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The tissue traits and architectures of plant species are

important for land-plant ecology in two ways. First, they

control ecosystem processes and define habitat and

resources for other taxa; thus, they are a high priority for

understanding the ecosystem at a site. Second, know-

ledge of trait costs and benefits offers the most

promising path to understanding how vegetation

properties change along physical geography gradients.

There exists an informal shortlist of plant traits that are

thought to be most informative. Here, we summarize

recent research on correlations and tradeoffs surround-

ing some traits that are prospects for the shortlist. By

extending the list and by developing better models for

how traits influence species distributions and interact-

ions, a strong foundation of basic ecology can be

established, with many practical applications.
Schimper world and Hubbell world

Our world view follows Schimper [1]. In Schimper world,
different plant species are more successful in different
parts of the landscape, and this is because they have
different quantitative traits, such as leaf nitrogen concen-
trations, rooting depths, wood densities, leaf sizes and
potential canopy heights. Schimper world is set in real
physical geography, along gradients of rainfall, tempera-
ture, and geomorphology.

Plant stems, canopy architecture, foliage and litter are
so influential in terrestrial ecosystems that Schimper
world should be important for any ecologist. For example,
the partitioning of rainfall among interception loss,
infiltration and runoff is strongly influenced by canopy
and litter properties. Habitat for all resident species is
created or modified by the physical traits of plants and
their 3D layout (e.g. the wind speeds that move fungal
spores; the leaf and twig sizes available for galls and leaf
miners; the line of sight for an insectivorous bird; the daily
range of temperatures for animals operating at the ground
surface; and the depth and texture of litter for invert-
ebrates). Albedo and turbulent gas exchanges with the
atmosphere are influenced by the total leaf area, its
texture and its vertical profile. Carbon assimilation,
herbivory and cycles of mineral nutrients are products of
leaf traits such as nutrient concentrations, photosynthetic
capacities, chemical defences, engineering toughness and
lifespans. These traits are important not only in live
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leaves, but also through their influence on litter decompo-
sition and nitrogen mineralization.

Thus, addressing the questions of how and why plant
traits and architectures vary among species and sites is
the most important single step towards understanding
land-ecosystem properties in general. This might seem an
obvious point, but Schimper world currently gets less
attention than what could be called Hubbell world.
Hubbell’s 2001 book [2] was heralded by a special
commentary in Science [3], has been debated and tested
(e.g. [4,5]), and has had special-issue treatment in
Functional Ecology [6]. The Hubbell question is about
the rank-abundance curve that describes dominance, the
species richness at a site of given size, and the species–
area curve that describes how fast new species are
encountered as the sample is extended spatially. In
Hubbell world, species are said to be equivalent: they
have equal per-individual chances of birth, death,
dispersal and speciation. The physical landscape is
unspecified and undifferentiated, with species equally
competent throughout.

In Hubbell world, ecological-trait differences among
species are deliberately removed from consideration.
Although this is at one extreme of the spectrum of
community theory (Box 1), much theory is directed
towards species diversity rather than towards species
physical traits, in spite of doubts over whether diversity
outcomes are informative about the different ecological
processes operating [7,8]. Also, few theory strands specify
the location of the site in physical geography. Indeed,
there would seem little value in specifying a physical
environment without also specifying something about the
ecological traits of the species; but a community theory
that says nothing about patterns across real physical
geography must surely be regarded as incomplete.

Schimper world and Hubbell world formulate different
questions, rather than being alternative answers to the
same question. Even if Hubbell world becomes generally
accepted as the right model for species richness and
abundances, it will still say nothing about plant species
traits, physiologies and physiognomies at a site. We
suggest that the Schimper questions are of the utmost
importance for ecology, both theoretically and practically.

