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The hierarchical nature of phylogenies means that random extinction of species 
affects a smaller fraction of higher taxa, and so the total amount of evolutionary 
history lost may be comparatively slight. However, current extinction risk is not 
phylogenetically random. We show the potentially severe implications of the 
clumped nature of threat for the loss of biodiversity. An additional 120 avian 
and mammalian genera are at risk compared with the number predicted under 
random extinction. We estimate that the prospective extra loss of mammalian 
evolutionary history alone would be equivalent to losing a monotypic phylum. 
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Current and projected species extinction rates 
exceed geologically normal background rates 
by several orders of magnitude (1-3), indi- 
cating that we face an extinction episode 
equivalent to mass extinctions of the paleon- 
tological past. When biodiversity is measured 
by evolutionary history, expressed as the total 
length of all the branches in the tree of life, a 
surprisingly high proportion is likely to sur- 
vive even a massive extinction episode. This 
is because most species have close relatives 
and thus contribute little to the total branch 
length: Whole clades are lost only when all 
their species go extinct, which is unlikely 
under an assumption of phylogenetically ran- 
dom extinction. However, historical extinc- 
tions and current extinction risk are often not 
randomly distributed among species. For ex- 
ample, the 85 mammalian species extinctions 
since 1600 include at least five members of 
the extinct family Nesophontidae (4, 5), and 
the prevalence of current threat varies signif- 
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icantly among orders of mammals (6) and 
birds (7). This nonrandomness will result in 
the loss of more branch length and more 
higher taxa than predicted by random extinc- 
tion (8). Here, we quantify how the clumping 
of extinction risk affects the amount of evo- 
lutionary history under threat in mammals 
and birds, using two measures of biodiver- 
sity: the number of higher taxa (genera) and 
the total phylogenetic branch length [com- 
monly referred to as "phylogenetic diversity" 
(PD)] (9). 

Nee and May (10) showed that surprisingly 
little PD is lost under even catastrophic extinc- 
tion scenarios. In one of their simulations, 81% 
of the phylogenetic branch length remained 
even when only 5% of the species survived an 
extinction episode. Their simulations assumed 
that extinction was random-the "field of bul- 
lets" scenario-or could be optimized through 
management (so as to minimize loss of branch 
length) and indicated that the amount preserved 
would be influenced by the topology of the 
phylogenetic tree. 

In principle, we can envisage two natural 
scenarios that would result in nonrandom dis- 
tribution of extinction risk. First, any phyloge- 
netic clumping of factors that promote risk 
would increase the chance of all species in 
polytypic taxa-and hence those taxa as a 
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Fig. 1. Numbers of A Mammals B Birds 
monotypic and poly- 180 
typic genera lost under 300 
different extinction re- ***160 
gimes for (A) mam- 250- 140 
maLs and (B) birds. _ o 
Dark bars: extinction O 200 -*** 120 
of all species Listed at a 100 
or above the indicated : 150 
threshold level of 80 
threat [see note (12); l *** 60 
numbers in parenthe- E E1 6 
ses are percentages of *** z 40 
species culled]. Light 50 
bars: random extinc- 20 
tion of same intensity o0 - - 
(mean of 1000 trials). mono poly mono poly mono poly mono poly mono poly mono poly 
Error bars: 2 standard nt (37.1%) VU (24.6%) EN (10.2%) nt (16.5%) VU (11.4%) EN (4.2%) 
deviations of the sim- 
ulation distribution. ***P < 0.001 (P values obtained directly from distribution of simulation results). For overall genus loss (monotypic + polytypic), all P c 
0.001. DD species were treated as being at no risk of extinction; treating them as EN led to qualitatively very similar results (33). 

whole-being lost. Second, if such phyloge- 
netically distributed traits have already mediat- 
ed considerable extinction, then many mono- 
typic genera or families might be the last sur- 
vivors of once-larger clades. This could lead to 
a higher proportion than expected of monotypic 
genera, or species on long phylogenetic branch- 
es, being threatened. Nonrandom extinction risk 
has been documented in many groups (6-8, 
11), but its impact on biodiversity loss has not 
hitherto been assessed. 

We estimated the loss of biodiversity ex- 
pected according to current assessments of 
species extinction risk and compared it with 
the loss that would result from a random 
extinction episode of equal severity. We used 
assessments of extinction risk from the 1996 
World Conservation Union (IUCN) Red List 
(4), which is comprehensive in its coverage 
of mammals and birds. Three levels of ex- 
tinction risk were selected for the analysis: 

endangered and higher (EN), vulnerable and 
higher (VU), and near threatened and higher 
(nt) (12). For each of these levels in turn, we 
imposed extinction of all species of at least 
that level, with all species at lower levels 
surviving (13). Species for which no threat 
classification can be made because of a lack 
of information are classified as data deficient 
(DD) by IUCN (14). We dealt with DD 
species in two ways. First, we assumed that 
they had no risk of extinction: Here a genus 
containing a DD species is never lost, a treat- 
ment that is therefore conservative. Second, 
we classified DD species as EN, so that they 
are all lost in all extinction regimes. This errs 
in the opposite direction but is probably near- 
er the truth: It is likely that disproportionately 
many DD species are at high risk of extinc- 
tion (4). 

For each threshold and each clade, we 
calculated the numbers of species, the num- 

bers of genera (overall, monotypic, and poly- 
typic), and (for primates and carnivores, the 
only two clades whose complete species-lev- 
el phylogenies are available) the total phylo- 
genetic branch length that stand to be lost 
(15). For comparison, we conducted simula- 
tions (1000 trials) in which the same numbers 
of species were removed at random (16). 

