argmax
ϕ

max
f ,a

P (x|ϕ)P (ϕ|f)P (f ,a|e) , (5.9)

Expression of the Distribution Using Finite-State Transducers

This model is distinct from the word-based model of the previous section since a
prior lexicon is not assumed to be available. Instead, the lexicon must be learnt along
with the translation model parameters.

We first describe how this model can be expressed in a WFST framework assuming
we already have a lexicon and translation model, showing how this information can
help find a more accurate phoneme transcription. We then describe how modifications
can be used in order to jointly learn the lexicon and translation model.

We use a WFST framework to express the factors of Equation 5.9. The use of
this framework is appealing for two key reasons. Firstly, it allows for computational
tractability and simple inference via efficient methods FST composition and path
sampling. Secondly, it allows for a modular, extendable framework, where compo-
nents can be substituted with relative ease, facilitating simple future refinements to
the model. Figure 5.9 uses a toy German–English error resolution example where an
English translation guides the transcription of a German utterance to illustrate the
components of the framework: a phoneme lattice representing phoneme uncertainty
according to P (x|ϕ); a lexicon that transduces phoneme substrings ϕstart, . . . , ϕend of
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Figure 5.9: Top to bottom: the phoneme lattice, the lexicon, the translation model,
and the resulting composed WFST. Given an English translation ‘yard,’ the most
likely transcription is corrected to /hoːf/ (‘Hof’) in the composed WFST, while in
the original phoneme lattice it is /haʊs/ (‘Haus’). Solid edges represent most likely
paths.
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ϕ to source tokens f according to P (ϕstart, . . . , ϕend|f); and a lexical translation model
representing P (f |e) for each e in the written translation. This is similar to the WFST
architecture shown in Figure 5.3, except a separate lexicon FST is required to convert
phoneme lattices into word lattices, which must be learnt during inference. The com-
position of these components is shown, illustrating how would-be transcription errors
can be resolved. This framework is also reminiscent of the WFST framework used
by Neubig et al. (2012a) for lexicon and language model learning from monolingual
data.

We now describe how the factors of Equation 5.9 can be expressed in a weighted
finite-state transducer framework. We describe each of the constituent components in
turn. Note that though the transducer framework transduces from source phonemes
to the target words, the generative story proceeds in the opposite direction: the
observed text words produce the noisy acoustic signal.

Phoneme lattice The phoneme lattice captures phoneme sequences given by the
acoustic model to explain the observed acoustic signal according to P (x|ϕ).

Lexicon Each path represents one lexical entry and transduces from phonemes to
a token that represents the sequence of those phonemes. The probability of each path
is 1. This component captures P (ϕstart, . . . , ϕend|f), where ϕstart, . . . , ϕend represents
a phoneme substring in the corpus that constitutes a word.

Translation model Each edge takes a foreign word token and yields an English
word with probability P (f |e). Since language model probabilities are not given as
they were in §5.3, inclusion of this factor gives rise to the joint probability distribution
of Equation 5.8, rather than the factored model of the previous section.

Composed FST The bottom of Figure 5.9, illustrates the composition of the lat-
tice, lexicon and translation model. This alignment lattice expresses the distribution
of Equation 5.9. Given this WFST, the 1-best path can be found by simply using
Dijkstra’s algorithm. Notice how the 1-best path through this path is informed by
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all the components, and overcomes the uncertainty of the lattice alone, whose 1-best
path would lead to the wrong transcription.

5.4.2 Learning the Lexicon and Translation Model

Because we do not have knowledge of the source language, we must learn the
lexicon and translation model from the phoneme lattices and their written transla-
tions. In order to determine the translation model parameters as described above, we
sample alignments A using the same approach described in §5.3.2. However, unlike
that word lattice case, in this case the lexical entries need to be learnt. To do this,
some adjustments must be made. The two most notable changes are that (a) the
model must accommodate segmentation of phonemes into words not previously seen
and (b) the translation model must become non-parametric, because the lexicon can
be arbitrarily large. The lexicon needs to allow phonemes to pass through without
conversion to known words, since they may constitute a word not yet in the lexicon.
The extreme case of this is when the lexicon initially starts empty. For this we add
an additional component (a word length model, described below) to the lexicon that
serves as a prior distribution over sequences of phonemes.

We model lexical translation probabilities using a Dirichlet process. Let A be both
the transcription of each source utterance f and its word alignments to the translation
e that generated them. The conditional posterior can be expressed as:

P (f |e;A) = cA(f, e) + αPbase(f)

cA(e) + α
, (5.10)

where cA(f, e) is a count of how many times f has aligned to e in A and cA(e) is a
count of e in any alignment; Pbase is a base distribution that influences how phonemes
are penalized based on their length; and α determines the emphasis on the base
distribution. The distinction between Equation 5.10 and Equation 5.6 of the previous
section is that the base distribution now takes a non-uniform, non-parametric form
with probabilities varying with respect to the length of the word.

In order to express the Dirichlet process using the WFST components, we take
the union of the lexicon with a word length model base distribution that consumes
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Figure 5.10: A translation model template. Each shown edge has a number of distinct
instantiations for all f ∈ Vf , e ∈ e.

a subsequence of phonemes ϕstart . . . ϕend and produces a special ⟨unk⟩ token with
probability Pbase(ϕstart . . . ϕend). This ⟨unk⟩ token is consumed by a designated arc
in the translation model WFST (see Figure 5.10 with probability α

cA(e)+α
, yielding

a composed probability of αPbase(f)
cA(e)+α

. Other arcs in the translation model express the
probability cA(f,e)

cA(e)+α
of entries already in the lexicon. The sum of these two probabilities

equates to Equation 5.10. The ⟨unk⟩ token is used when a new (unknown) token, not
in the lexicon, is drawn from the base distribution. However, it can also be drawn
from the base distribution even when the corresponding word is already in the lexicon.

See the translation model transducer as shown in Figure 5.10. The top edge
corresponds to aligning a learned source word f to an observed target word e by
drawing according to cached alignment counts. The bottom edge corresponds to the
probability of drawing from the base distribution. There is only one ⟨unk⟩ token and
the probability is the same given each e ∈ e.

The word length model

The key distinction between the model in this section and that of §5.3 is this
model’s ability to segment the sequence of phonemes into words in order to perform
unsupervised learning of a lexicon. Behind this segmentation is a base distribution
—the word length model—which guides the segmentation. We experiment with three
word length models, implementing WFSTs to represent them. These WFSTs can form
part of the lexicon FST of Figure 5.9, by taking the union of the lexicon FST in that
figure and the word length model WFST.
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Figure 5.11: A word length model in the empty state that implements a Geometric
prior, assigning probabilities to phoneme sequences not yet in the lexicon. Note that
the arcs with phoneme ϕ on the input side can be considered templates, where in
reality there is one such arc for each ϕ ∈ Vϕ, where Vϕ is the phoneme set.

These models can thus be considered simplified spelling models of (Mochihashi
et al. 2009) and constitute the base distribution of the Dirichlet process.

Geometric distribution The most simple word length model is the geometric
distribution, Geometric(γ), shown in Figure 5.11. In this word length model prior
(and the others discussed below in §5.4.2), all phoneme types are treated the same,
with uniform probability. It is the length of the phoneme sequence that dictates its
probability. In the case of the geometric distribution, longer sequences are always
given less probability. This prior can most simply be implemented such that each
phoneme type is given a uniform probability by this prior, with the probability of any
length k phoneme sequence as:

P (k) = (1− γ)k−1γ. (5.11)

Disregarding the effects of other lexical items being in the lexicon, and of the
weights of the supplied phoneme lattice, the most probable path is actually the one
that segments the sequence as one large word. This is because there is a γ cost
associated with completing a word. However, there are exponentially more segmenta-
tions of smaller words, and thus when sampling a path through the alignment lattice,
smaller words are much more likely. Ultimately, with more sampling, these effects
are outweighed by that of the translation model rewarding segmentations/alignments
that explain the data.
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The geometric prior described above is small, efficient, and helps to deliver phoneme
recognition improvements in its own right. However, modelling word segmentation
with geometric decay faces a key limitation in that the most likely length of a word
is 1 phoneme, departing from observations of natural language.

Poisson distribution While the geometric distribution has a simple and elegant
WFST formulation, it encourages the most common word length to be 1 phoneme,
which doesn’t encourage clustering of common groups of phonemes as much as we
would like. A better prior would ensure the most likely length of a word is somewhat
longer, but still with exponential decay thereafter. The Poisson distribution appears
a more natural fit for this as a parameter λ is can be used to specify the average
length. For any length k phoneme sequence, the probability is:

P (k;λ) =
λke−λ

k!
. (5.12)

While the geometric distribution can be easily expressed recursively, the Poisson
distribution cannot. We limit the number of states in the Poisson WFST to 100.
Furthermore, since the standard Poisson distribution would give non-zero probability
to phoneme sequences of length 0, we also shift the Poisson distribution probabilities
such that P (k = 0;λ) = 0 and the remaining probability mass takes the form:

P (k;λ) =
λk−1e−λ

(k − 1)!
. (5.13)

Shifted geometric distribution The shifted geometric distribution, Shifted(α, γ),
like the Poisson distribution, mitigates the shortcoming of the geometric distribution
whereby words of length 1 have the highest probability. It does so by having another
parameter α that specifies the probability of a word of length 1, allowing it to be
penalized, with the remaining probability mass distributed geometrically. An advan-
tage of the shifted geometric distribution over the Poisson is that it admits a simple
recursive WFST formulation, as shown in Figure 5.12, as well as the possibility of
stronger penalization against single-phoneme words.

Figure 5.13 shows a histogram of the Poisson, Shifted, and Geometric distributions
with the parameterizations found most effective during tuning.
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Figure 5.12: A shifted geometric distribution, with one probability specified, P (1),
giving the probability of a word being of length 1. Arcs with input ϕ are templates
for all arcs that take a phoneme on the input. These arcs must have a denominator of
|Vϕ| since we uniformly distribute the probability over all phonemes in the vocabulary
Vϕ.

5.4.3 Experimental Evaluation

We evaluate the learnt lexicon and translation model by their ability to improve
phoneme recognition, measuring phoneme error rate (PER).