The Schimper questions are as yet unanswered, but
two essential foundations for those answers are currently
being established. The first is a strong cost–benefit
understanding of key plant traits, so that one can
understand how the competitiveness of different trait
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Box 1. Role of physical geography in community theory

In classical interaction-matrix theory (e.g. [67]), species undergo

population dynamics under the influence of interactions among

species. Any effects of the physical setting are manifested through

the coefficients of population growth and interaction. This does not

emphasize coefficients that change along physical geography

gradients. In resource-competition and resource-ratio theory (e.g.

[68,69]), there has been much interest in gradients of resource

availability, but the anchoring of these to geographical maps has

been rare for terrestrial systems [70]. In sessile-dynamics theory (e.g.

[71]), individuals occupy an array of living sites, and the interest is in

the advantage that established individuals have over seedlings and

its consequences, rather than in whether different living sites offer

different opportunities. In neutral theory (e.g. [2]), the setting is

geographically wide but each species performs equally well in each

part of it. A sophisticated body of theory from Chesson (e.g. [72]) sets

out to understand the interplay among spatial variation, temporal

stochasticity and population-dynamical coexistence. However, it has

so far been applied to local spatial patterning (e.g. [73]), rather than

to the physical gradients responsible for the geography

of vegetation.

In practical vegetation science as compared with theoretical

community ecology, it is widely agreed that interactions among

species typically take the form of inclusive niches or dominance–

tolerance hierarchies [19,20,74], where many species have similar

optimal habitat, but species that are competitively dominant in the

best habitat are unable to cope with inferior habitats. To understand

which trait values the set of plant species at a site will have, it will be

important to consider communities as occupying definite locations

along gradients of rainfall, temperature and geomorphology.

Box 2. Coordination between plant functional traits

Scatterplots such as those in Figures 1–3 (main text) show whether

two traits are either correlated across species, or are found in all

possible combinations. Three issues about trait coordination are as

follows:

Correlation and causation
As is well known, correlation does not prove a direct causal link

between two traits and, therefore, scatterplots should be used in

combination with other types of evidence [16]. For example, energy

or nutrient budgets of individuals can be quantified (e.g. [42,75]);

cost–benefit modeling can predict what trait values should be most

competitive in relation to either the physical environment or to other

traits [61,76–80]; and field experiments can test hypotheses about

how trait differences translate into survivorship differences (e.g. for
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values shifts along physical geography gradients. The
second foundation is data sets andmodels on aworld scale.
These put physiological studies from particular habitats,
growth forms or clades into worldwide context. We
comment on data sets and models, before turning to the
state of knowledge about costs and benefits of some
key traits.
seed size, as reviewed in [17]). It is when such different lines of

evidence tell a consistent story that we gain confidence in

an interpretation.

Shape of correlation
Correlation between traits can usefully be thought of as arising

because some zones of the trait space are unoccupied. Sometimes

only one corner is vacant, giving rise to a triangular relationship;

sometimes opposite corners are vacant, producing a diagonal band.

Different zones can be vacant through different mechanisms. For

example, in the relationship between leaf mass per area (as the x-

axis) and leaf lifespan (as the y-axis), the upper left is unachievable

(long leaf lifespan in spite of cheap leaf construction), whereas the

lower right is uncompetitive (expensive construction combined with

short-duration revenue stream from the short leaf lifespan) [28].

Evolutionary history

Despite pronouncements to the contrary (e.g. [81]), each present-day

species is an independent piece of evidence for the question of

whether a species having that trait combination is ecologically

competent. There is always the possibility that it is not the traits

currently under consideration that enable species to sustain a

population, but rather other unmeasured traits correlated with

them. This is a genuine problem, but it is not solved by applying

so-called phylogenetic comparative methods; solid conclusions are

best arrived at through multiple lines of evidence. The proper role of

phylogenetic comparative methods is not to correct for problems of

cross-correlation, but rather to ask a different question: how has the

range of trait values arisen phylogenetically through evolutionary

history? For this purpose, data are expressed as inferred evolution-

ary divergences in traits, rather than as present-day species values.
Data sets and models

Data sets about species traits are approaching global
coverage, following decades of effort from many contribu-
tors. Seed mass data now cover O12 000 species [9], wood
anatomy O5000 species (http://insidewood.lib.ncsu.edu/)
and leaf economic and stoichiometric data O2000 species
[10–12]. The distributions of species are becoming better
characterized as data sets of point locations rather than as
presence or absence in grid squares (e.g. http://salvias.net/
pages/, http://nvs.landcareresearch.co.nz/ and http://veg-
bank.org/vegbank/index.jsp). Global mapping of climate
and soils (e.g. http://www.daac.ornl.gov/) is now at finer
resolutions, although estimates at point locations remain
less convincing for soils than for climate.

