
A Comparative Study of Stemming Algorithms 
 

Ms. Anjali Ganesh Jivani  

Department of Computer Science & Engineering 

The Maharaja Sayajirao University of Baroda 

Vadodara, Gujarat, India 

anjali_jivani@yahoo.com  
 

 

Abstract 

Stemming is a pre-processing step in Text Mining 

applications as well as a very common requirement of 

Natural Language processing functions. In fact it is 

very important in most of the Information Retrieval 

systems. The main purpose of stemming is to reduce 

different grammatical forms / word forms of a word like 

its noun, adjective, verb, adverb etc. to its root form. 

We can say that the goal of stemming is to reduce 

inflectional forms and sometimes derivationally related 

forms of a word to a common base form. In this paper 

we have discussed different methods of stemming and 

their comparisons in terms of usage, advantages as well 

as limitations. The basic difference between stemming 

and lemmatization is also discussed.  

Keywords- stemming; text mining; NLP; IR; suffix 

 

1. Introduction  

 
Word stemming is an important feature supported by 

present day indexing and search systems. Indexing and 

searching are in turn part of Text Mining applications, 

Natural Language Processing (NLP) systems and 

Information Retrieval (IR) systems. The main idea is to 

improve recall by automatic handling of word endings 

by reducing the words to their word roots, at the time of 

indexing and searching. Recall in increased without 

compromising on the precision of the documents 

fetched. Stemming is usually done by removing any 

attached suffixes and prefixes (affixes) from index 

terms before the actual assignment of the term to the 

index. Since the stem of a term represents a broader 

concept than the original term, the stemming process 

eventually increases the number of retrieved documents 

in an IR system. Text clustering, categorization and 

summarization also require this conversion as part of 

the pre-processing before actually applying any related 

algorithm.  

 2. Working of a Stemmer   
It has been seen that most of the times the 

morphological variants of words have similar semantic 

interpretations and can be considered as equivalent for 

the purpose of IR applications. Since the meaning is 

same but the word form is different it is necessary to 

identify each word form with its base form. To do this a 

variety of stemming algorithms have been developed. 

Each algorithm attempts to convert the morphological 

variants of a word like introduction, introducing, 

introduces etc. to get mapped to the word ‘introduce’. 

Some algorithms may map them to just ‘introduc’, but 

that is allowed as long as all of them map to the same 

word form or more popularly known as the stem form. 

Thus, the key terms of a query or document are 

represented by stems rather than by the original words. 

The idea is to reduce the total number of distinct terms 

in a document or a query which in turn will reduce the 

processing time of the final output. 

 

3. Stemming and Lemmatizing 
 

The basic function of both the methods – stemming 

and lemmatizing is similar. Both of them reduce a word 

variant to its ‘stem’ in stemming and ‘lemma’ in 

lemmatizing. There is a very subtle difference between 

both the concepts. In stemming the ‘stem’ is obtaining 

after applying a set of rules but without bothering about 

the part of speech (POS) or the context of the word 

occurrence. In contrast, lemmatizing deals with 

obtaining the ‘lemma’ of a word which involves 

reducing the word forms to its root form after 

understanding the POS and the context of the word in 

the given sentence.  

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1930

ISSN:2229-6093



In stemming, conversion of morphological forms of 

a word to its stem is done assuming each one is 

semantically related. The stem need not be an existing 

word in the dictionary but all its variants should map to 

this form after the stemming has been completed. There 

are two points to be considered while using a stemmer: 

 Morphological forms of a word are assumed to 

have the same base meaning and hence should 

be mapped to the same stem 

 Words that do not have the same meaning 

should be kept separate 

These two rules are good enough as long as the 

resultant stems are useful for our text mining or 

language processing applications. Stemming is 

generally considered as a recall-enhancing device. For 

languages with relatively simple morphology, the 

influence of stemming is less than for those with a more 

complex morphology. Most of the stemming 

experiments done so far are for English and other west 

European languages. 

Lemmatizing deals with the complex process of first 

understanding the context, then determining the POS of 

a word in a sentence and then finally finding the 

‘lemma’. In fact an algorithm that converts a word to its 

linguistically correct root is called a lemmatizer. A 

lemma in morphology is the canonical form of a 

lexeme. Lexeme, in this context, refers to the set of all 

the forms that have the same meaning, and lemma 

refers to the particular form that is chosen by 

convention to represent the lexeme.  

In computational linguistics, a stem is the part of the 

word that never changes even when morphologically 

inflected, whilst a lemma is the base form of the verb. 