Figure 1 shows the results for mammals and 
birds; Table 1 shows the taxonomic and phylo- 
genetic results for Primates and Carnivora. The 
same general trends are apparent whether DD 
species are treated as highly threatened or se- 
cure. Three of the four data sets show far more 
genera to be at risk than would be predicted by 
the random extinction model. The fourth data 
set (Camivora) shows a weaker tendency in the 
same direction (17). Within each data set, the 
difference between observed and expected loss 
(the "extra" loss) tends to increase with the 
proportion of species culled, at least until a 

Table 1. Numbers of genera and phylogenetic diversity (PD) lost under 
different extinction regimes in primates and carnivores, for two treatments of 
data-deficient (DD) species. Level, threshold threat level [see (12)]; %spp, 
percentage of species culled; Obs., loss incurred with extinction of all species 

listed at or above threshold level; Mean, mean loss from 1000 random 
extinctions of same severity; #SDs, difference between Obs. and Mean, 
expressed in standard deviations of simulation results. 

All genera Monotypic genera Polytypic genera Phylogenetic diversity (My) 
Level %spp 

Obs. Mean #SDs Obs. Mean #SDs Obs. Mean #SDs Obs. Mean #SDs 

Primates, treating DD species as not at risk 
nt 52.1 25**** 15.12 3.798 17**** 10.58 2.856 8** 4.54 2.068 607.4 602.4 0.1 
VU 38.2 18**** 9.87 3.404 13**** 7.88 2.192 5*** 1.99 2.398 489.7** 425.1 2.0 
EN 16.2 10**** 3.94 3.736 7** 3.57 2.160 3**** 0.37 4.922 209.1* 173.1 1.5 

Primates, treating DD species as EN 
nt 59.8 27**** 18.81 2.790 17**** 12.39 2.000 10** 6.43 1.953 749.8 703.4 1.2 
VU 45.9 18** 13.07 1.927 13** 9.64 1.680 5 3.43 1.191 615.2*** 520.5 2.7 
EN 23.9 10* 6.27 1.856 7 5.48 0.837 3** 0.33 2.603 329.6** 260.9 2.4 

Carnivores, treating DD species as not at risk 
nt 30.2 32**** 25.68 1.628 28 24.51 0.934 4**** 1.17 4.095 505.6 473.1 0.8 
VU 26.1 28* 22.59 1.372 26* 21.59 1.191 2 1.00 1.405 441.2 405.4 0.9 
EN 10.7 9 9.75 -0.250 8 9.58 -0.517 1 0.16 2.240 181.7 164.3 0.6 

Carnivores, treating DD species as EN 
nt 37.3 37 32.86 1.131 33 30.23 0.218 4 2.62 0.802 574.9 592.4 -0.4 

VU 33.2 33 29.18 1.114 31 27.16 0.164 2 2.02 -0.014 510.5 528.0 -0.4 
EN 17.9 14 15.85 -0.818 13 15.25 -0.837 1 0.60 0.512 246.3 275.3 -0.8 

*, P < 0.1; **, P < 0.05; ***, P < 0.01; ****, P < 0.001 (P values calculated directly from the 1000 simulation trials). 
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large proportion (around 50%) of the species 
are lost. For mammals, birds, and primates, loss 
of all threatened (threshold at VU) species 
would lead to the loss of about 50% more 
genera than expected under the null model. 
About half of these additional genera are mo- 
notypic, indicating that members of monotypic 
genera tend to be more threatened than average 
species. The pattern is in fact more general: 
Across both mammals and birds, the probability 
of a species being threatened declines with the 
number of species in its genus, family, or order 
(18). Like clustering of threatened species with- 
in clades, this distribution will tend to counter- 
act the ability of hierarchically structured phy- 
logenies to retain diversity in the face of im- 
pending extinctions. 

There are also many mammal and bird 
genera-far more than expected under the 
null model (Fig. 1)-in which all two to six 
species are threatened (19). The extinction of 
all threatened species would lead to the loss 
of whole genera of unusual and highly valued 
groups, such as chimpanzees, golden-lion 
tamarins, chinchillas, manatees, and kiwis. 
The loss is not limited to the genus level: 
Several species-poor families (either mono- 
typic, such as the aye-aye and kagu, or poly- 
typic, such as rhinos and kiwis) and even 
orders (Microbiotheriidae, Proboscidea, Sire- 
nia, and Apterygiformes) would also be lost, 
along with their unique biological characters. 
Although it is true that smaller proportions 
are lost of PD and genera than of species-an 
almost inevitable consequence of the hierar- 
chical nature of phylogenies-the extra loss 
of biodiversity (relative to random extinction) 
is considerable. Loss of all threatened species 
of mammals and birds would lead to the loss 
of at least 85 and 38 extra genera, respective- 
ly (from the conservative simulations). Only 
three mammalian orders (Chiroptera, Car- 
nivora, and Rodentia) have more than 85 
genera, and there are only around 1150 mam- 
malian and 2100 avian genera altogether. 

The results for primates make it possible 
to estimate very roughly the extra PD that 
stands to be lost in mammals as a whole (20). 
The three thresholds of extinction risk and 
two treatments of DD species give six esti- 
mates of the extra PD lost per genus, averag- 
ing around 10 million years (My) per genus. 
Mammals as a whole stand to lose 85 extra 
genera, corresponding to an estimated 850 
My of extra PD. The added loss of PD in- 
curred through nonrandom extinction in 
mammals alone would therefore roughly 
equate to the loss of a monotypic phylum. 
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