Experimental Setup

We used up to 9 hours of English–Japanese data from the BTEC corpus (Takezawa
et al. 2002), comprised of spoken utterances paired with textual translations. This
allows us to assess the approach assuming quality acoustic models. We used acoustic
models similar to Heck et al. (2015) to obtain source phoneme lattices without the
help of a lexicon or language model. “Gold” phoneme transcriptions were obtained
by transforming the text with pronunciation lexicons and, in the Japanese case, first
segmenting the text into tokens using KyTea (Neubig et al. 2011a). Note that these
transcriptions are good but not perfect. There may be some minor degree of phonemic
deviation in the speech relative to what the pronunciation lexicon suggests about the
pronunciation of each word in the lexicon. However, it makes sense to treat this
phonemic transcription as a gold reference.
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Figure 5.13: Histogram illustrating the word length model priors: the Shifted geomet-
ric distribution, a Poisson distribution, and a Vague geometric distribution.

We run experiments in both directions: transcription of English using Japanese
translations (en–ja) and transcription of Japanese using English translations (ja–en),
while comparing against three settings: the ASR 1-best path uninformed by the
model (ASR); a monolingual version of our model that is identical except without
conditioning on the target side (Mono); and the model applied using the source
language sentence as the target (Oracle).

We tuned on the first 1,000 utterances (about 1 hour) of speech and trained on
up to 9 hours of the remaining data.8 Tuning was performed only using English in
the monolingual configuration, using a grid search over α and the hyperparameters
of the respective priors to find the best values. Only the oracle setup was used for
tuning, with Geometric(0.01) (taking the form of a vague prior), Shifted(10−5, 0.25)

8A 1 hour subset was used for PER evaluation.



Chapter 5: Harnessing Translations for Improved Phoneme Transcription 135

English (en) Japanese (ja)

Mono –ja Oracle Mono –en Oracle

ASR 22.1 24.3
Vague 17.7 18.5 17.2 21.5 20.8 21.6
Shifted 17.4 16.9 16.6 21.2 20.1 20.2
Poisson 17.3 17.2 16.8 21.3 20.1 20.8

Table 5.12: Phoneme error rates (percent) when training on 9 hours of speech, aver-
aged over 4 runs. As described in the text, Mono is a monolingual variation of the
model that uses no translation, while Oracle uses a gold transcription in the same
language as the phoneme recognition.

and Poisson(7) performing best.
We tuned α and γ. Changing α made little difference, though higher values began

to reduce results, so we left it at 1. For γ, a value of 0.01 offered the largest PER
reductions, with the PER appearing to monotonically decrease as γ decreased, from
0.213 to 0.196 against the baseline of 0.241.

Results

Table 5.12 shows en–ja and ja–en results for all methods with the full training data.
Notably, English recognition gains less from using Japanese as the target side (en–ja)
than the other way around, while the ‘oracle’ approach for Japanese recognition, which
also uses Japanese as the target, actually underperforms ja–en. These observations
suggest that using the Japanese target is less helpful, likely explained by the fine-
grained morphological segmentation we used, making it harder for the model to relate
source phonemes to target tokens.

While the Shifted and Poisson distributions were very close in performance, the
vague geometric prior significantly underperforms the other priors. In the en–ja/vague
case, the model actually underperforms its monolingual counterpart. The vague prior
biases towards fine-grained English source segmentation, with words of length 1 most
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Figure 5.14: Japanese phoneme error rates using the shifted geometric prior when
training data is scaled up from 1–9 hours, averaged over 3 runs.
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Figure 5.15: English phoneme error rates (expressed as percentages) of Poisson(λ = 7)
when training data is scaled up from 1 to 9 hours. A single run was used for each
data point.
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Figure 5.16: Japanese phoneme error rates (as percentages) using the Poisson prior
when training data is scaled up from �1 hour to �9 hours. A single run was used for
each data point.

common. In this case, fine-grained Japanese is also used as the target which results
in most lexical entries arising from uninformative alignments between single English
phonemes and Japanese syllables, such as /t/⇔ す. Perhaps the slight advantage
Shifted gains over Poisson is because of its ability to even further penalize single-
phoneme lexical items (see Figure 5.13), which regularly end up in all lexicons anyway
due to their combinatorial advantage.

Figure 5.14 shows improvements of ja–en over both the ASR baseline and the
Mono method as the training data increases, with translation modelling gaining an
increasing advantage with more training data. To give a further sense of how perfor-
mance generally scales with training data, Figures 5.15 and 5.16 present results of
en–ja and ja–en respectively, using a Poisson prior. Since the method is unsupervised,
the test set is a fixed 54 minute (1,000 utterances) subset of the training data.

While many bilingual lexical entries are correct, such as /wʌn/⇔ 一 (‘one’), most
are not. Some have segmentation errors /liːz/⇔ くださ (‘please’); some are cor-
rectly segmented but misaligned to commonly co-occurring words /wʌt/⇔ 時 (‘what’
aligned to ‘time’); others do not constitute individual words, but morphemes aligned
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Japanese: この ブラウスは 思 ったより安かった

English: this blouse was cheaper than i thought
Reference: ð ɪ ʃ b l aʊ ʃ w ɔ z tʃ i p ɝ ð ʌ n aɪ θ ɔ t
1-best ASR: ɪ ʃ p aʊ ʃ w ɪ θ tʃ i p ɝ ð aɪ θ ɔ d
Mono: ɪ z b l aʊ ʃ w ʌ z tʃ i p ɝ ð ɛ n aɪ θ ɔ t
en–ja: ð ɪ ʃ b l aʊ ʃ w ʌ z tʃ i p ɝ ð ɛ n aɪ θ ɔ t
Oracle (en–en): ð ɪ ʃ b l æ ʃ i z tʃ i p ɝ ð ʌ n aɪ θ ɔ t

Japanese: そう ですか

English is that right
Reference: ɪ z ð ʌ t ɹ aɪ t
1-best ASR: ɪ z ð æ t ɹ eɪ
Mono: ɪ z ð æ t ɹ aɪ t
en–ja: ɪ z ð æ t ɹ aɪ t
Oracle (en–en): ɪ z ð æ t ɹ aɪ t

Japanese: 小切手に 署名 しなければなりませんのね

English: i have to sign the check dont i
Reference: aɪ h æ V t u ʃ aɪ n ð i tʃ ɛ k d oʊ n t aɪ
1-best ASR: h æ f t d ɪ ʃ aɪ d ɪ d tʃ ɛ k d ɑ n ʌ
Mono: h æ f t ʌ ʃ aɪ n d tʃ ɛ k t ɑ n ʌ
en–ja: h æ f t ʌ ʃ aɪ n d tʃ ɛ k t ɑ n ʌ
Oracle (en–en) : aɪ h æ f t ʌ ʃ aɪ n d tʃ ɛ k t ɑ n ʌ

Table 5.13: Examples of output from four model variations. Top to bottom: Japanese
translation; orthographic English transcription; phonemic English reference; shortest
path through the ASR lattice (1-best ASR); monolingual method learning only from
patterns in the lattice, without the translation or transcription (Mono); bilingual
method harnessing the Japanese translation (en–ja); Oracle method harnessing the
orthographic English transcription. Orange highlights the reference; green highlights
corrections over the 1-best path; red highlights failures to correct; blue highlights a
correction only the Oracle made on account of explicit information in the English
transcription unavailable in the Japanese translation.
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to common Japanese syllables /iːŋ/⇔ く (‘-ing’); others still align multi-word units
correctly /haʊmʌtʃ/⇔ いくら (‘how much’). Note though that entries such as those
listed above capture information that may nevertheless help to reduce phoneme tran-
scription errors.

Table 5.13 shows some sentences from the corpus: the original English and Japanese
transcriptions; the reference English phonemic pronunciation; the 1-best ASR output;
the monolingual version of the model; the bilingual version that harnesses Japanese
translations; and the Oracle, which harnesses orthographic English transcriptions.

The gold reference is shown in orange. In the first example, information from
Japanese この is used to accurately transcribe /ð ɪ ʃ/ (this) in the en–ja method
that harnesses the Japanese translations (shown in green). The Oracle similarly uses
the orthographic English transcription this to the same end. In contrast, the 1-best
ASR and Mono approaches fail to transcribe this word correctly (shown in red) since
they do not have that information available. Similar instances are shown elsewhere
in green, with the English and Japanese words for though, right and sign helping in
their cases. Mono is often, but not always, able to learn monolingual word units for
similar correction.

Blue text highlights a word only the Oracle method was able to correctly tran-
scribe. This can be explained by the lack of explicit information on the Japanese side
to learn that entry. A translation for I is not explicit in the Japanese text, thus en–ja
fails to correctly transcribe /aɪ/. In contrast, the Oracle can resolve the error since
it uses the orthographic English transcription, which has one-to-one correspondence
with the speech.

5.5 Discussion

One of the appealing aspects of this final modular framework is that there is much
room for extension and improvement. For example, by using adaptor grammars to
encourage syllable segmentation (Johnson 2008), or incorporating language model
probabilities in addition to our translation model probabilities (Neubig et al. 2012a).

The work presented in this chapter is consistent with the argument from the end
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of Chapter 3 that bilingual lexical coocurrences can be useful for downstream tasks
such as automatic speech recognition. This is true even when most entries from a
simulated environment would not pass the litmus test of correctness based on whether
they occur in a bilingual lexicon. However, bilingual context matters and can be very
helpful. This holds true particularly for very different languages such as Japanese and
English, where syntactic and morphological differences mean bilingual lexical items
are even less likely to be correct in any strict sort of sense. However, despite this,
significant reductions in phoneme error rate are found by harnessing the bilingual
context, even when there is no prior information relating these languages available.

Despite drastic advances in acoustic modelling and speech recognition in the last
decade, reducing phoneme error rates will remain important in low-resource contexts.
In the case of the documentation of endangered languages, limited training data is
available with which to train acoustic models and so making the most of available
training data is key. Such data includes limited monolingual phonetic transcriptions,
for which modelling must be effective. But importantly, such data may include other
information, such as translations gathered in a language documentation setup based
on Aikuma.