Global vegetation models exist that work from basic
processes and that reproduce the main zonation of world
vegetation (e.g. [13–15]). However, these models are not
usually recognized as achievements of community ecology.
They are fairly incomplete, as yet: they work in terms of
plant functional types, such as ‘broad-leaved evergreens’
and ‘C3 grasses and forbs’; information about quantitative
traits is chopped into these rather broad categories rather
than handled as continuous variables; only some of the
important quantitative traits are modeled; and they
identify dominant plant types but say little about the
www.sciencedirect.com
spread of trait values within a vegetation type. Still, the
models do provide a foundation for working from world
databases for the physical environment, through cost–
benefit models and onward to predictions for plant traits.

Ecologically significant plant traits and their variation

across species

Because conceptual strategy dimensions such as competi-
tiveness or shade tolerance are difficult to compare across
habitats, recent plant strategy thinking (e.g. [16–22]) has
often emphasized measurable traits. These trait dimen-
sions provide the means to compare species worldwide.
Nevertheless, individual traits should not be considered
in isolation, because pairs of traits are often coordinated
(Box 2). An important part of trait research addresses
interrelations among different traits (e.g. [23]), quantify-
ing the correlations and asking why some sets of traits are
sufficiently closely coordinated to be thought of as forming
a single dimension of strategy variation compounded from
several traits.

http://insidewood.lib.ncsu.edu/
http://salvias.net/pages/
http://salvias.net/pages/
http://nvs.landcareresearch.co.nz/
http://vegbank.org/vegbank/index.jsp
http://vegbank.org/vegbank/index.jsp
http://www.daac.ornl.gov/
http://www.sciencedirect.com


Box 3. Trait variation among coexisting species is

substantial

Although site-average leaf mass per area (LMA) shifts predictably

along regional and global gradients of rainfall and temperature,

these shifts are often smaller than the range of variation seen among

coexisting species (Figure I). Seed mass ranges 105- or 106-fold

across coexisting species [17]. Within-site variation accounts for

large fractions of total worldwide variation for leaf lifespan (57%,

variance components analysis), dark respiration (67%) and potential

photosynthetic rate (48%) [10].

In other words, much of the trait variation between species is

associated with different lifestyles within a common environment.

Species traits are not unilaterally determined by the physical

environment at a site, although it presumably filters out some trait

values that are inviable there and frames the conditions

for competition.

Box 4. Allometric size scaling in relation to ecological

strategies of species

Can plant size usefully be thought of as one of the main dimensions

of ecological strategy variation among species? Power laws that

interrelate different size components of plants have a venerable

history and, recently, there has been a fresh burst of activity

(reviewed in [82,83]), where a theory about distributive networks in

vasculature gives rise to characteristic scaling powers of 4/3 or 3/4.

Scaling theory has been used in conjunction with general dimen-

sional arguments [82,83], with metabolic arguments [84] and with

observed data [82,83]. There is ongoing debate about scaling theory

and its fit to data. Our aim here is not to join in that debate, but rather

to assess the relationship between size scaling and other dimensions

of ecological strategy variation among species.

Growth and metabolic rates for species have traditionally been

expressed per unit of active tissue, for example net assimilation or

photosynthetic rates per gram of leaf dry mass. In this formulation, it

is implicit that as well as species-characterizing rates per unit leaf,

one would also need a list of the amounts of leaf per species, to

obtain rates per individual or per unit ground area.