Stemmers are typically easier to implement and run 

faster, and the reduced accuracy may not matter for 

some applications. Lemmatizers are difficult to 

implement because they are related to the semantics and 

the POS of a sentence. Stemming usually refers to a 

crude heuristic process that chops off the ends of words 

in the hope of achieving this goal correctly most of the 

time, and often includes the removal of derivational 

affixes. The results are not always morphologically 

right forms of words. Nevertheless, since document 

index and queries are stemmed "invisibly" for a user, 

this peculiarity should not be considered as a flaw, but 

rather as a feature distinguishing stemming from 

lemmatization. Lemmatization usually refers to doing 

things properly with the use of a vocabulary and 

morphological analysis of words, normally aiming to 

remove inflectional endings only and to return the 

lemma.  

For example, the word inflations like gone, goes, 

going will map to the stem ‘go’. The word ‘went’ will 

not map to the same stem. However a lemmatizer will 

map even the word ‘went’ to the lemma ‘go’. 

Stemming: 

introduction, introducing, introduces – introduc 

gone, going, goes – go  

Lemmatizing: 

introduction, introducing, introduces – introduce 

gone, going, goes, went – go  

  

4. Errors in Stemming  

 
There are mainly two errors in stemming – over 

stemming and under stemming. Over-stemming is when 

two words with different stems are stemmed to the 

same root. This is also known as a false positive. 

Under-stemming is when two words that should be 

stemmed to the same root are not. This is also known as 

a false negative. Paice has proved that light-stemming 

reduces the over-stemming errors but increases the 

under-stemming errors. On the other hand, heavy 

stemmers reduce the under-stemming errors while 

increasing the over-stemming errors [14, 15].  

 

5. Classification of Stemming Algorithms  

 
Broadly, stemming algorithms can be classified in 

three groups: truncating methods, statistical methods, 

and mixed methods. Each of these groups has a typical 

way of finding the stems of the word variants. These 

methods and the algorithms discussed in this paper 

under them are shown in the Fig. 1. 

 

 
Figure 1. Types of stemming algorithms 

 

5.1. Truncating Methods (Affix Removal) 

 

As the name clearly suggests these methods are 

related to removing the suffixes or prefixes (commonly 

known as affixes) of a word. The most basic stemmer 

Stemming Algorithms 

Truncating Statistical Mixed 

1) Lovins 

2) Porters 

3) Paice/Husk 

4) Dawson 

 

1) N-Gram 

2) HMM 

3) YASS 

a) Inflectional &   

     Derivational 

  1) Krovetz 

  2) Xerox 

b) Corpus Based  

c) Context Sensitive 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1931

ISSN:2229-6093



was the Truncate (n) stemmer which truncated a word 

at the nth symbol i.e. keep n letters and remove the rest. 

In this method words shorter than n are kept as it is. 

The chances of over stemming increases when the word 

length is small. 

Another simple approach was the S-stemmer – an 

algorithm conflating singular and plural forms of 

English nouns. This algorithm was proposed by Donna 

Harman. The algorithm has rules to remove suffixes in 

plurals so as to convert them to the singular forms [7]. 

 

Lovins Stemmer 

This was the first popular and effective stemmer 

proposed by Lovins in 1968. It performs a lookup on a 

table of 294 endings, 29 conditions and 35 

transformation rules, which have been arranged on a 

longest match principle [6]. The Lovins stemmer 

removes the longest suffix from a word. Once the 

ending is removed, the word is recoded using a 

different table that makes various adjustments to 

convert these stems into valid words. It always removes 

a maximum of one suffix from a word, due to its nature 

as single pass algorithm.  

The advantages of this algorithm is it is very fast and 

can handle removal of double letters in words like 

‘getting’ being transformed to ‘get’ and also handles 

many irregular plurals like – mouse and mice, index 

and indices etc. 

Drawbacks of the Lovins approach are that it is time 

and data consuming. Furthermore, many suffixes are 

not available in the table of endings. It is sometimes 

highly unreliable and frequently fails to form words 

from the stems or to match the stems of like-meaning 

words. The reason being the technical vocabulary being 

used by the author. 

 

Porters Stemmer 

Porters stemming algorithm [17, 18] is as of now 

one of the most popular stemming methods proposed in 

1980. Many modifications and enhancements have been 

done and suggested on the basic algorithm. It is based 

on the idea that the suffixes in the English language 

(approximately 1200) are mostly made up of a 

combination of smaller and simpler suffixes. It has five 

steps, and within each step, rules are applied until one 

of them passes the conditions. If a rule is accepted, the 

suffix is removed accordingly, and the next step is 

performed. The resultant stem at the end of the fifth 

step is returned.  