In this chapter we progressively removed simplifying assumptions until modelling
speech and translations directly, assuming no prior lexicon, language model or trans-
lation model. However, the method did require an acoustic model with phoneme
error rates between 20 and 25%. In a language documentation scenario, only limited
supervised training data to train such acoustic models may be available. Future work
might use a universal phoneme recognizer, making a step towards generalisability,
or address acoustic modelling in the language with limited training data. The next
chapter addresses the latter, exploring acoustic modelling for phonemic and tonal
prediction in the context of language documentation for Yongning Na.



Chapter 6

Acoustic Modelling for
Low-Resource Languages

Large portions of this chapter have appeared in the following papers:

Oliver Adams, Trevor Cohn, Graham Neubig, Alexis Michaud (2017)
Phonemic transcription of low-resource tonal languages, in Proceedings of
the Australasian Language Technology Association Workshop 2017 (ALTA),
Brisbane, Australia. pp. 53–60.

Oliver Adams, Trevor Cohn, Graham Neubig, Hilaria Cruz, Steven Bird,
Alexis Michaud (2018) Evaluating phonemic transcription of low-resource
tonal languages for language documentation in Proceedings of LREC
2018: 11th edition of the Language Resources and Evaluation Conference,
Miyazaki, Japan. (To appear).

The work so far in this thesis has assumed some sort of acoustic model is available
with which to make initial hypotheses of phoneme transcriptions. In Chapters 3 and
4 the assumption was of an error-free single transcription hypothesis (possibly man-
ually obtained). In chapter 5, this assumption was progressively relaxed, ultimately
resulting in the use of probabilistic output from real acoustic models for Spanish,
Japanese and English. Though this latter case is more realistic, it still assumed that
ample data was available in these languages with which to train the acoustic mod-
els, which were subsequently used in simulated low-resource configurations. In the
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final experimentation in Chapter 5, the phoneme error rates of the assumed acoustic
models were in the order of 25%.

We now proceed to an exploration of acoustic modelling in low-resource contexts
so that such lattices may be obtained. Another motivation for monolingual acoustic
modelling comes from considering the workflow of the linguist documenting Yongning
Na (Alexis Michaud), which involves phonetic transcription and translation occurring
in parallel. While there is promise in harnessing translations to improve speech recog-
nition, it is important to address the problem when information is only available in
one language, which is a more general problem with broader applicability. In this
chapter, we demonstrate that similar acoustic model performance that was assumed
in the previous chapter can be obtained for languages with as little as 40 minutes
of spontaneous narratives in Na, and as little as 25 minutes of elicited speech of
Eastern Chatino, by using neural sequence-to-sequence models in a single-speaker
context. Importantly, these languages are both tonal. Since tonal transcription is an
important part of the language documentation workflow, we address tonal modelling
too.

There has been work on low-resource speech recognition (Besacier et al. 2014),
with approaches using cross-lingual information for better acoustic modelling (Bur-
get et al. 2010; Vu et al. 2014; Xu et al. 2016; Müller et al. 2017) and language
modelling (Xu and Fung 2013). However, speech recognition technology has largely
been ineffective for endangered languages since traditional training pipelines, which
generate orthographic transcriptions, require a large pronunciation lexicon and a lan-
guage model trained on text. These speech recognition systems are usually trained
on a variety of speakers and hundreds of hours of data (Hinton et al. 2012:92), with
the goal of generalisation to new speakers. Since large amounts of text are used for
language model training, such systems can rely on contextual information for tonal
disambiguation via the language model (Le and Besacier 2009; Feng et al. 2012), and
as a result often do not incorporate pitch information for speech recognition of tonal
languages (Metze et al. 2013).

In contrast, language documentation contexts often have just a few speakers for
model training, and little text for language model training. However, there may be
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benefit even in a system that overfits to these speakers. If a phonemic recognition
tool can provide a canvas transcription for manual correction and linguistic analysis,
it may be possible to improve the leverage of linguists. The data collected in this
semi-automated workflow can then be used as training data for further refinement of
the acoustic model, leading to a snowball effect of better and faster transcription.

Note that in many language documentation scenarios there will be more informa-
tion available than what we assume for the experimentation in this chapter, typically
including a lexicon of some modest size as exploited in Chapter 4. In general, we
advocate for the use of as much available information as possible (see Chapter 7),
but in this chapter we use as training data only speech and phonemic transcriptions.
Such experimentation establishes a lower bound on what can be achievable in these
languages with the data available. A positive side-effect of not incorporating such
information into the model is that it encourages the automatic transcription to be
most faithful to the acoustic signal, since lexicons and language models bias towards
prior information. This is desirable since the documentation work of Michaud has
as a goal transcription of the speech with high phonetic accuracy, including fillers,
fragments and deviations from canonical word forms.

In this chapter we investigate the application of neural speech recognition models
to the task of phonemic and tonal transcription in a low-resource language documen-
tation setting. We use the connectionist temporal classification (CTC) formulation
(Graves et al. 2006) for the purposes of direct prediction of phonemes and tones given
an acoustic signal, thus bypassing the need for a pronunciation lexicon, language
model, and time alignments of phonemes in the training data. By sidestepping the
requirement of a lexicon in this way, we make the use of automatic transcription
technology more feasible in a language documentation setting. Moreover, by focusing
on the single-speaker task, we set the models up to need less data.

We evaluate this approach on two tonal languages, Yongning Na and Eastern
Chatino (Cruz and Woodbury 2006; Michaud 2017b). Na is a Sino-Tibetan lan-
guage spoken in southwest China with three tonal levels, High (H), Mid (M) and
Low (L) which can be combined for a total of seven tone labels. Eastern Chatino,
spoken in Oaxaca, Mexico, has a richer tone set but both languages have extensive
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morphotonology. Overall estimates of numbers of speakers for Chatino and Na are
similar, standing at about 40,000 for both (Simons and Fennig 2017), but there is
a high degree of dialect differentiation within the languages. The data used in the
present study are from the Alawa dialect of Yongning Na, and the San Juan Quiahije
dialect of Eastern Chatino. As a rule-of-thumb estimate, it is likely that the Na
materials would be intelligible to a population of less than 10,000.1

Though a significant amount of Chatino speech has been transcribed (Chatino
Language Documentation Project 2017), its rich tone system and opposing location
on the globe make it a useful point of comparison for our explorations of Na, the
language for which automatic transcription is our primary practical concern. Though
Na has previously had speech recognition applied in a pilot study (Do et al. 2014a),
phoneme error rates were not quantified and tone recognition was left as future work.

We perform experiments scaling the training data, comparing joint prediction of
phonemes and tones with separate prediction, and assessing the influence of pitch
information versus phonemic context on phonemic and tonal prediction in the CTC-
based framework. Importantly, we qualitatively evaluate use of this automation in
the linguist’s transcription of Na. The effectiveness of the approach has resulted in
its incorporation into the linguist’s workflow. Our open-source implementation is
available online.2

In summary we explore the effects of (a) scaling a training data to extremely
low amounts; (b) exploring tonal prediction in the CTC framework; (c) analyzing
errors on phoneme and tonal prediction with (d) a discussion of the outcomes of
implementing this technology in a linguistic workflow.

6.1 Languages and Data

We now describe the Na and Chatino datasets in more detail.
1For details on the situation for Eastern Chatino, see Cruz (2011:18-23).
2github.com/oadams/mam

github.com/oadams/mam
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0 sec 2.7 sec

/tʰi˩˥, | go˧mi˧-dʑo˥ | tʰi˩˥, | ɑ˩ʁo˧ dʑo˩-tsɯ˩ | -mv̩˩ |/
As for the sister, she stayed at home.

Quant à la sœur, elle demeurait à la maison, dit-on.
而妹妹的话，留在家里。

tʰi˩˥ go˧mi˧ dʑo˩ tʰi˩˥ ɑ˩ʁo˧ dʑo˩ tsɯ˧˥ mv̩˩
-then -little sister -°top -then -home/family -°exist.animated_beings -°rep -°affirm

Figure 6.1: A sentence from the Na corpus. Top to bottom: spectrogram with F0 in
blue; waveform; phonemic transcription; English, French and Chinese translations;
morpheme-level English gloss.

6.1.1 Yongning Na (Mosuo, Narua)

Na is spoken by about 40,000 speakers (Yang et al. 2009) and is a threatened
language: status 6b on Ethnologue (Lewis et al. 2015). It’s also a richly tonal language
(Yang et al. 2009), which bears more challenges for speech recognition. In particular,
the morphotonology (tone sandhi) of the language is rich: the surface forms of tones
for words depend on the surrounding context and deviate from their canonical form
one might find in a lexicon. Additionally, the pitch of two syllables with the same
tone varies depending on the context. This feature of the language exemplifies more
general issues of prosody and sandhi found in many languages.
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We use the Na corpus that is part of the Pangloss collection (Michailovsky et al.
2014). This corpus consists of around 100 spoken narratives from one speaker in the
form of traditional stories, and spontaneous narratives about life, family and customs
(Michaud 2017b:33). Currently the Na data consists of 14 hours of speech, 5.5 hours
of which are accompanied by phonemic transcriptions. 200 minutes of this subset are
spoken narratives segmented at approximately the sentence level, while 130 minutes
are elicited speech of short utterances (Michaud 2017a). An example sentence entry
can be seen in Figure 6.1.

We used up to 149 minutes of the transcribed spontaneous speech for training, 24
minutes for validation and 23 minutes for testing. The total number of phoneme and
tone labels used for automatic transcription was 78 and 7 respectively.

In the phonemic transcription of the audio, the transcriptions also provide some
markup to denote corrections and mistakes. Some phoneme sequences occur within
angle brackets (< and >). These denote literal phoneme sequences that occurred as
a mistake on the part of the speaker, such as gap-fillers and sentence fragments that
were started and then respoken.

As a complement to these mistakes, phonemes occurring within square brackets ([
and ]), were omitted by the narrator, but were added in the process of transcription
and translation in order to make a smoother translation.