Scaling theory similarly assumes that growth rates are per unit leaf

mass. The difference is that scaling theory focuses on the size of

individuals as a predictor and does not provide for species effects on

the rates per leaf mass. If leaf mass were used as the size index in

scaling theory, many rates would be simply proportional (isometric).

However, total plant mass is predicted to scale 4/3 with leaf mass

and, conversely, many per-individual rates scale 3/4 with total plant

mass [82]. Thus, the distinctive contribution of size-scaling theory is

a series of predictions about conductive and supportive stem and

root tissue mass as a 4/3 power of foliage mass. Flowing from these

are also some allometric predictions about conductivities and

sap velocities.

Size-scaling theory predicts ontogenetic change through the

lifetime of individuals and does not predict differences between

species for individuals at a common size. It should perhaps be

thought of as complementary to ecological strategy differences

between species, rather than as a dimension within ecological

strategy theory.
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Figure I. Worldwide LMA in relation to mean annual temperature and mean

annual rainfall. The tilted plane shows site-mean LMA responding to mean

annual temperature and to rainfall. The vertical columns of dots show the

spread of LMA values for individual species within each site. Reproduced with

permission from [10].
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For most traits, the spread of values observed across
species within a site is wide (Box 3). This shows that a
variety of ecological styles operate at any one site. The
physical environment can be considered as filtering
[24,25] the kinds of species that can succeed at a given
site, or as setting the framework of total leaf cover and net
primary production within which species interact, but not
as exclusively determining the trait values that
are present.

The research agenda for plant functional traits can be
thought of as a developing short list of trait dimensions
[17]. Ranking involves several criteria, including: prac-
tical measurability; application to ecosystem processes
and to understanding species distributions; a firm under-
standing of the costs, benefits and physiology; and
contributing information that is independent from other
dimensions. Opinions vary, but three trait dimensions
are now widely accepted as important ([26,27; reviewed in
[17]):

† A ‘leaf economic spectrum’ [10,28] runs from
species with cheaply constructed leaf area but
www.sciencedirect.com
short-duration return on investment, to species
with high leaf mass per area (LMA) and long leaf
lifespan. Higher nitrogen and phosphorus concen-
trations and faster gas exchange rates are associated
with the lower LMA end of the leaf economic
spectrum. Herbs, grasses and deciduous trees tend
towards the lower LMA end and evergreen shrubs
and trees towards the higher LMA end, but there is
wide overlap between growth forms.

† There is a spectrum where species with larger seeds
have lower seed output per m2 of canopy but better
survival per week during early seedling life, under a
variety of seedling hazards [17].

† There is a spectrum of canopy height at maturity,
with taller final height trading off with rapid early
height growth or with tolerance of low light [29,30].
It is an interesting and open question as to how this
spectrum of potential height across species is related
to allometric size scaling (Box 4).

Here, we review some further traits, chosen because
rapid progress is being made, although much
remains undetermined.
Xylem hydraulics, wood density and leaf size

Baas et al. [31] discussed xylem evolution within the
framework of a ‘tradeoff triangle’. Conductive efficiency

http://www.sciencedirect.com
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was expected to trade off with resistance to embolism (the
formation of gas bubbles in vessels, blocking the move-
ment of water). Conductive efficiency was also expected to
trade off with mechanical strength.

There are two mechanisms of embolism risk [31,32].
Under freeze–thaw, the risk that gas bubbles will form is
proportional to vessel diameter. Under drought, gas
bubbles are seeded through pores in the pit membranes,
and wider pit-pores enable this to happen at less-
negative xylem water potentials. Given these distinct
mechanisms, one might think a species could simul-
taneously achieve very wide vessels and rapid conduc-
tance as well as narrow pit-pores and strong resistance
to embolization under drought. Nevertheless, in Maher-
ali et al.’s [33] compilation of data (167 species from 50
seed plant families; Figure 1), species with both fast
water transport capacity and strong resistance to
embolism were absent.