The rule looks like the following: 

 

<condition> <suffix> → <new suffix> 

 

For example, a rule (m>0) EED → EE means “if the 

word has at least one vowel and consonant plus EED 

ending, change the ending to EE”. So “agreed” 

becomes “agree” while “feed” remains unchanged. This 

algorithm has about 60 rules and is very easy to 

comprehend.  

Porter designed a detailed framework of stemming 

which is known as ‘Snowball’. The main purpose of the 

framework is to allow programmers to develop their 

own stemmers for other character sets or languages. 

Currently there are implementations for many 

Romance, Germanic, Uralic and Scandinavian 

languages as well as English, Russian and Turkish 

languages. 

Based on the stemming errors, Paice reached to a 

conclusion that the Porter stemmer produces less error 

rate than the Lovins stemmer. However it was noted 

that Lovins stemmer is a heavier stemmer that produces 

a better data reduction [1]. The Lovins algorithm is 

noticeably bigger than the Porter algorithm, because of 

its very extensive endings list. But in one way that is 

used to advantage: it is faster. It has effectively traded 

space for time, and with its large suffix set it needs just 

two major steps to remove a suffix, compared with the 

five of the Porter algorithm. 

 

Paice/Husk Stemmer  
The Paice/Husk stemmer is an iterative algorithm 

with one table containing about 120 rules indexed by 

the last letter of a suffix [14]. On each iteration, it tries 

to find an applicable rule by the last character of the 

word. Each rule specifies either a deletion or 

replacement of an ending. If there is no such rule, it 

terminates. It also terminates if a word starts with a 

vowel and there are only two letters left or if a word 

starts with a consonant and there are only three 

characters left. Otherwise, the rule is applied and the 

process repeats.  

The advantage is its simple form and every iteration 

taking care of both deletion and replacement as per the 

rule applied. 

The disadvantage is it is a very heavy algorithm and 

over stemming may occur. 

 

Dawson Stemmer 
This stemmer is an extension of the Lovins approach 

except that it covers a much more comprehensive list of 

about 1200 suffixes. Like Lovins it too is a single pass 

stemmer and hence is pretty fast. The suffixes are 

stored in the reversed order indexed by their length and 

last letter. In fact they are organized as a set of 

branched character trees for rapid access. 

The advantage is that it covers more suffixes than 

Lovins and is fast in execution. 

The disadvantage is it is very complex and lacks a 

standard reusable implementation. 

 

 

 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1932

ISSN:2229-6093



5.2. Statistical Methods 

 

These are the stemmers who are based on statistical 

analysis and techniques. Most of the methods remove 

the affixes but after implementing some statistical 

procedure. 

 

N-Gram Stemmer 

This is a very interesting method and it is language 

independent. Over here string-similarity approach is 

used to convert word inflation to its stem. An n-gram is 

a string of n, usually adjacent, characters extracted from 

a section of continuous text. To be precise an n-gram is 

a set of n consecutive characters extracted from a word. 

The main idea behind this approach is that, similar 

words will have a high proportion of n-grams in 

common. For n equals to 2 or 3, the words extracted are 

called digrams or trigrams, respectively. For example, 

the word ‘INTRODUCTIONS’ results in the generation 

of the digrams: 

 

*I, IN, NT, TR, RO, OD, DU, UC, CT, TI, IO, ON, NS, 

S* 

 

and the trigrams: 

 

**I, *IN, INT, NTR, TRO, ROD, ODU, DUC, UCT, 

CTI, TIO, ION, ONS, NS*, S** 

 

Where '*' denotes a padding space. There are n+1 

such digrams and n+2 such trigrams in a word 

containing n characters. 

Most stemmers are language-specific. Generally a 

value of 4 or 5 is selected for n. After that a textual data 

or document is analyzed for all the n-grams. It is 

obvious that a word root generally occurs less 

frequently than its morphological form. This means a 

word generally has an affix associated with it. A typical 

statistical analysis based on the inverse document 

frequency (IDF) can be used to identify them.  

This stemmer has an advantage that it is language 

independent and hence very useful in many 

applications. 

The disadvantage is it requires a significant amount 

of memory and storage for creating and storing the n-

grams and indexes and hence is not a very practical 

approach. 

 

HMM Stemmer 

This stemmer is based on the concept of the Hidden 

Markov Model (HMMs) which are finite-state automata 

where transitions between states are ruled by 

probability functions. At each transition, the new state 

emits a symbol with a given probability. This model 

was proposed by Melucci and Orio [12]. 

This method is based on unsupervised learning and 

does not need a prior linguistic knowledge of the 

dataset. In this method the probability of each path can 

be computed and the most probable path is found using 

the Viterbi coding in the automata graph. 