6.1.2 Eastern Chatino

As a point of comparison for our primary work on Na, we evaluate the approach on
another richly tonal language (with 14 tone classes, and 31 phoneme labels) from the
other side of the world. Similar to Na, overall estimates for the number of speakers of
Chatino stand at about 40,000 (Simons and Fennig 2017), with a high degree of dialect
differentiation within the languages. Though a significant amount of Chatino speech
has been elicited with corresponding transcriptions (Chatino Language Documenta-
tion Project 2017), we used data of Eastern Chatino dialect of San Juan Quiahije,
Oaxaca, Mexico (spoken by approximately 3,000 speakers and rarely written) from
the GORILLA language archive (Cavar et al. 2016) for the purpose of comparing
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phoneme and tone prediction with Na when data restriction is in place.
This corpus was created with the idea of using speech recognition for more efficient

language documentation in mind. Unlike the spontaneous speech of the Na corpus,
this corpus is read speech of transcripts and texts. The recordings are free from
background noise, variation in sound quality, and interaction between speakers mid
recording (Cavar et al. 2016). These recordings were created with forced alignment
in mind for their work.

6.2 Model

The underlying neural network used is a long short-term memory (LSTM) recur-
rent neural network (Hochreiter and Schmidhuber 1997) in a bidirectional configu-
ration (Schuster and Paliwal 1997). The network is trained with the connectionist
temporal classification (CTC) loss function (Graves et al. 2006). This is achieved
through the use of a dynamic programming algorithm that efficiently sums over the
probability of neural network output labels that correspond to the gold transcription
sequence when repeated labels are collapsed and a special blank token is removed.

There have been advances in sequence-to-sequence modelling for speech recogni-
tion beyond the use of CTC, such as attentional neural architectures (Bahdanau et al.
2014; Chorowski et al. 2015; Bahdanau et al. 2016; Kim et al. 2016a), segmental con-
ditional random fields and segmental neural networks (He and Fosler-Lussier 2012;
O. Abdel-Hamid L. Deng and Jiang 2013; Lu et al. 2016). Though we acknowledge
alternative models beyond CTC are applicable, we restrict the scope of this chapter
to explore a comparison of varying training objectives and input features within the
CTC paradigm.

The use of a recurrent neural network allows the model to implicitly model context
via the parameters of the LSTM, despite the independent frame-wise label predictions
of the CTC network. It is this feature of the architecture that makes it a promising
tool for tonal prediction, since tonal information is suprasegmental, spanning many
frames (Mortensen et al. 2016). Context beyond the immediate local signal is indis-
pensable for tonal prediction, and long-ranging context is especially important in the
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case of morphotonologically rich languages such as Na and Chatino.
We compare several training objectives for the purposes of phoneme and tone

prediction. This includes separate prediction of 1) phonemes and 2) tones, as well as
3) jointly predicting phonemes and tones using one label set. Figure 6.3 an example
of these three objectives using the sentence from the Na corpus shown in Figure
6.1. Since there is one tone per syllable in Na, and syllables can be deterministically
segmented given phonemes, merging such independent phoneme and tone predictions
is not a problem.

One might expect joint modelling to lead to lower phoneme error rates (PERs)
and tone error rates (TERs), since more contextual information is given to the model
in a form of multi-task learning. We experiment with a range of configurations to
explore the effect phonemic and tonal context has on error rates.

6.2.1 Connectionist Temporal Classification

The key merit of the CTC formulation (Graves et al. 2006) is that there do not
need to be alignments between the speech features x = x1, . . . , xT and the transcribed
labels of the training set z = z1, . . . , zU , where U ≤ T .

The neural network output at each timestep t is an unnormalized probability
distribution over the output labels (e.g. phonemes or tones) and a blank symbol, ∅.
This output distribution is denoted yt = y0t , y

1
t . . . , y

K
t , where y0t is the probability of

∅ and ykt is the probability of the kth label in the list of available labels. In order
to arrive at a labelling from these output distributions, one simple and fast approach
is best path decoding, where the most probable label is taken at each time step to
form a path π = π1, . . . , πT . π can then be collapsed by first removing duplicate non-
blank labels before removing blank labels. This is cheap, but is not guaranteed to
find the most probable labelling. Finding the most probable labelling, which requires
summing over values of y corresponding to all possible labellings, is computationally
intractable.

In training the neural network parameters, the maximum likelihood objective is
to maximize the probability of the training labels given the speech input, p(z|x).
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Figure 6.2: Neural network architecture with a CTC loss function. Dynamic pro-
gramming allows for efficient computation of the probability of the relatively short
label sequence given the input features y, and for that probability to be expressed in
a way differentiable with respect to any given timestep. Time alignment between the
speech signal and phonemes is not required as prior knowledge. In the CTC graph,
empty nodes represent blank symbols, while filled circles represent phonemes and
tones. Note: only forward probabilities are illustrated, and we show one BiLSTM
layer, though 3 are used in practice.
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Target label sequence

1. Phonemes tʰ i g o m i dʑ o tʰ i ɑ ʁ o dʑ o t s ɯ m v̩
2. Tones ˩˥ ˧ ˧ ˥ ˩˥ ˩ ˧ ˩ ˩ ˩
3. Joint tʰ i ˩˥ g o ˧ m i ˧ d ʑ o ˥ tʰ i ˩˥ ɑ ˩ ʁ o ˧ dʑ o ˩ t s ɯ ˩ m v̩ ˩

Figure 6.3: Target label sequences: 1. phonemes only, 2. tones only, 3. phonemes
and tones together (joint).

Determining this probability requires summation over all of the paths π that collapse
to z when duplicates and blanks are removed. This can efficiently be accomplished
using dynamic programming to compute α and β probabilities similar to those used
in forward-backward training of HMMs (Rabiner 1989). αzu

t is the probability of all
CTC paths ending with label zu at frame t, while βzu

t is the probability of all CTC
paths starting with zu at frame t. The probability of the labelling given the speech
features can then be expressed for any t as

p(z|x) =
2U+1∑
u=1

αzu
t βzu

t ,

where we sum up to 2U + 1 to account for blank labels being inserted between every
non-blank label, allowing for blanks in output paths. This way of formulating p(z|x)
allows it to be differentiated with respect to the neural network outputs at each
timestep, facilitating updating of parameters via backpropagation.3 An illustration
is shown in Figure 6.2, where the CTC network sits on top of the LSTM.

6.3 Experimental Setup

We designed the experiments to answer these primary questions:

1. How do the error rates scale with respect to training data? What amount
might linguists expect to transcribe before this technology can be used to aid
in further transcription?

3For a more detailed explanation see Graves et al. (2006) and Miao et al. (2015).
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2. How effective is tonal modelling in a CTC framework?

3. To what extent does phoneme context play a role in tone prediction?

4. Does joint prediction of phonemes and tones help minimize error rates?

We assess the performance of the systems as training data scales from 10 minutes
to 150 minutes of a single Na speaker, and between 12 and 50 minutes for a single
speaker of Chatino. Experimenting with this extremely limited training data gives
us a sense of how much a linguist needs to transcribe before this technology can be
profitably incorporated into their workflow.

We evaluate both the phoneme error rate (PER) and tone error rate (TER) of mod-
els based on the same neural architecture, but with varying input features and output
objectives. Input features include log Filterbank features4 (fbank), pitch features of
Ghahremani et al. (2014) (pitch),5 and a combination of both (fbank+pitch). These
input features vary in the amount of acoustic information relevant to tonal modelling
that they include. The output objectives correspond to those discussed in §6.2: tones
only (tone), phonemes only (phoneme), or jointly modelling both (joint). We denote
combinations of input features and target labellings as ⟨input⟩⇒⟨output⟩.

In case of tonal prediction we explore similar configurations to that of phoneme
prediction, but with two additional points of comparison. The first is predicting
tones given one-hot phoneme vectors (phoneme) of the gold phoneme transcription
phoneme⇒tone). The second is the task of predicting tones directly from pitch
features (pitch⇒tone). These important points of comparison serve to give us some
understanding as to how much tonal information is being extracted directly from the
acoustic signal versus the phoneme context.

Hyperparameters and Training

We used the LSTM cells proposed by Sak et al. (2014) in a bidirectional configu-
ration. For feature extraction from the recordings we used 41 log Filterbank features

441 log Filterbank features along with their first and second derivatives computed using the
python_speech_features library on default settings

5As implemented in Kaldi
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Num. layers

Hidden size 2 3 4

100 22.8 18.7 17.2
250 17.6 14.2 14.9
400 14.6 14.4 OOM

Table 6.1: Phoneme error rate (%) for fbank⇒phoneme on the Na validation set when
trained on 2,048 utterances. OOM (out of memory) indicates that our system didn’t
have enough memory to complete experimentation with those hyperparameters.

along with their first and second derivatives. In some cases we also added pitch
features of Ghahremani et al. (2014).

Our underlying model generally resembles that of Graves et al. (2013). For train-
ing, we used the Adam optimizer (Kingma and Ba 2015). We trained for a minimum
of 40 epochs, thereafter stopping if no improvement was found for 10 consecutive
epochs.

For tuning, we performed a small variety of grid searches to account for varying
input⇒output configurations, in each case exploring 2,3 and 4 layers, and 100, 250
and 400 hidden units. We found 3 layers with 250 hidden units to be reasonably
competitive in each input⇒output combination.

Training, Validation and Test sets

For both languages, preprocessing involved removing punctuation and any other
symbols that are not phonemes or tones such as tone group delimiters and hyphens
connecting syllables within words. We created training sets of varying sizes. For
Na we used between 9.3 minutes and 149.8 minutes of transcribed speech, and for
Chatino between 12 and 50 minutes. We also randomly created validation sets and
test sets of sizes 24 and 23 minutes for Na, and 8 and 7 minutes for Chatino.
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6.4 Quantitative Results

Figure 6.4 shows the phoneme and tone error rates for Na and Chatino.

Error rate scaling Error rates decrease logarithmically with training data. The
best methods reliably have a lower than 30% PER with 30 minutes of training data.
We believe it is reasonable to expect similar trends in other languages, with these re-
sults suggesting how much linguists might need to transcribe before semi-automation
can become part of their workflow.