A probable reason why fast water-transport capacity
is not found in combination with strong resistance to
embolism is that resistances in the vessel lumen will
have been coordinated by natural selection with resist-
ances passing through walls between vessels. The
overall conductivity of a stem is influenced not only by
the density of lumens, but also by their size (conduc-
tance is proportional to the 4th power of diameter), by
how often walls need to be passed through (vessel
lengths) and by the resistance passing through each wall
(number and size of pit-membrane pores). Measured
conductances generally fall between 20% and 80% of the
TRENDS in Ecology & Evolution 
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theoretical conductance calculated from lumen diam-
eters only [31]. Recently, Sperry et al. [34] showed by
direct measurement that end walls and lumens con-
tributed in roughly equal shares to the overall resistivity
(inverse of conductivity); end walls contributed 54 G 7%
of resistivity across seven species with widely
varying anatomies.

Wood density is a moderately good predictor of
resistance to drought-driven embolism [32,35], measured
as how low stem water potential can fall before 50% of
conductance is lost. It might seem natural that wood
density and resistance to embolism would be correlated,
given that both can result from smaller vessels, and that
vessels that go to lower water potentials need thicker
walls to resist implosion [36]. Yet angiosperm wood
anatomy provides many possibilities for weakening the
relationship [36,37]. Fifty percent of conductivity can be
contributed by a relatively few large vessels, because of
the 4th-power-of-diameter effect. These larger vessels
can occupy only a small share of the stem cross-section,
with limited effect on wood density. The share of the
cross-section that is not vessel lumen can vary in
density. And as described here, drought-driven embolism
is under the immediate control of pit-membrane pore
diameters, rather than of vessel diameters. Neverthe-
less, Ackerly [38] and Bucci et al. [39] found higher wood
density strongly associated with low leaf water poten-
tials at the driest time of year across 20 California
chaparral shrub species and six Brazil savanna tree
species, respectively. These data indicated that species
with higher wood density tended to be shallower rooted,
or at least to be rooted in drier soil. It was consistent
with wood density serving to protect conductivity in the
face of falling xylem water potential.

Other than its relationship with hydraulic traits,
higher wood density also incurs greater expense per
stem volume and is connected to greater mechanical
strength [40], slower tree growth rate [41–45], and (for
reasons that are unclear) to smaller leaf size and twig size
[38,46]. The conductive capacity of stems needs to be
coordinated with the amount of leaf deployed and with the
hydraulic properties of leaves [47]. Many species adjust
leaf amounts over time in response to seasons and rainfall
[48], but there are also continuing differences in leaf area
per sapwood area across species along environmental
gradients [49,50].

In summary, species vary in wood density, conduc-
tivity per unit cross-section of sapwood, leaf area per
unit of cross section, and vulnerability to embolism.
Higher wood density appears to be correlated with
smaller leaf and twig sizes. It is not yet clear how
many distinct dimensions of strategic variation are
involved among these traits.

Roots in relation to shoots

First, one should consider the physiological or functional
issues about root–shoot relations. Functional coordination
is expected, because root-acquired resources are trans-
ferred to the shoot and vice versa. But does this mean that
particular aboveground traits are always found in
combination with particular belowground traits or,

http://www.sciencedirect.com
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alternatively, is there a wide variety of root traits
cooperating with a particular type of aboveground plant?
Second, roots are important for ecosystem outcomes under
global change. The depth from which water is extracted is
among the most important influences of vegetation on
climate models. The metabolism of roots is a major
unknown in carbon budgets, and root turnover is
important for carbon storage [51].

At the level of the architecture of whole root and shoot
systems, Schenk and Jackson’s compilation of 1300
records worldwide showed that the stature of the plant
was the dominant predictor of rooting depth [52]. Trees
tended to have deeper roots than did shrubs, which tended
to have deeper roots than did forbs and grasses. Within
growth forms, species with larger aboveground volumes
tended to have deeper roots and also wider lateral spread.
However, there was much scatter, with r2 values usually
(0.5. Globally, deep-rooted species were most common in
warm, high-rainfall, but seasonally dry environments, on
soils that enable water to infiltrate deeply [53]. Still, half
or more of all root biomass was found in the upper 30 cm of
soil in all biomes.