In order to apply HMMs to stemming, a sequence of 

letters that forms a word can be considered the result of 

a concatenation of two subsequences: a prefix and a 

suffix. A way to model this process is through an HMM 

where the states are divided in two disjoint sets: initial 

can be the stems only and the later can be the stems or 

suffixes. Transitions between states define word 

building process. There are some assumptions that can 

be made in this method: 

1. Initial states belong only to the stem-set - a 

word always starts with a stem 

2. Transitions from states of the suffix-set to 

states of the stem-set always have a null 

probabiliy - a word can be only a 

concatenation of a stem and a suffix. 

3. Final states belong to both sets - a stem can 

have a number of different derivations, but it 

may also have no suffix. 

For any given word, the most probable path from 

initial to final states will produce the split point (a 

transition from roots to suffixes). Then the sequence of 

characters before this point can be considered as a stem. 

The advantage of this method is it is unsupervised 

and hence knowledge of the language is not required. 

The disadvantage is it is a little complex and may 

over stem the words sometimes. 

 

YASS Stemmer 

The name is an acronym for Yet Another Suffix 

Striper. This stemmer was proposed by Prasenjit 

Majumder, et. al. [20]. According to the authors the 

performance of a stemmer generated by clustering a 

lexicon without any linguistic input is comparable to 

that obtained using standard, rule-based stemmers such 

as Porter’s. This stemmer comes under the category of 

statistical as well as corpus based. It does not rely on 

linguistic expertise. Retrieval experiments by the 

authors on English, French, and Bengali datasets show 

that the proposed approach is effective for languages 

that are primarily suffixing in nature. 

The clusters are created using hierarchical approach 

and distance measures. Then the resulting clusters are 

considered as equivalence classes and their centroids as 

the stems. As per the details given in [20], the edit 

distance and YASS distance calculations for two string 

comparisons is shown in Fig. 2 and Fig. 3 of [20]. The 

YASS distance measures D1, D2, D3 and D4 are based 

on a Boolean function pi for penalty. It is defined as: 

 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1933

ISSN:2229-6093



Where X and Y are two strings, X = x0x1x2 . . . xn 

and Y = y0y1y2 . . . yn. If the strings are of unequal 

lengths we pad the shorter string with null characters to 

make the strings lengths equal. Smaller the distance 

measure indicates greater similarity between the strings. 

The edit distance between two strings of characters is 

the number of operations required to transform one of 

them into the other. 

 
Figure 2. Calculation of distance measures - 1 

 

 
Figure 3. Calculation of distance measures - 2 

 

As per the distances D1, D2, D3 and D4 it can be seen 

that astronomer and astronomically are more similar 

than astronomer and astonish. The edit distance shows 

exactly opposite which means the new distance 

measures are more accurate. 

 

5.3. Inflectional and Derivational Methods 

 

This is another approach to stemming and it involves 

both the inflectional as well as the derivational 

morphology analysis. The corpus should be very large 

to develop these types of stemmers and hence they are 

part of corpus base stemmers too. In case of inflectional 

the word variants are related to the language specific 

syntactic variations like plural, gender, case, etc 

whereas in derivational the word variants are related to 

the part-of-speech (POS) of a sentence where the word 

occurs. 

 

Krovetz Stemmer (KSTEM) 

The Krovetz stemmer was presented in 1993 by 

Robert Krovetz [10] and is a linguistic lexical 

validation stemmer. Since it is based on the inflectional 

property of words and the language syntax, it is very 

complicated in nature. It effectively and accurately 

removes inflectional suffixes in three steps: 

1. Transforming the plurals of a word to its 

singular form 

2. Converting the past tense of a word to its 

present tense 

3. Removing the suffix ‘ing’ 

The conversion process first removes the suffix and 

then through the process of checking in a dictionary for 

any recoding, returns the stem to a word. The dictionary 

lookup also performs any transformations that are 

required due to spelling exception and also converts any 

stem produced into a real word, whose meaning can be 

understood. 

The strength of derivational and inflectional analysis 

is in their ability to produce morphologically correct 

stems, cope with exceptions, processing prefixes as 

well as suffixes. Since this stemmer does not find the 

stems for all word variants, it can be used as a pre-

stemmer before actually applying a stemming 

algorithm. This would increase the speed and 

effectiveness of the main stemmer. Compared to Porter 

and Paice / Husk, this is a very light stemmer. The 

Krovetz stemmer attempts to increase accuracy and 

robustness by treating spelling errors and meaningless 

stems. 

If the input document size is large this stemmer 

becomes weak and does not perform very effectively. 

The major and obvious flaw in dictionary-based 

algorithms is their inability to cope with words, which 

are not in the lexicon. Also, a lexicon must be manually 

created in advance, which requires significant efforts. 