In the case of phoneme-only prediction, use of pitch information does help reduce
the PER, which is consistent with previous work indication pitch information can aid
in phoneme prediction (Metze et al. 2013).

Tonal modelling TER is always higher than PER for the same amount of training
data, despite there being only 7 tone labels versus 78 phoneme labels in our Na exper-
iment. This is true even when pitch features are present. However, it is unsurprising
since the tones have overlapping pitch ranges, and can be realized with a different
pitch over the course of a single sentence.

“A consonant is much more context-independent than a tone: to cite just
1 factor, declination, the same tone (say, L) is realized on vastly different
pitch at the outset of a sentence than at its end due to declination of F0
in the course of an affirmative sentence.” —Alexis Michaud

This suggests that long-ranging context is more important for predicting tones than
phonemes.

fbank⇒tone and pitch⇒tone are vastly inferior to other methods, all of which
are privy to phonemic information via training labels or input. However, combining
the fbank and pitch input features (fbank+pitch⇒tone) makes for the equal best
performing approach for tonal prediction in Na at maximum training data. This
indicates both that these features are complementary and that the model has learnt
a representation useful for tonal prediction that is on par with explicit phonemic
information.
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Figure 6.4: Phoneme error rate (PER) and tone error rate (TER) on test sets as
training data is scaled for Na (left) and Chatino (right). The legend entries are
formatted as ⟨input⟩ ⇒ ⟨output⟩ to indicate model input features and output labels.
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Though tonal prediction is more challenging than phoneme prediction, these re-
sults suggest automatic tone transcription is feasible using this architecture, even
without inclusion of explicit linguistic information such as constraints on valid tone
sequences which is a promising line of future work.

Phoneme context To assess the importance of context in tone prediction, the
phoneme⇒tone task gives us a point of comparison where no acoustic information is
available at all. It performs reasonably well for Na, and competitively for Chatino.
One likely reason for its solid performance is that long-range context is modelled more
effectively by using phoneme input features, since there are vastly fewer phonemes
per sentence than speech frames. The rich morphotonology of Na and Chatino means
context is important in the realisation of tones, explaining why phoneme⇒tone can
perform almost as well as methods using acoustic features.

Joint prediction Interestingly, joint prediction of phonemes and tones does not
help phoneme prediction. In light of the celebrated successes of multitask learning in
various domains (Collobert et al. 2011; Deng et al. 2013; Girshick 2015; Ramsundar
et al. 2015; Ruder 2017), one might expect training with joint prediction of phonemes
and tones to help, since it gives more relevant contextual information to the model.
However, joint prediction of phonemes and tones does help with the tonal prediction.
This makes sense since there are more phoneme labels than tone labels. As a result
phonemes can provide more information to help tonal disambiguation than the other
way around.

Na versus Chatino The trends observed in the experimentation on Chatino were
largely consistent with those of Na, but with higher error rates owing to less training
data and a larger tone label set. There are two differences with the Na results worth
noting. One is that phoneme⇒tone is more competitive in the case of Chatino,
suggesting that phoneme context plays a more important role in tonal prediction in
Chatino. The second is that fbank⇒tone outperforms pitch⇒tone, and that adding
pitch features to Filterbank features offers less benefit than in Na, also explained by



Chapter 6: Acoustic Modelling for Low-Resource Languages 156

Hypothesis

Reference

M L H LH MH
M 0 69.8 18.6 7.4 4.2

L 77 0 14.6 6.1 2.3

H 56.1 27.3 0 10.6 6.1

LH 38.6 31.8 25 0 4.5

MH 41.4 22.4 17.2 19 0

Figure 6.5: Confusion matrix showing the rates of substitution errors between tones
(as a percentage, normalized per reference tone).

a greater influence of context.

Error Types

Figure 6.5 shows the most common tone substitution mistakes on the test set for
the task of fbank+pitch⇒joint. Proportions were very similar for other methods.
The most common tonal substitution errors were those between between M and L.
Acoustically, M and L are neighbours; as mentioned above, in Na the same tone can be
realised with a different pitch at different points in a sentence, leading to overlapping
pitch ranges between these tones. Moreover, M and L tones were by far the most
common tonal labels.

Table 6.2 shows an example automatically derived transcription and its reference
from the test set.6 Across the test set, the most common errors were substitution of
L and M tones, both ways. Since MH occurs infrequently, the corpus is effectively
imbalanced and hypotheses bias towards the more common L and M tones. It is also
reasonably common that tones fail to be automatically transcribed. Every syllable
in Na has a tone, and because of this fact future work should incorporate linguistic
constraints to ensure hypotheses satisfy this rule. By enforcing valid tone sequences,
it’s likely many of these common errors would be prevented.

The second example in the table is from a variation of the task where only
6To hear the audio, see Sentence 224 at http://lacito.vjf.cnrs.fr/pangloss/corpus/show_

text_en.php?id=crdo-NRU_F4_FUNERAL_SOUND&idref=crdo-NRU_F4_FUNERAL

http://lacito.vjf.cnrs.fr/pangloss/corpus/show_text_en.php?id=crdo-NRU_F4_FUNERAL_SOUND&idref=crdo-NRU_F4_FUNERAL
http://lacito.vjf.cnrs.fr/pangloss/corpus/show_text_en.php?id=crdo-NRU_F4_FUNERAL_SOUND&idref=crdo-NRU_F4_FUNERAL
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Phoneme and tone prediction

Reference n j ɤ ˧ ɳ ɯ ˧ tʰ i ˧ tsʰ ɤ ˧˥ n i ˩ ʈʂʰ ɯ ˧ n j ɤ ˧ k i ˩ tʰ i ˧ tɕ ɯ ˧ tsʰ ɯ ˧˥
Hypothesis n i ˧ ɳ ɯ pʰ i ˧ tsʰ ɤ ˩ n i ˩ ʈʂʰ ɯ ɻ̩ n j ɤ ˧ k i ˧ tʰ i ˧ tɕ ɯ ˩ tsʰ ɯ ˩

Phoneme-only prediction

Reference g v̩ w u h ĩ ʈʂʰ ɯ dʑ u tʰ i tsʰ e h õ pʰ u ɲ i z e m æ
Hypothesis õ g v̩ i h ĩ ʈʂʰ ɯ dʑ u tʰ i tsʰ ɤ m õ h pʰ u ɲ i z e m æ

Table 6.2: Erroneous automatic transcription exemplifying typical errors. The top
example is from the joint phoneme and tone prediction task. The bottom example is
from the is phoneme-only prediction task. The reference transcription has punctua-
tion, syllable boundaries and tone group delimiters removed.

phonemes are predicted. The automatic transcription includes a vowel at the start,
which can actually be heard in the audio.7 Exhaustive quantification of how frequent
such phenomena are is costly and thus unknown, but some errors do stem from such
fillers not part of the canonical word. A common error is the failure to transcribe
voiced labial-velar approximants (/w/), which seem to be merged into the following
(often erroneous) vowel predictions.

6.5 Qualitative Discussion

The phoneme error rates in the above quantitative analysis are promising, and
are comparable to the performance of similar systems (Graves et al. 2013) on the
TIMIT dataset (Garofolo et al. 1993). But is this system actually of practical use in a
documentary linguistic workflow? We discuss here the experience of a linguist (Alexis
Michaud) in applying this model to Na data to aid in transcription of 9 minutes and 30
seconds of speech. It is hard to quantify the ways in which incorporating automation

7To hear the audio, see Sentence 19 at http://lacito.vjf.cnrs.fr/pangloss/corpus/show_
text_en.php?id=crdo-NRU_F4_MOUNTAINS_SOUND&idref=crdo-NRU_F4_MOUNTAINS

http://lacito.vjf.cnrs.fr/pangloss/corpus/show_text_en.php?id=crdo-NRU_F4_MOUNTAINS_SOUND&idref=crdo-NRU_F4_MOUNTAINS
http://lacito.vjf.cnrs.fr/pangloss/corpus/show_text_en.php?id=crdo-NRU_F4_MOUNTAINS_SOUND&idref=crdo-NRU_F4_MOUNTAINS
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into the workflow affects the transcription process, but discussion of these effects is
central to the present project.

We automatically transcribed recordings of two narratives for a total of nine min-
utes and 30 seconds of speech which had not previously been transcribed which were
then used by the linguist as a starting point for manual correction and translation.
Michaud subsequently published a blog post on his experience (Michaud 2017a),
which was the basis for much subsequent discussion between us.

For the linguist, the process of revising the automatically generated transcrip-
tion involves adding transcription elements not currently modelled by the system,
such as punctuation and tone group breaks that delimit morphotonological processes
(Michaud 2017a). In consultation with a native speaker, errors in the transcription
are also corrected and comments are added, along with a sentence-level translation
(initially in French, adding Chinese and English later as the need and opportunity
arise).

Recognition Errors

The phonemic errors typically make linguistic sense: they are not random added
noise. It was reported that they often bring to the linguist’s attention phonetic facts
that are easily overlooked because they are not phonemically contrastive.

One set of such errors is due to differences in articulation between different mor-
phosyntactic classes:

“For example, the noun ‘person’ /hĩ˥/ and the relativizer suffix /-hĩ˥/
are segmentally identical, but the latter is articulated much more weakly
than the former and it is often recognized as /ĩ/ in automatic transcrip-
tion, without an initial /h/. Likewise, in the demonstrative /ʈʂʰɯ˥/ the
initial consonant /ʈʂʰ/ is often strongly hypo-articulated, resulting in its
recognition as a fricative /ʂ/, /ʐ/, or /ʑ/ instead of an aspirated affricate.
As a further example, the negation that is transcribed as /mõ˧/ in House-
building2.290 instead of /mɤ˧/. This highlights that the vowel in that
syllable is probably nazalised, and acoustically unlike the average /ɤ/
vowel for lexical words. This is useful insight, but at the same time such
cases illustrate a technical limitation of purely phoneme-based recogni-
tion over word-based speech recognition. The extent to which a word’s
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morphosyntactic category influences the way it is pronounced is known
to be language-specific (Brunelle et al. 2015); the phonemic transcription
tool indirectly reveals that this influence is considerable in Na. Recogni-
tion ‘errors’ bring out specific patterns, demonstrating phonetic evolution
and suggesting how grammatical morphemes follow phonetic evolutionary
paths that are different from the rest of the lexicon.” —Alexis Michaud

A second set is due to loanwords containing combinations of phonemes that are
unattested in the training set. For example /ʑɯ˩pe˧/, from Mandarin rìběn (日本,
‘Japan’). /pe/ is otherwise unattested in Na, which only has /pi/; accordingly, the
syllable was identified as /pi/. In documenting Na, Mandarin loanwords were initially
transcribed with Chinese characters, and thus cast aside from analyses, instead of
confronting the issue of how different phonological systems coexist and interact in
language use (Michaud 2017a).