Roots are hard work to excavate, and leaf water
potential at the end of the dry season has been used as
an indicator of rooting depth among 20 chaparral species
[38]. It varied independently from leaf lifespan and other
leaf-economic traits. Species with shallower roots (leaf
water potential more strongly negative) tended to have
higher wood density, smaller vessels, thinner twigs and
less leaf area per sapwood area. Across 17 Florida oak
species, those with higher wood density and slower
conductivity similarly tended to carry less leaf area per
sapwood area [54]. Lowmid-day water potential in the dry
season was similarly associated with higher wood density
and slower conductivity sapwood across six tree species in
Brazil [39] and 12 conifer species [55], but in these studies,
leaf area per sapwood area was lower in the high-
conductivity species.

At the level of individual absorbing roots, some traits of
fine roots appear to be coordinated with traits of leaves.
Among grasses on four continents, fine root N concen-
tration was moderately well correlated with leaf N [56]
(Figure 2), with C4 grasses operating at lower root N for a
given leaf N than did C3 grasses. Across 31 North
American savannah species from several growth forms,
respiration rate increased with N concentration in leaves
and roots, along a common relationship [57]. Leaf and root
lifespan (14 species) decreased with tissue N concen-
tration [57]. In a similar vein, Comas and Eissenstat [58]
compared faster with slower growing temperate tree
species within five separate clades, and found the faster
growing species had narrower fine roots that achieved
greater length for a given dry mass (i.e. greater specific
root length; SRL).

In spite of these results, the picture about root trait–
shoot trait relationships remains inconsistent. In Comas
and Eissenstat’s study [58], the faster growing species did
not evince faster root respiration. In Tjoelker et al.’s study
[57], leaf area per leaf mass (SLAZ1/LMA) was not
correlated with the SRL offine roots (Spearman’s rZ0.12),
although SLA and SRL had been previously been
www.sciencedirect.com
correlated for seedlings in pots [59,60]. Wider comparisons
are needed to put these studies in context.
N:P ratio in leaves, nutrient limitation and growth

strategy

A leaf N:P ratio of w15 is thought to divide situations
where growth responds more strongly to P addition (N:PO
16) from situations where growth responds more strongly
to N addition [61,62]. Recently, it has become evident that
there is a strong gradient of leaf N:P increasing with mean
annual temperature and towards the tropics [11,12,63,64]
(Figure 3a). Discussion of possible causes for this revolves
around the influence of temperature on soil weathering
and on growth rate, P being used more heavily in protein
synthesis, and N in photosynthesis. Still, individual
species are scattered widely in leaf N:P at any given
latitude or mean annual temperature (Figure 3b). What
might this scatter mean?

Leaf N and P are strongly correlated, but with a log-log
slope distinctly!1, estimated at 0.66 [10] or 0.75 [65] (e.g.
Figure 3c). In other words, species with lower absolute N
and P concentrations tend to have higher N:P ratios. On
this basis, high N:P ratio should be associated with slow
leaf-specific growth rates, as reported by Niklas et al. [65].

http://www.sciencedirect.com
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This might account for much variation among species at a
given site. Yet in a different data set, N:P ratio was only
weakly correlated with elements of the leaf economic
spectrum [66], and rarely within sites.
www.sciencedirect.com
Conclusion

In reviewing plant traits, we have emphasized questions
that remain unclear. We are however optimistic and
expect the next 15 years to set in place a coherent
understanding of Schimper world. The elements that
need to come together are first, a strong grasp of trait costs
and benefits, in the context of a competitive environment
and expressed as quantitative models; second, worldwide
trait data sets that can position each species in the context
of the full spread of ecologies that has evolved; and third, a
new generation of world vegetation models that will
implement the cost–benefit models on real physical
geography. These elements will add up to a major
consolidation of ecological science, with a wide range of
practical applications.
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