This stemmer does not consistently produce a good 

recall and precision performance. 

 

Xerox Inflectional and Derivational Analyzer 

The linguistics groups at Xerox have developed a 

number of linguistic tools for English which can be 

used in information retrieval. In particular, they have 

produced English lexical database which provides a 

morphological analysis of any word in the lexicon and 

identifies the base form. Xerox linguists have 

developed a lexical database for English and some other 

languages also which can analyze and generate 

inflectional and derivational morphology. The 

inflectional database reduces each surface word to the 

form which can be found in the dictionary, as follows 

[23]: 

 nouns singular (e.g. children child) 

 verbs infinitive (e.g. understood understand) 

 adjectives positive form (e.g. best good) 

 pronoun nominative (e.g. whom who) 

The derivational database reduces surface forms to 

stems which are related to the original in both form and 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1934

ISSN:2229-6093



semantics. For example, ‘government’ stems to 

‘govern’ while ‘department’ is not reduced to ‘depart’ 

since the two forms have different meanings. All stems 

are valid English terms, and irregular forms are handled 

correctly. The derivational process uses both suffix and 

prefix removal, unlike most conventional stemming 

algorithms which rely solely on suffix removal. A 

sample of the suffixes and prefixes that are removed is 

given below [23]: 

 Suffixes: ly, ness, ion, ize, ant, ent, ic, al, Ic, 

ical, able, ance, ary, ate, ce, y, dom, ee, eer, 

ence, ency, ery, ess, ful, hood, ible, icity, ify, 

ing, ish, ism, ist, istic, ity, ive, less, let, like, 

ment, ory, ous, ty, ship, some, ure 

 

 Prefixes: anti, bi, co, contra, counter, de, di, 

dis, en, extra, in, inter, intra, micro, mid, mini, 

multi, non, over, para, poly, post, pre, pro, re, 

semi, sub, super, supra, sur, trans, tn, ultra, un 

The databases are constructed using finite state 

transducers, which promotes very efficient storage and 

access. This technology also allows the conflation 

process to act in reverse, generating all conceivable 

surface forms from a single base form. The database 

starts with a lexicon of about 77 thousand base forms 

from which it can generate roughly half a million 

surface forms. 

The advantages of this stemmer are that it works 

well with a large document also and removes the 

prefixes also where ever applicable. All stems are valid 

words since a lexical database which provides a 

morphological analysis of any word in the lexicon is 

available for stemming. It has proved to work better 

than the Krovetz stemmer for a large corpus. 

 The disadvantage is that the output depends on the 

lexical database which may not be exhaustive. Since 

this method is based on a lexicon, it cannot correctly 

stem words which are not part of the lexicon. This 

stemmer has not been implemented successfully on 

many other languages. Dependence on the lexicon 

makes it a language dependent stemmer. 

 

5.4. Corpus Based Stemmer 

 

This method of stemming was proposed by Xu and 

Croft in their paper “Corpus-based stemming using co-

occurrence of word variants” [22]. They have suggested 

an approach which tries to overcome some of the 

drawbacks of Porter stemmer. For example, the words 

‘policy’ and ‘police’ are conflated though they have a 

different meaning but the words ‘index’ and ‘indices’ 

are not conflated though they have the same root. Porter 

stemmer also generates stems which are not real words 

like ‘iteration’ becomes ‘iter’ and ‘general’ becomes 

‘gener’. Another problem is that while some stemming 

algorithms may be suitable for one corpus, they will 

produce too many errors on another.  

Corpus based stemming refers to automatic 

modification of conflation classes – words that have 

resulted in a common stem, to suit the characteristics of 

a given text corpus using statistical methods. The basic 

hypothesis is that word forms that should be conflated 

for a given corpus will co-occur in documents from that 

corpus. Using this concept some of the over stemming 

or under stemming drawbacks are resolved e.g. ‘policy’ 

and ‘police’ will no longer be conflated. 

To determine the significance of word form co-

occurrence, the statistical measure used in [22], 

 

Em(a, b) = nab / (na + nb) 

 

Where, a and b are a pair of words, na and nb are the 

number of occurrences of a and b in the corpus, nab is 

the number of times both a and b fall in a text window 

of size win in the corpus (they co-occur). 

The way this stemmer works is to first use the Porter 

stemmer to identify the stems of conflated words and 

then the next step is to use the corpus statistics to 

redefine the conflation. Sometimes the Krovetz 

stemmer (KSTEM) along with Porter stemmer is used 

in the initial stem to make sure that word conflations 

are not missed out. 