A third set of errors made by the system result in an output that is not phono-
logically well formed, such as syllables without tones and sequences with consonant
clusters such as /kgv̩/. These cases are easy for the linguist to identify and amend
(Michaud 2017a).

In this sense the effective error rate is lower than the quantified phoneme error
rate might suggest. Also noted is that the system copes well with overlong vowels,
which an earlier Na speech recognition system had trouble with (Do et al. 2014a).

Tonal recognition remains an issue.

“The recognition system currently makes tonal mistakes that are easy to
correct on the basis of elementary phonological knowledge: it produces
some impossible tone sequences such as M+L+M inside the same tone
group.” —Alexis Michaud

Very long-ranging tonal dependencies are not harnessed so well by the current model.
This is consistent with quantitative indications in §6.4 and is a case for including a
tonal language model or refining the neural architecture to better harness long-range
contextual information.
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Benefits for the Linguist

Using this automatic transcription as a starting point for manual correction was
found to confer several benefits to the linguist.

Faithfulness to acoustic signal The model produces output that is faithful to
the acoustic signal. In casual oral speech there are repetitions and hesitations that
are sometimes overlooked by the transcribing linguist, who is engrossed in a holistic
process involving interpretation, translation, annotation, and communication with
the language consultant (Michaud 2017a). When using an automatically generated
transcription as a canvas, there can be full confidence in the linearity of transcrip-
tion, and more attention can be placed on linguistically meaningful dialogue with the
language consultant.

Typographical errors and the transcriber’s mindset Transcriptions are made
during fieldwork with a language consultant and are difficult to correct down the line
based only on auditory impression when the consultant is not available (Michaud
2017a). However, such typographic errors are common, with a large number of
phoneme labels and significant use of combinations of keys (Shift, Alternative Graph,
etc). By providing a high-accuracy first-pass automatic transcription, much of this
manual data entry is entirely avoided. Enlisting the linguist solely for correction of
errors also allows them to embrace a critical mindset, putting them in “proofreading
mode”, where focus can be entirely centred on assessing the correctness of the system
output without the additional distracting burden of data entry.

Speed

“Use of automatic transcription in fieldwork is only beginning. Assessing
automatic transcription’s influence on the speed of the overall language
documentation process is beyond the scope of this paper and is left to fu-
ture work. Language documentation is a holistic process. Beyond phone-
mic transcription, documentation of Na involves other work that happens
in parallel: translating, discussing with a native, copying out new words
into the Na dictionary, and being constantly on the lookout for new and
unexpected linguistic phenomena.” —Alexis Michaud
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Further complicating this, the linguist’s proficiency of the language and speed of
transcription is dynamic, improving over time. This makes comparisons difficult
(Michaud 2017a).

From this preliminary experiment, the efficiency of the linguist was perceived to
be improved, but the benefits lie primarily in the advantages of providing a transcript
faithful to the recording, and allowing the linguist to minimize manual entry, focusing
on correction and enrichment of the transcribed document.

The snowball effect More data collection means more training data for better
speech recognition performance. The process of improving the acoustic model by
training on such semi-automatic transcriptions has begun, with the freshly tran-
scribed Housebuilding2 used in this investigation now available for subsequent Na
acoustic modelling training. As a first example of output by incorporating automatic
transcription into the Yongning Na documentation workflow, transcription of the
recording Housebuilding was completed using automatic transcription as a canvas;
this document is now available online (Michaud and Latami 2017) and is now being
incorporated into further Na acoustic model training.

6.6 Summary

The experimentation and discussion of this Chapter addressed the task of phoneme
and tone transcription in a resource-scarce context: that of a newly documented
language. Beyond comparing the effects of various training inputs and objectives on
the phoneme and tone error rates, we reported on the application of this method to
linguistic documentation of Yongning Na. Its applicability as a first-pass transcription
is very encouraging, and it has now been incorporated into the workflow.

These results give an idea of the amount of speech other linguists might aspire
to transcribe in order to bootstrap this process: as little as 30 minutes in order to
obtain a sub-30% phoneme error rate as a starting point, with further improvements
to come as more data is transcribed in the semi-automated workflow.
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We now proceed to the conclusions of this thesis, discussing the main findings and
identifying promising future directions of work.



Chapter 7

Conclusion

The aim of the research has been to identify effective ways of using available
data to establish a semi-automatic documentary linguistic workflow. Language doc-
umentation is currently very slow and there are not enough linguists documenting
the world’s languages to capture and build a record of them while they are still spo-
ken. Automation or semi-automation of some parts of this work such as phonemic
transcription can help that. Initial chapters explored using bilingual information to
model the relationship between a low-resource source language and a high-resource
target language. This included bilingual modelling of phonemic transcriptions and
their translations as part of bilingual lexicon induction. Later, we modelled trans-
lated speech directly without the need for transcriptions. We argue that this has
better potential as such translations of endangered language speech can be easier and
quicker to collect than phonemic transcriptions (translations must be gathered in the
end anyway, but have the potential to aid in automatic transcription and lexicon in-
duction). We also explored the use of pre-existing bilingual lexicons and monolingual
corpora to transfer information from high-resource languages to low-resource ones for
improved language modelling, since language models are an important component of
speech recognition and machine translation systems. Finally, the pressing concern
of improving the use of technology in existing language documentation workflows
motivated quantitative exploration of automatic phoneme transcription for tonal lan-
guages, along with a qualitative assessment of the incorporation of such techniques

163
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into a linguist’s workflow for the Yongning Na language of Southwestern China.
What can we conclude from this? We now relate the conclusions from the experi-

ments conducted to the research questions set out in §1.2.1.

7.1 Main Findings

Translation models can learn hundreds of word and phrasal relationships
with high precision from parallel text consisting of unsegmented phonemes
and orthographic translations with as little as 1,000 parallel sentences
Chapter 3 addressed research questions A1 and A2 stated in §1.2.1. It began with
a preliminary experiment assessing machine translation performance, which partially
addresses question A1, Is translation modelling of unsegmented phonemic transcrip-
tions effective? Results show that machine translation performance, while substan-
tially lower than that of word–word models, can yield BLEU scores over 17 with
241k training sentences, indicating that phoneme–word bilingual relationships have
been captured between the languages. Competitive results were found between two
very different phrase alignment approaches: that of traditional token alignment with
heuristic phrase extraction, and that of joint alignment and segmentation in a hierar-
chical Bayesian framework.

For deeper insight into A1, and to answer A2 (How do different translation models
for this task compare in bilingual lexicon induction?), we explored human evaluation
of learnt phrase table entries across four different translation models. This intrin-
sic evaluation highlighted differences between translation models in the context of a
task of importance in documentary linguistics: bilingual lexicon induction. In this
context, we reduced the training data available drastically, to 10k parallel sentences.
Such small quantities of data mimic the situation for many language documentation
efforts, where data is very limited. Importantly, it makes the assumption of accu-
rate phonemic transcriptions more reasonable, since these small amounts of data are
feasible for trained linguists to collect and transcribe in a field linguistics scenario.

Findings show that approaches that have a statistical basis for clustering phonemes
into word-like units perform better than standard machine translation heuristics. A
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model that performs this statistical clustering jointly with alignment benefits more
(Pialign) and is able to learn hundreds of bilingual lexicon entries with as few as
1,000 sentences of parallel phoneme–word data. Pialign along with unsupervised
word segmentation and alignment had not been previously explored for this task, and
outperformed other methods.

Bilingual lexicons can improve low-resource language modelling by en-
abling cross-lingual transfer of information from a large corpus in a high-
resource language Chapter 4 first addresses Question C1 (How can other bilingual
resources, such as lexicons, be used to transfer information from a high-resource lan-
guage to a low-resource language?). We conducted an experiment to assess how
well the quality of word embeddings in a low-resource language remain resilient in
the face of limited data by harnessing distributional information from high-resource
languages. Results on the English WordSim353 task, which assesses correlation of
embedding similarity scores with human judgements, show large improvement over
monolingual word embeddings trained on the same small amount of low-resource
data when harnessing information across a variety of high-resource target languages.
This also holds true when the language is of very dissimilar syntax or morphology to
English, such as Japanese or Finnish.

Answering Question C1 via a method of learning cross-lingual word embeddings
can be considered a prerequisite step before answering Question C2 (Can such ap-
proaches be used to improve language modelling, which is useful to speech recognition
and machine translation?). We then deployed cross-lingual word embeddings, us-
ing them to initialize the parameters of neural network language models. Language
models are an important component in machine translation and speech recognition
systems, and are thus useful for semi-automatic language documentation. The ap-
proach offered consistent performance benefits in language modelling across a num-
ber of languages in low-resource simulations. However, application of this method
to Yongning Na, a low-resource language spoken in Southwestern China, highlighted
challenges in porting this technique to a language documentation setting. While a
variety of factors likely played into this, two key issues were that many of the English
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translations in the Na–English dictionary take non-standard forms and do not occur
in the English Wikipedia corpus, and that there is a mismatch between the read and
spoken speech (see §7.2). The morphotonology of Na presented another challenge,
with canonical tones in the dictionary varying from the surface tones in the Na cor-
pus. The findings suggest that these approaches may have more applicability in the
low-resource languages for which more comprehensive dictionaries reflect the content
of the monolingual documents in both source and target languages.