The advantage of this method is it can potentially 

avoid making conflations that are not appropriate for a 

given corpus and the result is an actual word and not an 

incomplete stem. 

The disadvantage is that you need to develop the 

statistical measure for every corpus separately and the 

processing time increases as in the first step two 

stemming algorithms are first used before using this 

method. 

 

5.5. Context Sensitive Stemmer 

 

This is a very interesting method of stemming unlike 

the usual method where stemming is done before 

indexing a document, over here for a Web Search, 

context sensitive analysis is done using statistical 

modeling on the query side. This method was proposed 

by Funchun Peng et. al. [4]. 

Basically for the words of the input query, the 

morphological variants which would be useful for the 

search are predicted before the query is submitted to the 

search engine. This dramatically reduces the number of 

bad expansions, which in turn reduces the cost of 

additional computation and improves the precision at 

the same time.  

After the predicted word variants from the query 

have been derived, a context sensitive document 

matching is done for these variants. This conservative 

strategy serves as a safeguard against spurious 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1935

ISSN:2229-6093



stemming, and it turns out to be very important for 

improving precision. 

This stemming process is divided into four steps [4] 

after the query is fired: 

Candidate generation: 

Over here the Porter stemmer is used generate the 

stems from the query words. This has absolutely no 

relation to the semantics of the words. For a better 

output the corpus-based analysis based on distributional 

similarity is used. The rationale of using distributional 

word similarity is that true variants tend to be used in 

similar contexts. In the distributional word similarity 

calculation, each word is represented with a vector of 

features derived from the context of the word. We use 

the bigrams to the left and right of the word as its 

context features, by mining a huge Web corpus. The 

similarity between two words is the cosine similarity 

between the two corresponding feature vectors. 

Query Segmentation and head word detection: 

When the queries are long, it is important to detect 

the main concept of the query. The query is broken into 

segments which are generally the noun phrases. For 

each noun phrase the most important word is detected 

which is the head word. Sometimes a word is split to 

know the context. The mutual information of two 

adjacent words is found and if it passes a threshold 

value, they are kept in the same segment. Finding the 

headword is by using a syntactical parser. 

Context sensitive word expansion: 

Now that the head words are obtained, using 

probability measures it is decided which word variants 

would be most useful – generally they are the plural 

forms of the words. This is done using the simplest and 

most successful approach to language modeling which 

is the one based on the n-gram model which uses the 

chain rule of probability. In this step all the important 

head word variants are obtained. The traditional way of 

using stemming for Web search, is referred as the naive 

model. This is to treat every word variant equivalent for 

all possible words in the query. The query “book store” 

will be transformed into “(book OR books)(store OR 

stores)” when limiting stemming to pluralization 

handling only, where OR is an operator that denotes the 

equivalence of the left and right arguments. 

Context sensitive document matching: 

Now that we have the word variants, in this step a 

variant match is considered valid only if the variant 

occurs in the same context in the document as the 

original word does in the query. The context is the left 

or the right non-stop segments of the original word. 

Considering the fact that queries and documents may 

not represent the intent in exactly the same way, this 

proximity constraint is to allow variant occurrences 

within a window of some fixed size. The smaller the 

window size is, the more restrictive the matching. 

The advantage of this stemmer is it improves 

selective word expansion on the query side and 

conservative word occurrence matching on the 

document side. 

The disadvantage is the processing time and the 

complex nature of the stemmer. There can be errors in 

finding the noun phrases in the query and the proximity 

words. 

 

6. Comparison between the Algorithms  
 

As per all the methods and the related stemming 

algorithms discussed so far, a comparative of them 

related to their advantages and limitations is shown in 

Table 4, Table 5 and Table 6. It is clearly deduced that 

none of the stemmers are totally exhaustive but more or 

less the purpose of stemming is resolved. As of now the 

Porter’s Stemmer is the most popular and researchers 

make their own changes in the basic algorithm to cater 

to their requirements. 

 

Table 1. Truncating (Affix Removal) Methods 

 

Lovins Stemmer 

 

Advantages Limitations 

1) Fast – single pass 

algorithm. 

2) Handles removal of 

double letters in words 

like ‘getting’ being 

transformed to ‘get’.  

3) Handles many irregular 

plurals like – mouse and 

mice etc. 

1) Time consuming. 

2) Not all suffixes 

available. 

3) Not very reliable 

and frequently fails 

to form words from 

the stems . 

4) Dependent on the 

technical 

vocabulary being 

used by the author. 

Porters Stemmer 

 

Advantages Limitations 

1) Produces the best output 

as compared to other 

stemmers. 

2) Less error rate. 

3) Compared to Lovins it’s 

a light stemmer. 

4) The Snowball stemmer 

framework designed by 

Porter is language 

independent approach 

to stemming. 

 

 

 

 

1) The stems 

produced are not 

always real words. 

2) It has at least five 

steps and sixty 

rules and hence is 

time consuming. 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1936

ISSN:2229-6093



Paice / Husk Stemmer 

 

Advantages Limitations 

1) Simple form. 

2)  Each iteration takes 

care of deletion and 

replacement. 

 

1) Heavy algorithm. 

2) Over stemming 

may occur. 

Dawson Stemmer  

 

Advantages Limitations 

1) Covers more suffixes 

than Lovins 

2) Fast in execution 

1) Very complex 

2) Lacks a standard 

implementation 

 

Table 2. Statistical Methods 

 

N-Gram Stemmer 

 

Advantages Limitations 

1) Based on the 

concept of n-grams 

and string 

comparisons. 

2) Language 

independent. 

1) Not time efficient. 

2) Requires significant 

amount of space for 

creating and indexing 

the n-grams. 

3) Not a very practical 

method. 

HMM Stemmer 

 

Advantages Limitations 

1) Based on the 

concept of Hidden 

Markov Model. 

2) Unsupervised 

method and so is 

language 

independent. 

1) A complex method for 

implementation. 

2) Over stemming may 

occur in this method. 

YASS Stemmer 

 

Advantages Limitations 

1) Based on 

hierarchical 

clustering approach 

and distance 

measures. 

2) It is also a corpus 

based method. 

3) Can be used for any 

language without 

knowing its 

morphology. 

1) Difficult to decide a 

threshold for creating 

clusters. 

2) Requires significant 

computing power. 

 

 

 

 

 

Table 3. Inflectional & Derivational Methods 

 

Krovetz Stemmer 

 

Advantages Limitations 

1) It is a light 

stemmer. 

2) Can be used as a 

pre-stemmer for 

other stemmers. 

 

 

1) For large documents, 

this stemmer is not 

efficient. 

2) Inability to cope with 

words outside the 

lexicon. 

3) Does not consistently 

produce a good recall 

and precision. 

4) Lexicon to be created 

in advance. 

Xerox Stemmer 

 

Advantages Limitations 

1) Works well for a 

large document 

also. 

2) Removes the 

prefixes where ever 

applicable. 

3) All stems are valid 

words. 

1) Inability to cope with 

words outside the 

lexicon. 

2) Not implemented 

successfully on 

language other than 

English. Over 

stemming may occur 

in this method. 

3) Dependence on the 

lexicon makes it 

language dependent. 

 

7. Conclusion  
 

 As can be seen from all the algorithms that have 

been discussed so far, there is a lot of similarity 

between the stemming algorithms and if one algorithm 

scores better in one area, the other does better in some 

other area. In fact, none of them give 100% output but 

are good enough to be applied to the text mining, NLP 

or IR applications.  

The main difference lies in using either a rule-based 

approach or a linguistic one. A rule based approach 

may not always give correct output and the stems 

generated may not always be correct words. As far as 

the linguistic approach is concerned, since these 

methods are based on a lexicon, words outside the 

lexicon are not stemmed properly. It is of utmost 

importance that the lexicon being used is totally 

exhaustive which is a matter of language study. A 

statistical stemmer may be language independent but 

does not always give a reliable and correct stem. 

The problem of over stemming and under stemming 

can be reduced only if the syntax as well as the 

semantics of the words and their POS is taken into 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1937

ISSN:2229-6093



consideration. This in conjunction with a dictionary 

look-up can help in reducing the errors and converting 

stems to words. However no perfect stemmer has been 

designed so far to match all the requirements. 

 

8. Future Enhancements  
 

Although a lot of research work has already been 

done in developing stemmers there still remains a lot to 

be done to improve recall as well as precision. 

There is a need for a method and a system for 

efficient stemming that reduces the heavy tradeoff 

between false positives and false negatives. A stemmer 

that uses the syntactical as well as the semantical 

knowledge to reduce stemming errors should be 

developed. Perhaps developing good lemmatizer could 

help in achieving the goal. 

 

9. References  

 
[1] Eiman Tamah Al-Shammari, “Towards An Error-

Free Stemming”, in Proceedings of ADIS European 

Conference Data Mining 2008, pp. 160-163. 

[2] Frakes W.B. “Term conflation for information 

retrieval”. Proceedings of the 7th annual 

international ACM SIGIR conference on Research 

and development in information retrieval. 1984, 

383-389. 

[3] Frakes William B. “Strength and similarity of affix 

removal stemming algorithms”. ACM SIGIR 

Forum, Volume 37, No. 1. 2003, 26-30. 