Translations of speech can help automatic phoneme transcription even
when no prior information relating the languages is available. Chapter 5
addresses Questions B1 (How can translation models be learnt from speech?), and B2
(Can these be used to improve speech recognition and automatic phonemic transcrip-
tion?), as well as addressing Question A1 in a context where the phoneme represen-
tation is errorful or uncertain, by using a lattice representation instead of the 1-best
transcription.

Earlier experiments in the chapter highlighted fundamental issues with the notion
of phoneme equivalence classes for modelling acoustic model errors. Most importantly,
phonemes cannot be grouped neatly into classes that represent phonemes confusable
with one another. Additionally, such an assumption is not easily amenable to the
issue of errors in the form of insertion and deletion of phonemes, which are common
in acoustic modelling.

These negative results and modelling failures prompted investigation into a more
general and elegant model that takes as input phoneme lattices and their orthographic
translations in order to jointly perform unsupervised word segmentation and align-
ment, learning a translation model and lexicon directly from phoneme lattices in order
to improve phoneme transcription of those very lattices.

Empirical evidence suggested by a word-based variant demonstrated significant
improvements in word-error rate, prompting further investigation of the full model,
for which relative improvements of up to 17% over the original lattice were achieved.
These results show sentence-level translations can be informative for phoneme recog-
nition, even when no prior information relating the languages is available.
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Phoneme and tonal transcription of a threatened language can produce
transcripts of a high-enough quality to serve as a ‘canvas,’ aiding a linguist
in their documentation workflow. Chapter 6 addresses Questions D1 and D2,
which concern actual inclusion of such technology in a linguist’s workflow. Such
real-world evaluation is crucial: ultimately aiding language documentation is the aim
of the technology, so evaluating it in that context is important. Equally important
is that the concomitant dialogue with linguists that results from this evaluation is
essential for guiding the future research direction, while granting insight into the
language documentation process.

To this end, we address Question D1 (How well can we predict tones for richly tonal
languages?), since transcription of transcription is important for many languages. We
began with a quantitative experiment in phoneme and tone transcription by applying
a neural speech recognition method in a low-resource context context: that of a newly
documented language, Yongning Na. We compare the effects of various training inputs
and objectives on the phoneme and tone error rate, which show that joint transcription
of phonemes and tones allows for effective automatic tonal transcription in such a
framework. Results on another language, Eastern Chatino, corroborate this finding.
Beyond this quantitative evaluation, we address Question D2 (How does phoneme
and tonal prediction fit into the linguistic workflow?), reporting on the application
of this method to linguistic documentation of Yongning Na. Its applicability as a
first-pass transcription is very encouraging, and it has now been incorporated into
the workflow of Alexis Michaud, a linguist working on documenting and analyzing
the language. Our results give an idea of the amount of speech other linguists might
aspire to transcribe in order to bootstrap this process: as little as 30 minutes of
clean recordings and transcriptions is needed in order to obtain a sub-30% phoneme
error rate as a starting point, with further improvements to come as more data is
transcribed in the semi-automated workflow.
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7.2 Limitations and Future Work

7.2.1 Translation Modelling of Phonemes

Earlier work in Chapter 3 used phonemic transcriptions paired with translations.
Such transcriptions can be considered a first approximation to the output of an auto-
matic phoneme transcription tool with the generous assumption of no errors (created
by converting orthographic text to phonemic representation, with accuracy limited
to the capabilities of the text-to-speech system). Alternatively, when the amount of
data is heavily restricted, as in §3.3, it becomes more reasonable to assume that a
linguist has manually transcribed the speech with a high level of accuracy. However,
throughout the course of the work it became clear that in such contexts the linguist
will not blindly transcribe the phonemes, but will be conducting linguistic analysis of
the language in conjunction with the transcription. Importantly, this will very likely
involve creation of a lexicon and word segmentation of the transcription (along with
glosses). These issues motivate the lattice-based approach of Chapter 5.

Furthermore, in the linguist’s creation of a lexicon, much more than word token
relationships are documented. While bilingual lexicon induction may be useful for
highlighting such relationships a linguist has overlooked, the linguist’s dictionary will
include other content, such as explanations, examples, and part-of-speech tags.

7.2.2 Language Modelling

The cross-lingual language modelling work of Chapter 4 demonstrated reductions
in perplexity for language models across a variety of languages in simulated low-
resource settings. However, deploying the approach on Na yielded negative results,
with no perplexity reductions. This reveals that the nature of the relationship between
the dictionary entries and the content in the target monolingual corpora wasn’t strong
enough to harness cross-lingual distributional information, and suggests that in prac-
tice more preparation of the dictionary is required to reap the benefits that were
seen when using the PanLex dictionary. This work is language-specific and has the
potential to be very time consuming. Using source language corpora that are closer
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in style to the target domain, such as using spoken narratives in the source language
or perhaps conversational speech, would be an important next step.

Another limitation of the work is that only the intrinsic measurement of perplexity
was used to evaluate the language models. An extrinsic evaluation of the method when
the language model is integrated into a full speech recognition or machine translation
pipeline would be more insightful and revealing of the value of such an approach.
However, in extremely low-resource scenarios (for example, that of Yongning Na),
a language model trained on a corpus of 2,000 sentences will have a high out-of-
vocabulary rate when applied to new speech. In order for such a language model to
be useful in speech recognition, incorporating character (or phoneme) level language
modelling into a word-level language model has the potential to provide more accurate
probability estimates for out-of-vocabulary words. Incorporation of such sub-word
information at the level of characters or morphemes into language modelling has been
explored (Lankinen et al. 2016; Ling et al. 2015; Verwimp et al. 2017; Shaik et al. 2011;
Hao Fang et al. 2015), and future work improving on our approach should incorporate
such information into a full speech recognition pipeline.

7.2.3 Translation Modelling of Speech

Earlier experiments in Chapter 5 use artificial German–English data, while sub-
sequent models involve application to real Spanish–English and Japanese–English
speech. While Japanese and English are very different languages, with strong results
suggesting the methods ability to generalize, a key limitation of this work is that it
is not applied to low-resource languages to improve language documentation.

A further limitation is that the acoustic model is trained in a supervised manner.
While in Chapter 6 we show that such supervised training can yield comparably low
phoneme error rates with less than an hour of transcribed speech, our approach is not
incompatible with unsupervised or minimally-supervised approaches (Bansal et al.
2017b) and this should be explored. Moreover, further exploration of richer word
length model priors would be valuable.

One could argue that there is a case for bypassing phonemic transcriptions of
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endangered languages entirely. Phonemic transcription is part of the traditional doc-
umentary linguistics workflow and is useful for analysis and discussion. However,
for the purposes of many speakers of unwritten languages, such transcription using
Latin symbols can be perceived as a (relatively benign) form of neocolonialism. Some
contemporaneous work to that of this thesis, discussed in Chapter 2, addresses spo-
ken term discovery from the acoustic signal using bilingual information but without
transcription. Maintaining sound as the primary representation of the language is
useful for its speakers (in, say, the form of an audio dictionary), as it retains the
most information. In directly modelling speech and translations, slight allophonic
variations are not collapsed into a single symbol, while at the same time such ap-
proaches are not inimical to joint phonemic transcription for the linguist’s purposes.
Such approaches dealing with the source-language acoustic signal directly, along with
translations, were not addressed in this thesis but constitute a promising line of future
work.

7.2.4 Acoustic Modelling

The automatic method of phoneme transcription addressed in Chapter 6 is effec-
tive as part of a semi-automatic language documentation workflow. The scope for
future work in this area is broad and promising, from back-end modelling improve-
ments to user interface improvements which may allow for applicability of the method
in more language documentation work.

Incorporating linguistic constraints There is much linguistic knowledge about
Na that, if incorporated into the model, has the potential to reduce error rates. For ex-
ample, we know that every syllable has a corresponding tone, yet sometimes syllables
were transcribed without a tone. We also know consonant clusters are impossible, and
that many tonal sequences, such as mid-low-mid, are impossible. Incorporating such
hard constraints in decoding would be a simple first step. Alternatively, adjusting the
model objective function in training to reflect these constraints may also be valuable.
Beyond hard constraints, softer guidance in the form of a tonal language model that
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better harnesses long-range dependencies than the frame-level recurrent neural net-
work in the model may be valuable. Including coarser-grained lexical information as
in standard speech recognition would be helpful, even when a comprehensive lexicon
is not available (Liu et al. 2017b).

However, in doing this, there is a tradeoff between the faithfulness of the tran-
scription to the acoustic signal, and the coherence of the transcription that must
be considered (analogous to the machine translation faithfulness/fluency tradeoff).
Linguists’ goals may influence the relative priorities. One of the advantages of the
approach was its faithfulness to the acoustic signal. In Chapter 6 we found that the
model helped unearth some phonetic facts that might otherwise have been overlooked
by the linguist. While including prior information into the model in the form of a
language model may make for more coherent canonical transcriptions, this could be
at the expense of losing some information in a narrow phonemic transcription useful
for linguistic analysis.

The user interface The potential tradeoff between faithfulness and coherence of
the transcription may be balanced through an appropriate user interface for the lin-
guist. There is the potential for two transcriptions to be provided: one with min-
imal prior language knowledge for phonetic faithfulness, and another with stronger
sources of prior information such as a word-level language model for coherence. The
user would be able to choose between the two options, phoneme-by-phoneme or for
stretches of the transcription.

The user interface has the potential to be enhanced in other ways. Automatically
transcribed phonemes may be colour-coded by the model’s confidence in the tran-
scription, or the linguist could be presented with a pruned lattice to display other
likely transcription possibilities. The stage is set for an interesting human–computer
interaction problem which will need to be addressed.

In our work, the interface was crude: We applied the model to recordings of
Na speech, and sent them to Michaud to use as a starting point in transcription.
Better would be a piece of software useable to a less technical audience. Though
existing software for training speech recognition models requires substantial technical
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skills, this need not be the case. Linguists who are not computer scientists should be
presented with an unintimidating graphical user interface where they can select audio
files, phonemic transcriptions, supply a phoneme inventory and have a reasonable
baseline model trained and tuned automatically. Such an interface could include the
option to impose linguistic constraints, eg. the constraint that the consonant cluster
/kg/ is not allowed.

Forced alignments Linguists are often interested in obtaining alignments at the
phone-level between the speech and the transcription. A limitation of the CTC for
this task is that it does not provide such alignment, since it sums over the many
possible ways the speech signal might align to the phonemes. This is motivation for
exploring other models, or exploring the use of secondary algorithms to extract time
alignments from the CTC neural networks.

Language model incorporation While the recurrent neural network underlying
the model implicitly learns a language model to capture context, a shortcoming of
this CTC-based end-to-end modelling is that larger amounts of untranscribed texts
cannot be leveraged in training. While not directly relevant to the Na dataset we use
(all text has associated speech and is fed into the model), it is an open question of
how to incorporate language model information into the CTC model, with language
model information typically being incorporated separately to the end-to-end training
(see Miao et al. (2015), for example).

Model architecture From the system architecture perspective, there is scope to
explore various other neural architectures underlying the connectionist temporal clas-
sification (CTC) graph, such as convolutional neural networks (Zhang et al. 2016a;
Wang et al. 2017b; Li and Wu 2016; Zhang et al. 2016a), their combination with
recurrent neural networks (Li and Wu 2016), combining CTC with attention (Kim
et al. 2016a) or segmental conditional random fields (Lu et al. 2017). We can also ex-
plore this task without CTC, using alternative models based on attention (Chorowski
et al. 2015; Duong et al. 2016a; Bahdanau et al. 2016).
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Transcribed speech is almost always accompanied by a much larger body of un-
transcribed speech. Semi-supervised speech recognition approaches that use untran-
scribed speech on top of transcribed speech can reach par performance with less
training data (Dhaka and Salvi 2016). In light of the limited transcribed data, incor-
porating such semi-supervision into the model architecture is another obvious next
step.

Broader deployment in other language documentation workflows for a
richer understanding of limitations and necessary improvements Further
exploration of such approaches in a diverse set of linguistic workflows is important
to understanding how this technology can best be integrated into language documen-
tation. Collaboration with Michaud revealed much information about how language
documentation and analysis works in practice. This partnership between computer
scientists and linguists is important, so that the practical needs of both parties can
be met.

For many languages we won’t have any transcribed speech at all for such su-
pervised training. The experiments of Chapter 6 give an indication of how much
transcribed audio needs to be acquired for meaningful performance. As it turns out,
around an hour of speech from a single speaker yielded a 20% phoneme error rate,
which is an acceptably low error rate for the purposes of post-editing.

This chapter exclusively modelled single-speaker speech recognition which is of
value in language documentation settings. However, it is often desirable to create
systems that generalize between speakers. In such a context, multilingual acoustic
modelling, incorporating speech from diverse voices in other languages has the po-
tential to aid in modelling speaker-dependent while capturing language-independent
phonetic patterns.

7.3 Making the Most of What is Available

The best performing models for automatic phoneme transcription and bilingual
lexicon induction would presumably make use of all the available information. Besides



Chapter 7: Conclusion 174

Figure 7.1: The ideal framework harnesses all available information. Speech is es-
sential while the other variables are either observed or latent. The more observed
variables there are, the better the inference for the latent variables.

speech, this information may include limited transcriptions, orthographic translations,
interlinear glosses, bilingual lexicons, and, in the case of systems that need to general-
ize to multiple speakers, multilingual acoustic models or acoustic models from similar
languages. Combining acoustic modelling capabilities with such information will al-
low for significant improvements in automatic phoneme transcription. However, we
do not expect that automatic phoneme recognition alone will be error-free. Rather,
combining automatic transcription with human expertise, as explored in Chapter 6,
is likely the most efficient solution to the pernicious transcription bottleneck.

There has been work on models that facilitate more sophisticated inference to
improve phoneme transcription. This includes work on monolingual models that
learn a lexicon from speech (Neubig et al. 2012a; Lee et al. 2015) and the work
presented in Chapter 5 that uses translations to learn lexicons and translation models.
Bilingual information is also used in related work on phoneme-to-word alignment and
lexicon induction (Stahlberg et al. 2012; Stahlberg et al. 2014b; Stahlberg et al. 2014a;
Bansal et al. 2017a; Godard et al. 2016) and the work presented in Chapter 3, as well
as speech-to-text alignment (Duong et al. 2016a; Anastasopoulos et al. 2016). Speech-
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to-text alignment and lexicon induction are distinct tasks but related since models
that jointly perform them are likely to enable better phoneme transcription.

The data required for these models are often a subset of a sparse but broad collec-
tion of information acquired in language documentation. While existing models that
perform unsupervised inference of lexicons or that use more input data such as trans-
lations tend to perform better, an ideal framework shown in Figure 7.1 incorporates
a larger array of possible available information for better statistical inference of the
unavailable information.

Prior lexicons In many cases, a linguist investigating a language will have some
pre-existing lexicon available to them. In the process of transcribing collected speech,
the lexicon will be expanded. The models and experimentation described in Chapters
3, 5 and 6 assumed that no prior lexicon was available, but taking advantage of a
prior dictionary has the potential to make more information available to the model
with minimal extensions.

In Chapter 3 lexical entries a linguist is confident in can be incorporated into
the model by simply appending confident phoneme–word entries as short parallel
sentences to the end of the training data. This is model-agnostic. Alternatively,
model-specific alternatives include adding explicit Pialign biparse trees for entries
from an existing lexicon, which can be seamlessly integrated into inference.

In Chapter 5 prior lexical knowledge can be included by adjusting the model’s
cache counts based on our confidence. This works to a key strength of Bayesian
models such as the one described in the chapter: the ability to incorporate prior
belief about translations.

For the CTC-based neural network acoustic model of Chapter 6, incorporating
lexical information is less straightforward. If the lexicon is extensive, then word-based
decoding can be performed by composing a phoneme lattice with a lexicon WFST. In
the more realistic case of a sparser lexicon, it is more difficult. One possible option is
to use a mixed word/sub-word model where the lexicon biases towards likely words
or morphemes without precluding the transcription of phoneme sequences not in the
lexicon.
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Multilingual acoustic modelling In the case where the language documentation
requires acoustic model generalization across speakers, or where very limited super-
vised information is available, effective automatic phoneme transcription will likely
depend on quality multilingual acoustic modelling. In such cases, the above frame-
works would depend on using multilingual acoustic models, or acoustic models trained
on phonetically similar languages, possibly adapted using a small amount of data from
the target language. Though there is a history of work on cross-lingual and multi-
lingual acoustic modelling (Köhler 1999; Schultz and Waibel 2001b; Vu et al. 2014;
Imseng et al. 2014; Xu et al. 2016), there exist no widely available models for off-the-
shelf application.

An ideal follow-on research project would simultaneously investigate multilingual
acoustic modelling, models that can flexibly harness all information that may be
available, as per Figure 7.1, and implementation of tools usable by linguists and
speakers of the language that harness these models.

Data collection Another approach to best address the data sparsity issue consists
in investigating approaches to guiding the data collection so that the process is most
efficient. This may involve incorporating methods for inferring lexemes into the data
collection process itself, offering hypotheses immediately to native speakers for their
confirmation, rather than serving as a post-processing step. This sort of coupling of
modelling and data collection may make more efficient use of the speakers’ time while
highlighting aspects of the lexicon that isn’t well covered and allowing the models can
guide the collection of data that is most informative in an active learning framework.

7.3.1 An Evaluation Suite for Methods on Bilingual Low-
Resource Spoken Data

Automating language documentation tasks is difficult. Phoneme recognition is
still out of reach for most languages, owing to the lack of transcribed data or a
universal phone recogniser capable of generalizing to unseen languages. Although
there has been research in the space of multilingual acoustic modelling (Köhler 1999;
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Byrne et al. 2000; Schultz and Waibel 2001b; Heigold et al. 2013; Vu et al. 2014), there
exists no widely available model with which to perform language-independent phone
recognition or to facilitate easy adaptation thereof on a smaller in-domain dataset.
In most cases, it is also not clear what sort of performance can be expected of such
models. While there are many sources of bilingual data for low-resource languages,
they are often not easily attainable and is often quarantined behind legal agreements.
When it is accessible, the data is formatted in different ways and may require signifi-
cant preprocessing to make them consistently amenable to a given machine learning
method. Due to the lack of a communal dataset of speech and corresponding transla-
tions, procuring and preprocessing data must be done by each group of researchers,
which results in different methods being applied to different datasets preprocessed dif-
ferently. This makes comparison of methods difficult and unreliable. While corpora
from the IARPA Babel project1 offers data for a variety of low-resource languages,
an important feature of the proposed dataset would include translations for training
speech translation models as explored in Chapter 5.

We therefore recommend the development of a multilingual dataset along with
a model so that baseline performance can be established for a number of languages.
The availability of such a model, or the tools to train such a model, would facilitate re-
search on downstream tasks such as speech-to-text alignment that depend on acoustic
models but are hindered by the difficulty of the requirement of a full pipeline.

7.4 Towards a Research Program in Computational
Documentary Linguistics

These activities (completed and projected) sit within a broader program of re-
search to secure and leverage the full diversity of the world’s languages. Creating a
record of the world’s languages will require advances in a) the rate of data acquisition,
b) the modelling of available data and c) the useability of such software to enable its
deployment by linguists who are doing the language documentation work. In addi-

1www.iarpa.gov/index.php/research-programs/babel

www.iarpa.gov/index.php/research-programs/babel
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tion to helping documentation, improvements in data collection and the availability
of language technology for threatened languages has the potential to aid communities
of people speaking the languages who are interested in revitalization.

Most of this thesis constitutes exploration into modelling advances prompted
by developments centering around the bilingual spoken data acquisition scenario of
Aikuma (Hanke and Bird 2013; Bird et al. 2014b; Bird et al. 2014a; Hanke 2017). We
have explored models designed to best make use of available data, and that can be con-
nected with tools that enable the limited numbers of speakers to efficiently document
their languages. Further refinement of these models, while creating user interfaces to
make these methods broadly deployable in documentary linguistics is crucial. In light
of rapid language extinction and language shift, this is a time-sensitive step that must
be done while there is still time to capture and preserve the world’s rich linguistic
heritage.
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