[4] Funchun Peng, Nawaaz Ahmed, Xin Li and Yumao 

Lu. “Context sensitive stemming for web search”. 

Proceedings of the 30th annual international ACM 

SIGIR conference on Research and development in 

information retrieval. 2007, 639-646. 

[5] Galvez Carmen and Moya-Aneg•n F˜lix. “An 

evaluation of conflation accuracy using finite-state 

transducers”. Journal of Documentation 62(3). 

2006, 328-349 

[6] J. B. Lovins, “Development of a stemming 

algorithm,” Mechanical Translation and Computer 

Linguistic., vol.11, no.1/2, pp. 22-31, 1968. 

[7] Harman Donna. “How effective is suffixing?” 

Journal of the American Society for Information 

Science. 1991; 42, 7-15 7.  

[8] Hull David A. and Grefenstette Gregory. “A 

detailed analysis of English stemming algorithms”. 

Rank Xerox ResearchCenter Technical Report. 

1996. 

[9] Kraaij Wessel and Pohlmann Renee. “Viewing 

stemming as recall enhancement”. Proceedings of 

the 19th annual international ACM SIGIR 

conference on Research and development in 

information retrieval. 1996, 40-48. 

[10] Krovetz Robert. “Viewing morphology as an 

inference process”. Proceedings of the 16th annual 

international ACM SIGIR conference on Research 

and development in information retrieval. 1993, 

191-202. 

[11] Mayfield James and McNamee Paul. “Single N-

gram stemming”. Proceedings of the 26th annual 

international ACM SIGIR conference on Research 

and development in information retrieval. 2003, 

415-416. 

[12] Melucci Massimo and Orio Nicola. “A novel 

method for stemmer generation based on hidden 

Markov models”. Proceedings of the twelfth 

international conference on Information and 

knowledge management. 2003, 131-138. 

[13] Mladenic Dunja. “Automatic word lemmatization”. 

Proceedings B of the 5th International Multi-

Conference Information Society IS. 2002, 153-159.  

[14] Paice Chris D. “Another stemmer”. ACM SIGIR 

Forum, Volume 24, No. 3. 1990, 56-61. 

[15] Paice Chris D. “An evaluation method for stemming 

algorithms”. Proceedings of the 17th annual 

international ACM SIGIR conference on Research 

and development in information retrieval. 1994, 42-

50.  

[16] Plisson Joel, Lavrac Nada and Mladenic Dunja. “A 

rule based approach to word lemmatization”. 

Proceedings C of the 7th International Multi-

Conference Information Society IS. 2004. 

[17] Porter M.F. “An algorithm for suffix stripping”. 

Program. 1980; 14, 130-137. 

[18] Porter M.F. “Snowball: A language for stemming 

algorithms”. 2001.  

[19] R. Sun, C.-H. Ong, and T.-S. Chua. “Mining 

Dependency Relations for Query Expansion in 

Passage Retrieval”. In SIGIR, 2006 

[20] Prasenjit Majumder, Mandar Mitra, Swapan K. 

Parui, Gobinda Kole, Pabitra Mitra and 

Kalyankumar Datta. “YASS: Yet another suffix 

stripper”. ACM Transactions on Information 

Systems. Volume 25, Issue 4. 2007, Article No. 18.  

[21] Toman Michal, Tesar Roman and Jezek Karel. 

“Influence of word normalization on text 

classification”. The 1st International Conference on 

Multidisciplinary Information Sciences & 

Technologies. 2006, 354-358. 

[22] Xu Jinxi and Croft Bruce W. “Corpus-based 

stemming using co-occurrence of word variants”. 

ACM Transactions on Information Systems. 

Volume 16, Issue 1. 1998, 61-81.  

[23] Hull D. A. and Grefenstette,. “ A detailed analysis 

of English Stemming Algorithms”, XEROX 

Technical Report, http://www.xrce.xerox. 

 
AUTHORS PROFILE 

 

 

 

Ms. Anjali Ganesh Jivani is an Associate 

Professor in the Department of Computer 
Science and Engineering, The Maharaja 

Sayajirao University of Baroda. She is 

pursuing her doctorate in Computer Science 
and her research area is Text Mining. She 

has published a number of National and 

International level research papers related to 
Text Mining. She has also co-authored a 

book titled ‘SQL & PL/SQL Practice Book’, 

ISBN   978-81-910796-0-9. 

Anjali Ganesh Jivani et al, Int. J. Comp. Tech. Appl., Vol 2 (6), 1930-1938

IJCTA | NOV-DEC 2011 
Available online@www.ijcta.com

1938

ISSN:2229-6093


	2376



